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Abstract
In this paper, we propose and study a new class of continuous distributions called the Marshall-Olkin exponentiated gen-

eralized G (MOEG-G) family which extends the Marshall-Olkin-G family introduced by Marshall and Olkin [A. W. Marshall,
I. Olkin, Biometrika, 84 (1997), 641–652]. Some of its mathematical properties including explicit expressions for the ordinary
and incomplete moments, generating function, order statistics and probability weighted moments are derived. Some charac-
terizations for the new family are presented. Maximum likelihood estimation for the model parameters under uncensored and
censored data is addressed in Section 5 as well as a simulation study to assess the performance of the estimators. The importance
and flexibility of the new family are illustrated by means of two applications to real data sets.
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1. Introduction

There has been a great deal of interest in extending and developing more flexible models through
expanding the classical distributions by introducing additional shape parameters to the baseline distri-
bution. Many generalized families of distributions have been studied and proposed over the last two
decades for modeling data in many applied areas such as engineering, economics, biological studies,
medical sciences, environmental sciences and finance. So, several classes of continuous distributions have
been constructed by extending common G families. These generalized models give more flexibility by
adding one (or more) shape parameters to the baseline model. For instance, Gupta et al. [17] introduced
the exponentiated-G class, which consists of raising the cumulative distribution function (cdf) to a posi-
tive power parameter. Many other classes can be cited like the beta generalized-G by Eugene et al. (2002),
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the gamma-G by Zografos and Balakrishnan [42], the exponentiated generalized-G by Cordeiro et al. [12],
T-X by Alzaatreh et al. [8], exponentiated T-X by Alzaghal et al. [9], Kumaraswamy Marshall-Olkin-G by
Alizadeh et al. [6], beta Marshall-Olkin-G by Alizadeh et al. [5], transmuted exponentiated generalized-G
by Yousof et al. [39], transmuted geometric-G by Afify et al. [2], Kumaraswamy transmuted-G by Afify
et al. [3], Burr X-G by Yousof et al. [40], exponentiated transmuted-G family by Merovci et al. [26], the
complementary generalized transmuted Poisson family by Alizadeh et al. [7], beta transmuted-H by Afify
et al. [4], generalized transmuted-G by Nofal et al. [31], the beta Weibull-G family by Yousof et al. [41],
the Topp-Leone odd log-logistic family by Brito et al. [11], the Burr XII system of densities by Cordeiro et
al. [14], new extended G family by Hamedani et al. [19], and odd power Lindley generator of probability
distributions by Korkmaz et al. [20], among others.

Cordeiro et al. [12] proposed and studied the exponentiated generalized (EG) family with cdf and
probability density function (pdf) given by

Ha,b,φ(x) =
[
1 −G (x;φ)a

]b , (1.1)

and
ha,b,φ(x) = abg (x;φ)G (x;φ)a−1 [1 −G (x;φ)a

]b−1 ,

respectively, where φ is the parameter vector, G (x;φ) = 1 − G (x;φ) is the reliability function (rf) of
a parent distribution. Marshall and Olkin [25] introduced a new method of adding a parameter into a
family of distributions called the Marshall-Olkin-G (MO-G) family. They indicated that if H (x),h (x) and
r (x) denote the rf, pdf and hazard rate function (hrf) of a continuous random variable X, then the MO-G
family has rf defined by

Fθ,φ(x) =
θH(x;φ)

θ− (1 − θ)H(x;φ)
, x ∈ R, θ > 0. (1.2)

Clearly, when θ = 1, F(x) = H(x). The corresponding pdf of (1.2) is given by

fθ,φ(x) =
θh(x;φ)[

θ− (1 − θ)H(x;φ)
]2 , x ∈ R, θ > 0.

By inserting (1.1) in (1.2), we obtain the cdf of the MOEG-G class

F (x) =

[
1 −G (x)a

]b
θ+ (1 − θ)

[
1 −G (x)a

]b , (1.3)

with corresponding pdf given by

f (x) =
abθg (x)G (x)a−1 [1 −G (x)a

]b−1{
θ+ (1 − θ)

[
1 −G (x)a

]b}2 , (1.4)

where G (x) = G (x;φ) and F (x) = F (x; θ,a,b) etc. Henceforth, X ∼ MOEG-G(θ,a,b,φ) denotes a random
variable having density function (1.4).

Some special cases of the new family were studied recently. For instance, generalized exponential
geometric extreme distribution by Ristic and Kundu [32] and Marshall-Olkin generalized Weibull distri-
bution, Marshall-Olkin generalized Lindley distribution, Marshall-Olkin generalized Lomax distribution
and Marshall-Olkin generalized Lomax distribution by Yousof et al. [40]. Furthermore, the basic motiva-
tions for using the MOEG-G family in practice are the following: to produce a skewness for symmetrical
models; to define special models with all types of hrf; to construct heavy-tailed distributions for modeling
various real data sets; to make the kurtosis more flexible compared to that of the baseline distribution; to
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Table 1: Sub-families of the MOEG-G family
Sub-model θ a b G (x) Author

EG-G family 1 a b G (x) Cordeiro et al. [12]

G-G family 1 1 b G (x) Gupta et al. [17]

E-G family 1 a 1 G (x) Cordeiro et al.[12]

MOG-G family θ 1 b G (x) New

MOE-G family θ a 1 G (x) New

G (x) 1 1 1 G (x) –

generate distributions with left-skewed, right-skewed, symmetric, or reversed-J shape; to provide consis-
tently better fits than other generated distributions under the same underlying model.

This paper is organized as follows. In Section 2 we formulate and plot two special MOEG models. In
Section 3, we derive some of mathematical properties of the new family. Some useful characterizations
are presented in Section 4. Maximum likelihood estimation for the model parameters under uncensored
and censored data is addressed in Section 5 as well as a simulation study to assess the performance of the
estimators. In Section 6, potentiality of the proposed class is illustrated by means of two real data sets.
Finally, Section 7 provides some conclusions.

2. Special MOEG-G models

In this section, we provide two special models of the MOEG-G family of distributions. The pdf (1.4)
will be most tractable when Gφ (x) and gφ (x) have simple analytic expressions. These sub-models
generalize some well-known distributions.

2.1. The MOEG-Weibull (MOEG-W) distribution
Consider the cdf and pdf (for x > 0) G(x) = 1 − exp[−(αx)

β
] and g(x) = βαβxβ−1 exp[−(αx)

β
],

respectively, of the Weibull distribution with positive parameters α and β. Then, the pdf of the MOEG-W
model is given by

f (x) =
abθβαβxβ−1 exp[−a(αx)

β
]
[
1 − exp[−a(αx)

β
]
]b−1

{
θ+ (1 − θ)

[
1 − exp[−a(αx)β ]

]b}2 .

The MOEG-W distribution includes EG-W if θ = 1, G-W if a = θ = 1, E-W if b = θ = 1, MOG-W if a = 1,
and MOE-W if b = 1. Plots of the density and hrf of the MOEG-W distribution for some parameter values
are displayed in Figure 1.

2.2. The MOEG-Lomax (MOEG-L) distribution
The cdf and pdf (for x > 0) of the Lomax distribution with positive parameter α are G(x) = 1 − [1 +

x]−α and g(x) = α[1 + x]−(α+1), respectively. Then, the pdf of the MOG-L distribution becomes

f (x) =
abθα[1 + x]−αa−1 {1 − [1 + x]−αa}

b−1{
θ+ (1 − θ) {1 − [1 + x]−αa}b

}2 .

The MOEG-L distribution includes EG-L if θ = 1, G-Lo if a = θ = 1, E-L if b = θ = 1, MOG-L if a = 1,
and MOE-L if b = 1. Plots of the density and hrf of the MOEG-L distribution for some parameter values
are displayed in Figure 2.
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Figure 1: MOEG-W distribution: pdf (left figure), hrf (right figure).
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Figure 2: MOEG-L distribution: pdf (left figure), hrf (right figure).

3. Some mathematical properties

3.1. Extreme values
If X = (X1 + · · ·+ Xn)/n denotes the mean of a random sample from (1.4), then by the usual central

limit theorem
√
n(X − E(X))/

√
Var(X) approaches the standard normal distribution as n → ∞ under

suitable conditions. Sometimes one would be interested in the asymptotic of the extreme values Mn =
max(X1, . . . ,Xn) andmn = min(X1, . . . ,Xn). First, suppose that G belongs to the max domain of attraction
of Gumbel extreme value distribution. Then by Leadbetter et al. [21, chapter 1], there must exist a strictly
positive function, say h(t), such that

lim
t→∞ 1 −G(t+ xh(t))

1 −G(t)
= e−x, ∀x ∈ (−∞,∞).

But

lim
t→∞ 1 − F(t+ xh(t))

1 − F(t)
= lim
x→∞ xf(tx)f(t)

= e−ax,∀ x ∈ (−∞,∞),

so, it follows from Leadbetter et al. [21, chapter 1] that F belongs to the max domain of attraction of the
Gumbel extreme value distribution with

lim
n→∞P[an(Mn − bn 6 x)] = exp [− exp(−ax)]

for some suitable norming constants an > 0 and bn. Secondly, suppose that G belongs to the max domain
of attraction of the Fréchet extreme value distribution. Then by Leadbetter et al. [21, chapter 1], there
must exist β > 0 such that

lim
t→∞ 1 −G(t+ xh(t))

1 −G(t)
= xc, ∀ x ∈ (−∞,∞).
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But

lim
t→∞ 1 − F(t+ xh(t))

1 − F(t)
= lim
t→∞ xf(tx)f(t)

= xac, ∀ x > 0,

so, it follows from Leadbetter et al. [21, chapter 1] that F belongs to the max domain of attraction of the
Fréchet extreme value distribution with

lim
n→∞P[an(Mn − bn 6 x)] = exp(−xac)

for some suitable norming constants an > 0 and bn. Thirdly, suppose that G belongs to the max domain
of attraction of the Weibull extreme value distribution. Then, by Leadbetter et al. [21], there must exist a
β > 0 such that

lim
t→0

G(tx)

G(t)
= xβ, ∀ x < 0.

But

lim
t→0

F(tx)

F(t)
= lim
t→0

xf(tx)

f(t)
= xbβ,∀ x < 0,

so, it follows from Leadbetter et al. [21, chapter 1] that F belongs to the max domain of attraction of the
Weibull extreme value distribution with

lim
n→∞P[an(Mn − bn 6 x)] = exp

[
−(−x)bβ

]
for some suitable norming constants an > 0 and bn. We conclude that F belongs to the same min domain
of attraction as that of G. The same argument applies to max domain of attraction. That is, F belongs to
the same min domain of attraction as that of G.

3.2. Linear representation

The MOEG-G cdf in (1.3) can be written as

F (x) =

∑∞
k=0 akG(x)

k∑∞
k=0 bkG(x)

k
=

∞∑
k=0

ckG(x)
k =

∞∑
k=0

ckMk(x),

where

ak =

∞∑
i=0

(−1)i+k
(
b

i

)(
ai

k

)
, b0 = θ+ (1 − θ)a0, c0 =

a0

b0
,

for k > 1

ck =
1
b0

(
ak −

1
b0

k∑
r=1

bk ck−r

)
and Mk(x) is the cdf of the Exp-G family with power parameter k. The pdf in (1.4) can also be expressed
as a mixture of Exp-G densities

f (x) =

∞∑
k=0

ck+1πk+1(x), (3.1)

where πk+1 (x) = (k+ 1)g (x)G (x)k the Exp-G pdf with power parameter k+ 1. The statistical properties
of the Exp-G models have been studied by many authors in recent years, for instance Gupta and Kundu
[18] for exponentiated exponential, Nadarajah [28] for exponentiated Gumbel, Shirke and Kakade [36]
for exponentiated log-normal and Nadarajah and Gupta [30] for exponentiated gamma distributions.
Thus, some structural properties of the new family such as the ordinary and incomplete moments and
generating function can be determined from well-established properties of the Exp-G distributions.
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3.3. Probability weighted moments

The probability weighted moments (PWMs) are expectations of certain functions of a random variable
and they can be defined for any random variable whose ordinary moments exist. The PWMs method can
generally be used for estimating parameters of a distribution whose inverse form cannot be expressed
explicitly. The (s, z)th PWMs of X following the MOEG-G family, say ρs,z, is formally defined by

ρs,z = E {X
s F(X)z} =

∫∞
−∞ xs F(x)z f (x) dx.

Using equations (1.3) and (1.4), we can write

f (x) F(x)z = abθg (x)

∑∞
k=0ΦkG (x)k∑∞
k=0ΩkG (x)k

= abθg (x)

∞∑
k=0

mk+1G(x)
k,

where

Φk =

∞∑
h=0

(−1)h+k
(
a (h+ 1) − 1

k

)(
b (z+ 1) − 1

h

)
and

Ωk =

∞∑
w=0

∞∑
h=0

(θ− 1)h θz+h+2 (−1)w+k

(
aw

k

)(
bh

w

)(
z+ 2
h

)
.

For k > 1 we have

dk =
1
Ω0

[
Φk −

1
Ω0

k∑
r=1

Ωkdk−r

]

and m0 = Φ0
Ω0

. Then, the (s, z)th PWMs of X can be expressed as

ρs,r = abθ

∞∑
k=0

mk+1

∫∞
0
xs g (x)G(x)k dx = abθ

∞∑
k=0

mk+1E
(
Ysk+1

)
,

where Yk+1 is has Exp-G distribution with power parameter k+ 1.

3.4. Order statistics

Let X1, . . . ,Xn be a random sample from the MOEG-G family of distributions and let X1:n, . . . ,Xn:n be
the corresponding order statistics. The pdf of ith order statistic, Xi:n, can be written as

fi:n (x) =
f (x)

B (i,n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i

j

)
Fj+i−1 (x) ,

where B(·, ·) is the beta function. Using (1.3), (1.4), and the above equation, we have

fi:n (x) =

∑n−i
j=0 (−1)j

(
n−i
j

)
B (i,n− i+ 1)

[ ∞∑
r=0

crrg (x)G (x)r−1

][ ∞∑
k=0

ckG(x)
k

]j+i−1

.

Further, [ ∞∑
k=0

ckG(x)
k

]j+i−1

=

∞∑
k=0

ϕj+i−1,kG(x)
j+i+k−1,
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where ϕj+i−1,0 = cj+i−1
0 and (for k > 1)

ϕj+i−1,k = (kc0)
−1

k∑
m=1

[m (j+ i) − k] cmϕj+i−1,k−m.

Hence, the pdf of Xi:n can be expressed as

fi:n (x) =

n−i∑
j=0

∞∑
k,r=0

di,j,k,r πi+j+k+r(x),

where

di,j,k,r =
(−1)j

B (i,n− i+ 1)

(
n− i

j

)
(1 + r)ϕj+i−1,k

i+ j+ k+ r
.

Then, the density function of the MOEG-G order statistics is a mixture of Exp-G densities. Based on
fi:n (x), we can easily obtain ordinary and incomplete moments and generating function of Xi:n for any
parent G distribution.

3.5. Moments of residual and reversed residual life

The nth moment of the residual life, say

mn(t) = E[(X− t)n |(X>t)], n = 1, 2, . . . ,

uniquely determined F(x). The nth moment of the residual life of X is given by

mn(t) =
1

1 − F(t)

∫∞
t

(x− t)ndF(x).

Therefore

mn(t) =
1

1 − F(t)

∞∑
k=0

c
F
k+1

∫∞
t

xrπk+1(x),

where

c
F
k+1 = ck+1

n∑
r=0

(
n

r

)
(−t)n−r .

Another interesting function is the mean residual life (MRL) function or the life expectation at age t
defined by m1(t) = E [(X− t) |X>t], which represents the expected additional life length for a unit which
is alive at age t.

The MRL of X can be obtained by setting n = 1 in the last equation. The nth moment of the reversed
residual life, say

Mn(t) = E
[
(t−X)n |(X6t)

]
for t > 0 and n = 1, 2, . . .

uniquely determines F(x). We obtain

Mn(t) =
1
F(t)

∫t
0
(t− x)ndF(x).

Therefore, the nth moment of the reversed residual life of X becomes

Mn(t) =
1
F(t)

∞∑
k=0

c
FF
k+1

∫t
0
xrπk+1(x),
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where

c
FF
k+1 = ck+1

n∑
r=0

(−1)r
(
n

r

)
tn−r.

The mean waiting time (MWT) or mean inactivity time (MIT) also called the mean reversed residual life
function is given by M1(t) = E[(t − X) | X 6 t] and it represents the waiting time elapsed since the
failure of an item on condition that this failure had occurred in (0, t). The MIT of the MOEG-G family of
distributions can be obtained easily by setting n = 1 in the above equation.

3.6. General statistical results
The rth ordinary moment of X is given by

µ′r = E(X
r) =

∫∞
−∞ xr f (x)dx.

Then, we obtain

µ′r =

∞∑
k=0

ck+1E(Y
r
k+1). (3.2)

Setting r = 1 in (3.2), we get the mean of X. The last integration can be computed numerically for most
parent models. The skewness and kurtosis measures can be calculated from the ordinary moments using
well-known relationships. Here, we provide two formulae for the mgf MX (t) = E

(
etX

)
of X. Clearly,

the first one can be derived from equation (3.1) as MX (t) =
∞∑
k=0

ck+1Mk+1 (t) , where Mk+1 (t) is the

mgf of Yk+1. Hence, MX (t) can be determined from the Exp-G generating function. A second formula

for MX (t) follows from (3.1) as MX (t) =
∞∑
k=0

ck+1 τ (t,k) , where τ (t,k) =
∫1

0 exp [tQG (u)] uk−1du and

QG(u) is the qf corresponding to G (x;φ), i.e., QG(u) = G−1(u;φ). The main applications of the first
incomplete moment refer to the mean deviations and the Bonferroni and Lorenz curves. These curves are
very useful in economics, reliability, demography, insurance and medicine. The sth incomplete moment,
say Is (t), of X can be expressed from (3.1) as

Is (t) =

∫t
−∞ xsf (x)dx =

∞∑
k=0

ck+1

∫t
−∞ xs πk+1 (x)dx. (3.3)

The mean deviations about the mean δ1 = E(|X− µ′1|) and about the median δ2 = E (|X−M|) of X are
given by δ1 = 2µ

′
1F(µ

′
1) − 2I1(µ′1) and δ2 = µ′1 − 2I1 (M), respectively, where µ′1 = E (X), M = Median(X) =

Q(0.5) is the median, F(µ′1) is easily calculated from (1.3) and I1 (t) is the first incomplete moment given
by (3.3) with s = 1. Now, we provide two ways to determine δ1 and δ2. First, a general equation

for I1 (t) can be derived from (3.3) as I1 (t) =
∞∑
k=0

ck+1 Jk+1 (x) , where Jk+1 (x) =
∫t
−∞ xπk+1 (x)dx is

the first incomplete moment of the Exp-G distribution. A second general formula for I1 (t) is given

by I1 (t) =
∞∑
k=0

ck+1 ζk+1 (t) , where ζk (t) = (k)
∫G(t)

0 QG (u) uk−1du can be computed numerically.

These equations for I1 (t) can be applied to construct Bonferroni and Lorenz curves defined for a given
probability π by B(π) = I1 (q) /(πµ′1) and L(π) = I1 (q) /µ′1, respectively, where µ′1 = E(X) and q = Q(π) is
the qf of X at π.

4. Characterizations

This section deals with various characterizations of MOEG-G distribution. These characterizations
are based on: (i) a simple relationship between two truncated moments and (ii) the reverse (or reversed)
hazard function. It should be mentioned that for characterization (i) the cdf may not have a closed form.

We present our characterizations (i) and (ii) in two subsections.
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4.1. Characterizations based on two truncated moments

In this subsection we present characterizations of MOEG-G distribution in terms of the ratio of two
truncated moments. This characterization result employs a theorem due to Glänzel [15], see Theorem
Appendix .1. Note that the result holds also when the interval H is not closed. As shown in Glänzel [16],
this characterization is stable in the sense of weak convergence.

Proposition 4.1. Let X : Ω→ R be a continuous random variable and let

q1 (x) =
{
θ+ (1 − θ)

[
1 −G (x)a

]b}2

and
q2 (x) = q1 (x)

[
1 −G (x)a

]b for x ∈ R.

The random variable X has pdf (1.4) if and only if the function ξ defined in Theorem Appendix .1 has the form

ξ (x) =
1
2

{
1 +

[
1 −G (x)a

]b} , x ∈ R.

Proof. If X has pdf (5), then

(1 − F (x))E [q1 (x) | X > x] = θ
{

1 −
[
1 −G (x)a

]b} , x ∈ R,

and
(1 − F (x))E [q2 (x) | X > x] =

θ

2

{
1 −

[
1 −G (x)a

]2b} , x ∈ R,

and finally

ξ (x)q1 (x) − q2 (x) =
1
2
q1 (x)

{
1 −

[
1 −G (x)a

]b}
> 0 for x ∈ R.

Conversely, if ξ is given as above, then

s′ (x) =
ξ′ (x)h (x)

ξ (x)h (x) − g (x)
=
abg (x)G (x)a−1 [1 −G (x)a

]b−1

1 −
[
1 −G (x)a

]b , x ∈ R,

and hence
s (x) = − log

{{
1 −

[
1 −G (x)a

]b}} , x ∈ R.

Now, in view of Theorem Appendix .1, X has density (1.4).

Corollary 4.2. Let X : Ω→ R be a continuous random variable and let q1 (x) be as in Proposition 4.1. Then, X
has pdf (5) if and only if there exist functions q2 and ξ defined in Theorem Appendix .1 satisfying the differential
equation

ξ′ (x)h (x)

ξ (x)h (x) − g (x)
=
abg (x)G (x)a−1 [1 −G (x)a

]b−1

1 −
[
1 −G (x)a

]b x ∈ R.

The general solution of the differential equation in Corollary 4.2 is

ξ (x) =
{

1 −
[
1 −G (x)a

]b}−1
[
−

∫
abg (x)G (x)a−1 [1 −G (x)a

]b−1
(q1 (x))

−1 q2 (x) +D

]
,

where D is a constant. Note that a set of functions satisfying the above differential equation is given in Proposition
4.1 with D = 1

2 . However, it should be also noted that there are other triplets (q1,q2, ξ) satisfying the conditions of
Theorem Appendix .1.
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4.2. Characterization in terms of the reverse hazard function
The reverse hazard function, rF, of a twice differentiable distribution function, F, is defined as

rF (x) =
f (x)

F (x)
, x ∈ support of F.

Proposition 4.3. Let X : Ω → R be a continuous random variable. The pdf of X is (1.4) if and only if its reverse
hazard function rF (x) satisfies the differential equation

r′F (x) − g
′ (x) (g (x))−1 rF (x) = abθg (x)

d

dx

 G (x)a−1[
1 −G (x)a

]{
θ+ (1 − θ)

[
1 −G (x)a

]b}
 ,

with boundary condition limx→∞ rF (x) = 0.

Proof. If X has pdf (5), then clearly the above differential equation holds. Now, if this differential
equation holds, then

d

dx

{
(g (x))−1 rF (x)

}
= abθ

d

dx

 G (x)a−1[
1 −G (x)a

]{
θ+ (1 − θ)

[
1 −G (x)a

]b}
 ,

or

rF (x) =
abθg (x)G (x)a−1[

1 −G (x)a
]{
θ+ (1 − θ)

[
1 −G (x)a

]b} ,

which is the reverse hazard function of the MOEG-G distribution.

Remark 4.4. For the special cases of a = 1 or b = 1, the formulas in the above subsections will be quite
simplified.

5. Estimation

In this section, we apply the maximum likelihood method to estimate the parameters of the MOEG-G
family for uncensored and censored data. We also assess the performance of the maximum likelihood
estimators (MLEs) in terms of biases and mean squared errors by means of a simulation study.

5.1. Maximum likelihood estimation
Several approaches for parameter estimation were proposed in the literature but the maximum like-

lihood method is the most commonly employed. The maximum likelihood estimators enjoy desirable
properties and can be used for constructing confidence intervals and regions and also in test statistics.
The normal approximation for these estimators in large samples can be easily handled either analytically
or numerically. So, we consider the estimation of the unknown parameters of this family from complete
samples only by maximum likelihood. Let x1, . . . , xn be a random sample from the MOEG-G distribution
with parameters θ,a,b and φ. Let P=(θ,a,b,φᵀ)ᵀ be the p× 1 parameter vector. For determining the
MLE of P, we have the log-likelihood function

` = `(P) = n loga+n logb+n log θ+
n∑
i=1

logg (xi;φ)

+ (a− 1)
n∑
i=1

logG (xi;φ) + (b− 1)
n∑
i=1

log (pi) − 2
n∑
i=1

log (zi) ,
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where pi = 1 −G (xi;φ)a and zi = θ+ (1 − θ)
[
1 −G (xi;φ)a

]b. The components of the score vector,

U (P) = ∂`
∂P =

(
∂`
∂θ , ∂`∂a , ∂`∂b , ∂`∂φ

)ᵀ
, are given in Appendix B. Setting the nonlinear system of equations

Uθ = Ua = Ub = 0 and Uφ = 0 and solving them simultaneously yields the MLE P̂ = (θ̂, â, b̂, φ̂ᵀ)ᵀ.
To solve these equations, it is usually more convenient to use nonlinear optimization methods such as
the quasi-Newton algorithm to numerically maximize `. For interval estimation of the parameters, we
obtain the p× p observed information matrix J(P) = { ∂

2`
∂r∂s } (for r, s = θ,a,b,φ), whose elements can be

computed numerically. Under standard regularity conditions when n → ∞, the distribution of P̂ can be
approximated by a multivariate normal Np(0, J(P̂)−1) distribution to construct approximate confidence
intervals for the parameters. Here, J(P̂) is the total observed information matrix evaluated at P̂. The
method of the re-sampling bootstrap can be used for correcting the biases of the MLEs of the model
parameters. Good interval estimates may also be obtained using the bootstrap percentile method.

5.2. Censored maximum likelihood estimation

Often with lifetime data, we encounter censored observations. There are different forms of censoring:
type I censoring, type II censoring, etc.. Here, we consider the general case of multi-censored data: there
are n subjects of which n0 are known to have failed at the times x1, . . . , xn0 , n1 are known to have failed
in the interval

[
sj−1, sj

]
, j = 1, . . . ,n1, n2 survived to a time rj, j = 1, . . . ,n2, but not observed any longer.

Note that n = n0 + n1 + n2 and that type I censoring and type II censoring are included as particular
cases of multi-censoring. The log-likelihood function for P is

`n(P) = n0 loga+n0 logb+n0 log θ+
n0∑
i=1

logg (xi;φ) + (a− 1)
n0∑
i=1

logG (xi;φ)

+ (b− 1)
n0∑
i=1

log
[
1 −G (xi;φ)a

]
− 2

n0∑
i=1

log
{
θ+ (1 − θ)

[
1 −G (xi;φ)a

]b}
+

n1∑
i=1

log

{ [
1 −G (si;φ)a

]b
θ+ (1 − θ)

[
1 −G (si;φ)a

]b −

[
1 −G (si−1;φ)a

]b
θ+ (1 − θ)

[
1 −G (si−1;φ)a

]b
}

+

n2∑
i=1

log

{
1 −

[
1 −G (ri;φ)a

]b
θ+ (1 − θ)

[
1 −G (ri;φ)a

]b
}

.

The normal equations are given in Appendix C.

5.3. Simulation study

In this section, we study the performance and accuracy of maximum likelihood estimates of the
MOEG-L distribution parameters by conducting various simulations for different sample sizes and dif-
ferent parameter values. The method for generating sample from the MOEG-L model is performed by
inverse cdf of MOEG-L and uniform random variable as follows:
If

X = Q

1 −

{
1 −

[
θU

1 − (1 − θ)U

] 1
b

} 1
a

 ,

where U ∼ U(0, 1) and Q is quantile function of Lomax distribution, then X ∼MOEG-L(a,b, θ,η). The
simulation study is repeated for N = 5000 times each with sample size n = 100, 300, 500 and parameter
values (a,b, θ,η) = (1, 1, 1, 1), (2, 1, 3, 2), (4, 2, 1, 1), and (1, 1, 2, 3).

Two quantities are computed in this simulation study.
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1) Average bias of the MLE ε̂ of the parameter ε = a,b, θ,η:

Bias(ε) =
1

5000

5000∑
i=1

(ε̂i − ε).

2) Mean squared error (MSE) of the MLE ε̂ of the parameter ε = a,b, θ,η:

MSE(ε) =
1

5000

5000∑
i=1

(ε̂i − ε)
2.

Table 2 presents the Bias and MSE values of the parameters for different sample sizes. From the results,
we can verify that as the sample size n increases, the MSEs decay toward zero.

Table 2: Monte Carlo simulation results: Average bias and MSE in parenthesis.

Sample Size (a,b, θ,η) â b̂ θ̂ η̂

n = 100

(1, 1, 1, 1) 0.026(0.015) 0.001(0.038) 0.281(0.862) 0.025(0.016)
(2, 1, 3, 2) −0.005(0.028) 0.073(0.116) 0.459(6.333) −0.005(0.028)
(4, 2, 1, 1) −0.060(0.033) 0.105(0.222) 0.220(1.069) 0.041(0.056)
(1, 1, 2, 3) 0.040(0.038) 0.035(0.073) 0.185(1.341) −0.114(0.088)

n = 300

(1, 1, 1, 1) −0.005(0.003) 0.006(0.017) 0.035(0.104) −0.005(0.003)
(2, 1, 3, 2) 0.007(0.007) 0.020(0.036) 0.292(1.615) 0.007(0.007)
(4, 2, 1, 1) −0.023(0.006) 0.034(0.065) 0.053(0.248) 0.011(0.016)
(1, 1, 2, 3) 0.008(0.007) 0.024(0.031) 0.026(0.480) −0.028(0.011)

n = 500

(1, 1, 1, 1) −0.001(0.002) 0.017(0.012) 0.013(0.071) −0.001(0.002)
(2, 1, 3, 2) −0.003(0.005) 0.023(0.020) 0.058(0.785) −0.003(0.005)
(4, 2, 1, 1) −0.013(0.002) −0.003(0.031) 0.053(0.101) 0.008(0.007)
(1, 1, 2, 3) 0.012(0.005) 0.025(0.018) 0.004(0.292) −0.036(0.004)

6. Applications

In this section, we illustrate the applicability of the MOEG-G family of distribution via two real data
sets. We use on the MOEG-L distributions presented in Section 2. The method of maximum likelihood is
used to estimate the model parameters.

Example 6.1. The first data set, is dealing with the remission times (in months) of a random sample of
128 bladder cancer patients reported in Lee and Wang [23]. Lemonte and Cordeiro [24] used this data for
illustrating flexibility of a proposed distribution.

Example 6.2. The second data set is concerning time between failures of secondary reactor pumps (thou-
sand of hours) (Salman et al., [34]).

In the both examples, we shall compare the MOEG-L model with other comparative models: the
Gamma Lomax (G-L) (Cordeiro et al., [13]), Kumaraswamy Lomax (Kw-L) (Lemonte and Cordeiro, [24]),
and Beta Lomax (B-L) (Lemonte and Cordeiro, [24]) distributions. In order to compare the fits of the
distributions, we consider various measures of goodness-of-fit including the maximized log-likelihood
under the model (−̂̀), Anderson-Darling (A∗) and Cramér-Von Mises (W∗) statistics. The smaller these
statistics show better model for fitting. The estimated parameters based on MLE procedure are ginen
in Tables 3 and 4, whereas the values of goodness-of-fit statistics are given in Tables 3 and 4. In the



H. M. Yousof, M. Rasekhi, M. Alizadeh, G. G. Hamedani, J. Nonlinear Sci. Appl., 13 (2020), 34–52 46

applications, the information about the hazard shape can help in selecting a particular model. To do so, a
device called the total time on test (TTT) plot (Aarset, [1]) is useful. The TTT plot is obtained by plotting

G(r/n) =

[(
r∑
i=1

yi,n

)
+ (n− r)y(r)

]
/

n∑
i=1

yi,n,

where r = 1, . . . ,n and yi,n (i = 1, . . . ,n) are the order statistics of the sample, against r/n. If the shape
is a straight diagonal the hazard is constant. If the shape is a straight diagonal the hazard is constant. It
is convex shape for decreasing hazards and concave shape for increasing hazards. The bathtub-shaped
hazard is obtained when the first convex and then concave. Both of used data sets have bathtub-shaped
hazard. In both real data sets, the results show that the MOEG-L distribution yields a better fit than other
distributions.

Table 3: The MLEs of the parameters and SEs in parentheses and the goodness-of-fit statistics for first data set.
Model Estimates −̂̀ W∗ A∗

MOEG-L(a,b, θ,η) 4.02 0.55 111.70 0.51 409.76 0.014 0.093
(0.13) (0.08) (17.23) (0.51)

Kw-L(a,b,β,α) 1.52 11.00 11.99 0.41 409.94 0.022 0.158
(0.05) (0.97) (1.04) (0.02)

B-L(a,b,β,α) 1.58 1.14 23.89 3.95 410.07 0.026 0.179
(0.13) (0.09) (2.09) (0.28)

G-L(a,β,α) 1.58 20.58 4.75 410.08 0.026 0.181
(0.09) (1.80) (0.33)

Table 4: The MLEs of the parameters and SEs in parentheses and the goodness-of-fit statistics for second data set.
Model Estimates −̂̀ W∗ A∗

MOEG-L(a,b, θ,η) 0.79 1.34 0.83 1.90 32.409 0.029 0.253
(0.15) (0.26) (0.30) (0.36)

Kw-L(a,b,β,α) 0.89 34.12 6.15 0.10 32.535 0.052 0.357
(0.05) (7.11) (1.70) (0.02)

B-L(a,b,β,α) 0.93 34.00 4.15 0.10 32.568 0.057 0.390
(0.15) (7.33) (1.14) (0.02)

G-L(a,β,α) 0.97 0.70 1.35 33.940 0.231 1.393
(0.15) (0.18) (0.28)
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Figure 3: (Left panel): fitted models on histogram of first data set, (Right panel): fitted models on histogram of second data set.
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Figure 4: TTT-plot for the first dataset (left Fig.) and for the second dataset (right Fig.)

It is clear from Tables 3 and 4 and Figures 3 and 4 that the MOEG-L model provides the best fits to
both data sets.

7. Conclusions

There has been a great deal of interest among the statisticians, specialists and practitioners to generate
new extended families from classic ones. In this article, we present a new class of distributions called
Marshall-Olkin exponentiated generalized G family of distributions, which extends the Marshall-Olkin-G
family. The mathematical properties of this new family including explicit expansions for the ordinary and
incomplete moments, generating function, mean deviations, order statistics, and probability weighted
moments are provided. Characterizations based on two truncated moments and as well as based on
reverse hazard function are presented. The model parameters are estimated by the maximum likelihood
estimation method and the observed information matrix is determined. It is shown, by means of two real
data sets, that special cases of the MOEG-G class can provide better fit than other models generated by
well-known families.

Appendix A

Theorem Appendix .1.

E [q2 (X) | X > x] = E [q1 (X) | X > x] ξ (x) , x ∈ H,

is defined with some real function η. Assume that q1,q2 ∈ C1 (H), ξ ∈ C2 (H) and F is twice continuously
differentiable and strictly monotone function on the set H. Finally, assume that the equation ξq1 = q2 has no real
solution in the interior of H. Then F is uniquely determined by the functions q1,q2, and ξ, particularly

F (x) =

∫x
a

C

∣∣∣∣ ξ′ (u)

ξ (u)q1 (u) − q2 (u)

∣∣∣∣ exp (−s (u)) du,

where the function s is a solution of the differential equation s′ = ξ′ q1
ξ q1 − q2

and C is the normalization constant,
such that

∫
H dF = 1.

Appendix B

Ua =
n

a
+

n∑
i=1

logG (xi;φ) + (b− 1)
n∑
i=1

ui
pi

− 2
n∑
i=1

mi
zi

,
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Ub =
n

b
+

n∑
i=1

logpi − 2
n∑
i=1

wi
zi

,Uθ =
n

θ
− 2

n∑
i=1

qi
zi

,

and (for r = 1, 2, . . . ,q)

Uφr =

n∑
i=1

g′r (xi;φ)

g (xi;φ)
− (a− 1)

n∑
i=1

G′r (xi;φ)

G(xi;φ)
+ (b− 1)

n∑
i=1

di,r
pi

− 2
n∑
i=1

ti,r
zi

,

where

ui =
− logG (xi;φ)

G (xi;φ)−a
, mi =

−b (1 − θ) logG (xi;φ)

G (xi;φ)−a
[
1 −G (xi;φ)a

]1−b , g′r (xi;φ) =
∂g (xi;φ)

∂φr
,

wi =
(1 − θ) log

[
1 −G (xi;φ)a

]b[
1 −G (xi;φ)a

]−b , qi = 1 −
[
1 −G (xi;φ)a

]b , G′r (xi;φ) =
∂G (xi;φ)

∂φr
,

di,r =
aG′r (xi;φ)

G (xi;φ)1−a , and ti,r =
ab (1 − θ)G′r (xi;φ)[

1 −G (xi;φ)a
]1−b

G (xi;φ)1−a
.

Appendix C

∂`n(P)

∂θ
=
n0

θ
− 2

n0∑
i=1

1 −
[
1 −G (xi;φ)a

]b
θ+ (1 − θ)

[
1 −G (xi;φ)a

]b
+

n1∑
i=1

[A (si) −A (si−1)]{
[1−G(si;φ)a]

b

θ+(1−θ)[1−G(si;φ)a]
b −

[1−G(si−1;φ)a]
b

θ+(1−θ)[1−G(si−1;φ)a]
b

}

+

n2∑
i=1

(
[1−G(ri;φ)a]

b
{

1−[1−G(ri;φ)a]
b
}

{
θ+(1−θ)[1−G(ri;φ)a]

b
}2

)
{

1 −
[1−G(ri;φ)a]

b

θ+(1−θ)[1−G(ri;φ)a]
b

} ,

∂`n(P)

∂a
=
n0

a
+

n0∑
i=1

logG (xi;φ) + (b− 1)
n0∑
i=1

−G (xi;φ)a logG (xi;φ)

1 −G (xi;φ)a

− 2
n0∑
i=1

−b (1 − θ)G (xi;φ)a
[
1 −G (xi;φ)a

]b−1 logG (xi;φ)

θ+ (1 − θ)
[
1 −G (xi;φ)a

]b
+

n1∑
i=1

[B (si) −B (si−1)]{
[1−G(si;φ)a]

b

θ+(1−θ)[1−G(si;φ)a]
b −

[1−G(si−1;φ)a]
b

θ+(1−θ)[1−G(si−1;φ)a]
b

}

+

n2∑
i=1

(
θbG(ri;φ)a[1−G(ri;φ)a]

b−1
logG(ri;φ){

θ+(1−θ)[1−G(ri;φ)a]
b
}2

)
{

1 −
[1−G(ri;φ)a]

b

θ+(1−θ)[1−G(ri;φ)a]
b

} ,

∂`n(P)

∂b
=
n0

b
+

n0∑
i=1

log
[
1 −G (xi;φ)a

]
− 2

n0∑
i=1

(1 − θ)
[
1 −G (xi;φ)a

]b log
[
1 −G (xi;φ)a

]
θ+ (1 − θ)

[
1 −G (xi;φ)a

]b
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+

n1∑
i=1

[C (si) −C (si−1)]{
[1−G(si;φ)a]

b

θ+(1−θ)[1−G(si;φ)a]
b −

[1−G(si−1;φ)a]
b

θ+(1−θ)[1−G(si−1;φ)a]
b

}

+

n2∑
i=1

(
− log[1−G(ri;φ)a][1−G(ri;φ)a]

b
{
θ+2(1−θ)[1−G(ri;φ)a]

b
}

{
θ+(1−θ)[1−G(ri;φ)a]

b
}2

)
{

1 −
[1−G(ri;φ)a]

b

θ+(1−θ)[1−G(ri;φ)a]
b

}
and (for m = 1, 2, . . . ,q)

∂`n(P)

∂φ
= +

n0∑
i=1

g′m (xi;φ)

g (xi;φ)
− (a− 1)

n0∑
i=1

G′m (xi;φ)

G (xi;φ)
− a (b− 1)

n0∑
i=1

G′m (xi;φ)G (xi;φ)a−1

1 −G (xi;φ)a

+ 2ab (1 − θ)

n0∑
i=1

G′m (xi;φ)G (xi;φ)a−1 [1 −G (xi;φ)a
]b−1

θ+ (1 − θ)
[
1 −G (xi;φ)a

]b
+

n1∑
i=1

[D (si) −D (si−1)]{
[1−G(si;φ)a]

b

θ+(1−θ)[1−G(si;φ)a]
b −

[1−G(si−1;φ)a]
b

θ+(1−θ)[1−G(si−1;φ)a]
b

}

+

n2∑
i=1

(
abθG′m(ri;φ)G(si;φ)a−1[1−G(ri;φ)a]

b−1{
θ+(1−θ)[1−G(ri;φ)a]

b
}2

)
{

1 −
[1−G(ri;φ)a]

b

θ+(1−θ)[1−G(ri;φ)a]
b

} ,

where

A (si) =
−
[
1 −G (si;φ)a

]b {1 −
[
1 −G (si;φ)a

]b}{
θ+ (1 − θ)

[
1 −G (si;φ)a

]b}2 ,

A (si−1) =
−
[
1 −G (si−1;φ)a

]b {1 −
[
1 −G (si−1;φ)a

]b}{
θ+ (1 − θ)

[
1 −G (si−1;φ)a

]b}2 ,

B (si) =
−θbG (si;φ)a logG (si;φ)

[
1 −G (si;φ)a

]b−1{
θ+ (1 − θ)

[
1 −G (si;φ)a

]b}2 ,

B (si−1) =
−θbG (si−1;φ)a logG (si−1;φ)

[
1 −G (si−1;φ)a

]b−1{
θ+ (1 − θ)

[
1 −G (si−1;φ)a

]b}2 ,

C (si) =
log
[
1 −G (si;φ)a

] [
1 −G (si;φ)a

]b {
θ+ 2 (1 − θ)

[
1 −G (si;φ)a

]b}{
θ+ (1 − θ)

[
1 −G (si;φ)a

]b}2 ,

C (si−1) =
log
[
1 −G (si−1;φ)a

] [
1 −G (si−1;φ)a

]b {
θ+ 2 (1 − θ)

[
1 −G (si−1;φ)a

]b}{
θ+ (1 − θ)

[
1 −G (si−1;φ)a

]b}2 ,

D (si) =
−abθG′m (si;φ)G (si;φ)a−1 [1 −G (si;φ)a

]b−1{
θ+ (1 − θ)

[
1 −G (si;φ)a

]b}2 ,
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D (si−1) =
−abθG′m (si−1;φ)G (si−1;φ)a−1 [1 −G (si−1;φ)a

]b−1{
θ+ (1 − θ)

[
1 −G (si−1;φ)a

]b}2 ,

g′m (xi;φ) =
∂g (xi;φ)

∂φ
and G′m (•;φ) =

∂G (•;φ)

∂φ
.

Appendix D

Plot of Biased and MSE of MLE
rMOEGW=function(n,a,b,theta,lambda,c){

G=rep(0,0)
u=runif(n,0,1)
v=1-((1-(((theta*u)/(1-((1-theta)*u)))ˆ(1/b)))ˆ(1/a))
G=qweibull(v, shape=lambda, scale = c)
return(G)
}
MOEGWd=function(x,a,b,theta,lambda,c){
G=rep(0,0)
for(i in 1:length(x)){
G[i]=(a*b*theta*dweibull(x[i], shape=lambda, scale = c)*((1-pweibull(x[i], shape=lambda, scale = c))ˆ(a-

1))*(1-((1-pweibull(x[i], shape=lambda, scale = c))ˆa))ˆ(b-1))/((theta+(1-theta)*(1-((1-pweibull(x[i], shape=
lambda, scale = c))ˆa))ˆb)ˆ2)
}
return(G)
}
MOEGWlikelihood=function(par){
a=par[1]
b=par[2]
theta=par[3]
lambda=par[4]
c=par[5]
G=-sum(log(MOEGWd(x,a,b,theta,lambda,c)))
return(G)
} M=150
MSE=matrix(c(0),ncol=5,nrow=200)
biased=matrix(c(0),ncol=5,nrow=200)

real value
a=0.9

b=0.25
theta=2.5
lambda=3
c=1.5
size=seq(30,500,5)
for (i in 1:length(size)){
estimate=matrix(c(0),ncol=5,nrow=10000)
count1=0
repeat {
if (length(estimate[,1][estimate[,1]!=0])==M) break
count1 = count1 + 1
#print(count)
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#print(length(estimate[,1][estimate[,1]!=0]))
x=rMOEGW(size[i],a,b,theta,lambda,c)
MOEGWest=try(optim(c(a,b,theta,lambda,c),MOEGWlikelihood,method=”L-BFGS-B”,hessian=TRUE,

lower =c(.2,.2,.2,.2,.2), upper =c(Inf,Inf,Inf,Inf)), silent=TRUE)
if (’try-error’ %in% class(MOEGWest)) next
else{
estimate[count1,]=MOEGWest$par
}
}
biased[i,1]=mean(estimate[,1][estimate[,1]!=0]-a)
biased[i,2]=mean(estimate[,2][estimate[,2]!=0]-b)
biased[i,3]=mean(estimate[,3][estimate[,3]!=0]-theta)
biased[i,4]=mean(estimate[,4][estimate[,4]!=0]-lambda)
biased[i,5]=mean(estimate[,5][estimate[,5]!=0]-c)
MSE[i,1]=mean((estimate[,1][estimate[,1]!=0]-a)ˆ2)
MSE[i,2]=mean((estimate[,2][estimate[,2]!=0]-b)ˆ2)
MSE[i,3]=mean((estimate[,3][estimate[,3]!=0]-theta)ˆ2)
MSE[i,4]=mean((estimate[,4][estimate[,4]!=0]-lambda)ˆ2)
MSE[i,5]=mean((estimate[,5][estimate[,5]!=0]-c)ˆ2)
print(i)
}
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