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Abstract
In this paper, sufficient conditions for the controllability of the fuzzy dynamical discrete system with the use of fuzzy rule

base are established. Further, a sufficient condition for the fuzzy dynamical discrete system to be observable is constructed. The
main advantage of this approach is that the rule base for the initial value can be determined without actually solving the system.
Difference inclusions approach is adopted in the construction of these conditions. All the established theories are consolidated
and explained with the help of examples.
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1. Introduction

Measurements of data or specified information for an underlying problem may be imprecise or only
partially specified. Each and every practical system is endowed with uncertainties. The more the com-
plexity of a system the greater is its uncertainty due to fuzziness. That is, each quantity we want to
measure becomes fuzzy valued instead of precise valued. Difference equations describe the evolution of
certain phenomena over the course of time. Many of the physical applications may not have the exact
information about their deterministic dynamics which is a prerequisite construct of a dynamical system.
It is very important to study the controllability and obsarvability of the mathematical models represented
by fuzzy difference equations governing the ambiguity in dynamics which is not probabilistic. In general
the problem of steering an initial state of a system to a desired final state in Rn become a problem of
steering a fuzzy-state to another fuzzy-state in (El)n.

The importance of control theory in mathematics and its occurrence in several problems such as
mechanics, electromagnetic theory, thermodynamics, and artificial satellites are well known. In general,
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fuzzy systems are classified in to 3 categories, (i) pure fuzzy systems; (ii) T-S fuzzy systems; and (iii)
fuzzy logic systems, using fuzzifiers and defuzzifiers. In this paper, we use fuzzy matrix discrete system
to describe fuzzy logic system and establish sufficient conditions for controllability and observability of
first order fuzzy matrix discrete system S1modeled by

T(n+ 1) = A(n)T(n) + F(n)U(n), T(0) = T0,n > 0, (1.1)
Y(n) = C(n)T(n) +D(n)U(n),

where U(n) is an m × s fuzzy input matrix called fuzzy control and Y(n) is an n × n fuzzy output
matrix. Here T(n), A(n), F(n), C(n), and D(n) are matrices of order s × s, s × s, s ×m, r × s, and
r×m whose elements are continuous functions of n on J = [0,N] ⊂ R(N > 0). Barnett and Cameron [3]
studied the problem of controllability and observability for a system of ordinary differential equations in
1985. In 1997, Murty and Anand [11] established necessary and sufficient conditions for controllability
and observability of continuous matrix Liapunov systems. Using fuzzy control a complex system can
be decomposed into several subsystems according to the expertise of human ability to understand the
system and using the human control strategy represented by a simple control law. The popular fuzzy
controllers in the literature are Mamdani fuzzy controllers and Takagi-Sugeno (TS) fuzzy controllers.
The main difference between them is that the Mamdani fuzzy controllers use fuzzy sets where as the
(TS) fuzzy controllers use linear functions, to represent the fuzzy rules. In the works of Takagi [16] and
Sugeno [15] a crisp analytical function is used instead of a membership function in a fuzzy model. In
recent years many authors [1, 4, 8–10, 17, 18] are studying TS fuzzy controllers, because of to their ability
to model real world problems. In 2005, Anand and Murty [2] established conditions for controllability
and observability of Liapunov type matrix difference system. In 2008, Murty et al. [13] presented criteria
for the existence and uniqueness of solution to Kronecker product initial value problem associated with
general first order matrix difference system. In 2009, Murty et al. [12] studied qualitative properties of
general first order matrix difference systems. We obtain a unique solution of the system (1.1), when U(n)
is a crisp continuous matrix. We use fuzzy matrix discrete system to describe fuzzy logic system and
extend some of the results of Ding and Kandel [6, 7] developed for continuous case to that of discrete
case by vectorizing the fuzzy matrix discrete system. we obtain sufficient conditions for controllability
and observability of the system (1.1) satisfying the initial condition. The fundamental results established
in [12, 13] have in-fact motivated us to develop our results on fuzzy matrix discrete dynamical systems.

The paper is organized as follows. Section 2 presents basic definitions and results required to under-
stand the paper. Section 3 is concerned with the formation of fuzzy dynamical discrete systems. Sufficient
conditions for the controllability and observability of the fuzzy matrix discrete dynamical system are pre-
sented in Sections 4 and 5, respectively. Section 6 presents the numerical example.

2. Preliminaries

Theorem 2.1. If u ∈ Es, then

1. [u]α ∈ Pk(((N+
N0

))S×S) for all 0 6 α 6 1;
2. [u]α2 ⊂ [u]α1 for all 0 6 α1 6 α2 6 1;
3. If {αk} is non decreasing sequence converging to α > 0, then [u]α = ∩k>1[U]

αk .

Conversely, if {Aα : 0 6 α 6 1} is a family of subsets of RS satisfying (1)-(3), then there exists a u ∈ ES such that
[u]α = Aαfor 0 < α 6 1 and [u]0 = U06α61Aα ⊂ A0.

Definition 2.2. Let A ∈ Cr×s(Rr×s) and AB ∈ Cp×q(Rp×q). Then kronecker product of of A and B is

written as A⊗ B is defined as a partitioned matrix A⊗ B =


a11B a12B . . . a1sB

a21B a22B . . . a2sB

. . . . . . . . . . . .
ar1B ar2B . . . arsB

 matrix and is an

rp× sq and is in Crp×sq(Rrp×sq).
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The kronecker product has the following properties.

1. (A⊗B)∗ = A∗ ⊗B∗.
2. (A⊗B)−1 = A−1 ⊗B−1.
3. (A⊗ B)(C⊗D) = (AC⊗ BD). This rule holds, provided the dimensions of the matrices are such

that expressions are defined.
4. ‖(A⊗B)‖ = ‖A‖‖B‖ (where ‖A‖ = max

i,j
|aij|).

5. (A+B)⊗C = (A⊗C) + (B⊗C).

Vectorization of matrix A is denoted by Vec(A) = Â and defined as follows.

Definition 2.3. Let A = [aij] ∈ Cr×s(Rr×s), we denote Â = VecA = [A.1,A.2, . . . ,A.s]
T , where

A.j = [a1j,a2j, . . . ,arj]T , (1 6 j 6 s).

Vectorization has the following properties

1. Vec(ATB) = (B∗ ⊗A)VecT .
2. If A and B are square matrices of order s, then

(i) Vec(AT) = ((Is ⊗A)VecT ;
(ii) Vec(TB) = ((B∗ ⊗ Is)VecT .

Lemma 2.4. Let φ(n) be the fundamental matrix for the system

T(n+ 1) = A(n)T(n), T(0) = Is. (2.1)

Then the matrix Is ⊗φ(n) is a fundamental matrix of

T̂(n+ 1) = G(n)T̂(n), T̂(0) = T̂0, (2.2)

where G(n) = (Is ⊗A(n)) and the solution of (2.2) is T̂(n) = (Is ⊗φ(n))T̂0.

Theorem 2.5. Let φ(n) be the fundamental matrix for the system (2.1). Then the unique solution of the initial
value problem

T̂(n+ 1) = G(n)T̂(n) + (Is ⊗ F(n))Û(n), T̂(0) = T̂0 (2.3)

is given by

T̂(n) = (Is ⊗φ(n))T̂0 +

n−1∑
j=0

(Is ⊗φ(n− j− 1))(Is ⊗ F̂(j))Û(j).

3. Formation of fuzzy dynamical discrete systems

Let ui(n) ∈ E1,n ∈ J, i = 1, 2, . . . , s2, and define

Û(n) = (u1(n),u2(n), . . . ,us2(n)) = u1(n)× u2(n)× · · ·us2(n)

= {(uα1 (n),u
α
2 (n), . . . ,uαs2(n)} : α ∈ [0, 1]}

= {(ũ1(n), ũ2(n), . . . , ũs2(n)} : ũi(n) ∈ uαi (n),α ∈ [0, 1]},

where uαi (n) is the α level set of ui(n). From the above definition of Û(n) and Theorem 2.1, it can be
easily seen that Û(n) ∈ Es2

. We now show that the following system S2 defined by system (2.3) and the
following system

Ŷ(n) = ((IS ⊗C(n)))T̂(n) + (IS ⊗D(n))Û(n) (3.1)

determines a fuzzy system by using the fuzzy control Û(n). Assume that Û(n) is continuous in Es
2
,
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then the set Ûα = u1(n)× u2(n)×, . . . ,×us2(n) is a convex and compact set in (N+
n0
)s

2
. For any positive

number N, consider the following inclusions

T̂(n+ 1) ∈ G(n)T̂(n) + (Is ⊗ F(n))Ûα(n),n ∈ [0,N], (3.2)

T̂(0) ∈ T̂0. (3.3)

Let T̂α be the solution of (3.2) satisfying (3.3).

Lemma 3.1. [T̂(n)]α ∈ PK(N+
n0
)s

2
for every 0 6 α 6 1,n ∈ [0,N].

Proof. We can observe that T̂α is non empty since Ûα(n) has measurable selection.
By choosing K = maxn∈[0,N] ‖ φ(n) ‖,L = maxn∈[0,N] ‖ Is ‖= 1,M1 = max{‖ un ‖: u(n) ∈ Ûα(n),n ∈

[0,N]},M2 = maxn∈[0,N] ‖ F(n) ‖, if for any T̂ ∈ T̂α, there exists a control u(n) ∈ Ûα(n) such that

T̂(n) = (Is ⊗φ(n))T̂0 +

n−1∑
j=0

(Is ⊗φ(n− j− 1))(Is ⊗ F(j))U(j). (3.4)

By taking norm on both sides of the equation (3.4), we get ‖ T̂(n) ‖6 KL ‖ T̂0 ‖ +KLM1M2N. Hence
T̂α is bounded. For any n1,n2 ∈ [0,N], consider, ‖ T̂(n1) − T̂(n2) ‖6‖ Is ⊗ φ(n1) − Is ⊗ φ(n2) ‖‖ T̂0 ‖
+KLM1M2 | n1 − n2 | +M1M2

∑n−1
j=0 ‖ Is ⊗ φ(n1 − j− 1) − Is ⊗ φ(n2 − j− 1) ‖. Thus, T̂α is relatively

compact. Let T̂k ∈ T̂α and T̂k → T̂ . For each T̂k, there is a uk ∈ Ûα(n) such that

T̂k(n) = (Is ⊗φ(n))T̂0 +

n−1∑
j=0

(Is ⊗φ(n− j− 1))(Is ⊗ F(j))Uk(j). (3.5)

Since uk ∈ Ûα(n) is closed, then there is a sub-sequence < ukj> of < uk > converging weakly to
u ∈ Ûα(n). From Mazur’s theorem [5] there exists a sequence of numbers λi > 0, Σλi = 1 such that
Σλiuki converges strongly to u. Thus from (3.5) we have

ΣλjT̂Kj(n) =
∑

λj(Is ⊗φ(n))T̂0 +

n−1∑
j=0

(Is ⊗φ(n− j− 1))(Is ⊗ F(j))Σλiuki(j). (3.6)

As l→∞ from equation (3.6) and Fatuou’s lemma, it follows that T̂(n) = Is⊗φ(n)T̂0 +
∑

(Is⊗φ(n− j−

1))(Is⊗ F(j))u(j). Thus T̂(n) ∈ T̂α and hence T̂α is closed. Let T̂1, T̂2 ∈ T̂α, then there exists u1,u2 ∈ Ûα(n)
such that T̂1(n+ 1) = G(n)T̂1(n) + (Is ⊗ F(n))u1(n), T̂2(n+ 1) = G(n)T̂2(n) + (Is ⊗ F(n))u2(n). Let T̂(n) =
λT̂1(n) + (1 − λ)T̂2(n), 0 6 λ 6 1, then T̂(n + 1) = G(n)[λT̂1(n) + (1 − λ)T̂2(n)] + (Is ⊗ F(n))[λu1(n) +
(1 − λ)u2(n)]. Since Ûα(n) is convex, λu1(n) + (1 − λ)u2(n) ∈ Ûα(n), we have T̂(n+ 1) ∈ G(n)T̂(n) +
(Is ⊗ F(n))Ûα(n), i.e., T̂ ∈ T̂α. Thus T̂α is convex. Therefore T̂α is non empty, compact, and convex in
C[[0,N], (N+

n0
)s

2
]. Thus, from Arzela-Ascoli theorem, it follows that [T̂(n)]α is convex in (N+

n0
)s

2
for every

n ∈ [0,N]. Therefore [T̂(n)]α ∈ Pk((N+
n0
)s

2
) for every 0 6 α 6 1,n ∈ [0,N].

Lemma 3.2. [T̂(n)]α2 ⊂ [T̂(n)]α1 for all 0 6 α1 6 α2 6 1.

Proof. Let 0 6 α1 6 α2 6 1. Since Ûα2(n) is contained in Ûα1(n), it follows that

Ûα2(n) = uα2
1 (n)× uα2

2 (n)× · · · × uα2
s2 (n) ⊂ uα1

1 (n)× uα1
2 (n)× · · · × uα1

s2 (n) = Ûα1(n).

Thus, we have the selection inclusions S1
Ûα2

(n) ⊂ S1
Ûα1

(n) and also the following inclusions:

T̂(n+ 1) ∈ G(n)T̂(n) + (Is ⊗ F(n))Ûα2(n) ⊂ G(n)T̂(n) + (Is ⊗ F(n))Ûα1(n).
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Consider the following inclusions:

T̂(n+ 1) ∈ G(n)T̂(n) + (Is ⊗ F(n))Ûα2(n),n ∈ [0,N], (3.7)

T̂(n+ 1) ∈ G(n)T̂(n) + (Is ⊗ F(n))Ûα1(n),n ∈ [0,N]. (3.8)

Let T̂α2 and T̂α1 be the solution sets of (3.7 ) and (3.8), respectively. Clearly the solution of (3.7 ) satisfies
the following inclusion:

T̂(n) ∈ (Is ⊗φ(n))T̂0 +

n−1∑
j=0

((Is ⊗φ(n− j− 1)))(Is ⊗ F(j))S1
Ûα2(j+1)

⊂ (Is ⊗φ(n))T̂0 +

n−1∑
j=0

((Is ⊗φ(n− j− 1)))(Is ⊗ F(j))S1
Ûα1(j+1)

.

Thus T̂α2 ⊂ T̂α1 . And hence T̂α2(n) ⊂ T̂α1(n).

Lemma 3.3. If < αk > is non decreasing sequence converging to α > 0 then T̂α(n) = ∩k>1T̂
αk(n).

Proof. Let Ûαk(n) = uαk1 × u
αk
2 ×, . . . ,×uαk

s2 ,Ûα(n) = uα1 × uα2 ×, . . . ,uα
s2 , and consider the inclusions

T̂(n+ 1) ∈ G(n)T̂(n) + (Is ⊗ F(n))Ûαk(n), (3.9)

T̂(n+ 1) ∈ G(n)T̂(n) + (Is ⊗ F(n))Ûα(n). (3.10)

Let T̂αk and T̂α be the solution sets of (3.9 ) and (3.10), respectively. Since ui(n) is a fuzzy set and from
Theorem 2.1, we have

uαi = ∩k>1u
αk
i ,

we consider

Ûα(n) = uα1 × uα2 ×, . . . ,×uαs2 = ∩k>1u
αk
1 ×∩k>1u

αk
2 ×, . . . ,∩k>1u

αk
s2 = ∩k>1Û

αk(n)

and then S1
Ûα(n)

= S1
∩k>1Û

αk(n)
. Therefore

T̂(n+ 1) ∈ G(n)T̂(n) + (Is ⊗ F(n))Ûα(n) = G(n)T̂(n) + (Is ⊗ F(n))∩k>1 Û
αk(n)

⊂ G(n)T̂(n) + (Is ⊗ F(n))Ûαk(N),k = 1, 2, 3, . . . .

Thus we have T̂α ⊂ T̂αk ,k = 1, 2, 3, . . ., which implies that

T̂α ⊂ ∩k>1T̂
αk . (3.11)

Let T̂ be the solution set of the inclusion (3.9) for k > 1. Then

T̂(n) ∈ (Is ⊗φ(n))T̂0 +

n−1∑
j=0

(Is ⊗φ(n− j− 1))(Is ⊗ F(j))S1
Ûαk(n)

.

It follows that T̂(n) ∈ (Is ⊗φ(n))T̂0 + ∩k>1
∑n−1
j=0 (Is ⊗φ(n− j− 1))(Is ⊗ F(j))S1

Ûαk(n)
⊂ (Is ⊗φ(n))T̂0 +∑n−1

j=0 (Is ⊗ φ(n − j − 1))(Is ⊗ F(j))SI∩k>1Ûαk
= (Is ⊗ φ(n))T̂0 +

∑n−1
j=0 (Is ⊗ φ(n − j − 1))(Is ⊗ F(j))S1

Ûαk
.

This implies that T̂ ∈ T̂α. Therefore

∩k>1T̂
αk ⊂ T̂α. (3.12)

From (3.11) and (3.12) we have T̂α = ∩k>1T̂
αk and hence, T̂α(n) = ∩k>1T̂

αk(n).
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Theorem 3.4. The system (2.3) and (3.1) is a fuzzy dynamical discrete system, and it can be expressed as

T̂(n+ 1) = G(n)T̂(n) + (Is ⊗ F(n))Û(n), T̂(0) = {T̂0}, (3.13)

Ŷ(n) = (Is ⊗C(n))T̂(n) + (Is ⊗D(n))Û(n). (3.14)

The solution set of fuzzy dynamical system (3.13)-(3.14) is given by

T̂(n) ∈ (Is ⊗φ(n))T̂0 +

n−1∑
j=0

(Is ⊗φ(n− j− 1))(Is ⊗ F(j))Û(j). (3.15)

Proof. Proof follows from the Lemmas 3.1, 3.2, 3.3 and Theorem 2.1 since there exists T̂(n) ∈ Es2
on [0,N]

such that T̂α(n) is a solution set to the difference inclusions (3.2) and (3.3).

Corollary 3.5. If the input is in the form Û(n) = ũ1(n)× ũ2(n)× · · · × ũi(n)× · · · × ũS2(n), where ũk(n) ∈
R1,k 6= i are crisp numbers, then the ith component of the solution set of (2.3) is a fuzzy set in E1.

Definition 3.6. The fuzzy system given by equations (3.13)-(3.14) is said to be completely controllable if
for any initial state T̂(0) = T̂0 and any given final state T̂f there exists a finite time n1 > 0 and a control
Û(n), 0 6 n 6 n1 such that T̂(n1) = T̂f.

Definition 3.7. The fuzzy system given by equations (3.13)-(3.14) is said to be completely observable over
the interval [0,N] if the knowledge of rule base of input Û and output Ŷ over [0,N] suffices to determine
a rule base of initial state T̂0 .

Let uli,y
l
i, i = 1, 2, . . . , s2, l = 1, 2, . . . ,m, be fuzzy sets in El. We assume that the rule base for the input

and output is given by

Rl : If ũ1(n) is in ul1(n), ũ2(n) is in ul2(n), . . . , ũS2(n) is in ulS2(n),

then ỹ1(n) is in yl1(n), ỹ2(n) is in yl2(n), . . . , ỹs2(n) is in yls2(n), l = 1, 2, . . . ,m,
(3.16)

and the output can be expressed as a function of input by the equation (3.1).

Definition 3.8. Let x,y ∈ Es
2

and x = x1 × x2 × · · · × xs2 , y = y1 × y2 × · · · × ys2 , xi,yi ∈ El, i =
1, 2, . . . , s2, l = 1, 2, . . . ,m.

If y = z+ x, then z = y− x, which is defined by [z]α = [y− x]α = [y]α − [x]α =

 [y1]
α − [x1]

α

. . .
[ys2 ]α − [xs2 ]α.

.

If y = w− x, then w = y+ x, which is defined by [w]α = [y+ x]α = [y]α + [x]α =

 [y1]
α + [x1]

α

. . .
[ys2 ]α + [xs2 ]α

.

Definition 3.9. Let C =


c11 c12 · · · c1s2

c21 c22 · · · c2s2

· · · · · · · · · · · ·
cs21 cs22 · · · cs2s2

 be an s2 × s2 matrix, p = p1 × p2 × · · · × ps2 , let pi ∈

E1, i = 1, 2, . . . , s2, l = 1, 2, . . . ,m, be a fuzzy set in Es
2
, and let [pi]α be α level sets of pi, define the product

Cp of C and p as

[Cp]α = C[p]α =


c11 c12 · · · c1s2

c21 c22 · · · c2s2

· · · · · · · · · · · ·
cs21 cs22 · · · cs2s2



[p1]

α

[p2]
α

· · ·
[ps2 ]α

 =


c11[p1]

α + · · ·+ c1s2 [ps2 ]α

c21[p1]
α + · · ·+ c2s2 [ps2 ]α

· · ·
cs21[p1]

α + · · ·+ cs2s2 [ps2 ]α

 .
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4. Controllability of fuzzy discrete dynamical systems

Theorem 4.1. The fuzzy system (3.13)-(3.14) is completely controllable if the s2× s2 symmetric controllable matrix

W(0,N) =

N−1∑
j=0

(Is ⊗ (N− j− 1))(Is ⊗ F(j))(Is ⊗ F(j))∗(Is ⊗φ(N− j− 1))∗ (4.1)

(where ∗ indicates conjugate transpose (Hermitian transpose) of the matrix) is non singular. Furthermore, the fuzzy
control Û(n) which transfers the state of the system from T̂(0) = T̂0 to a fuzzy state

T̂(N) = T̂f = (tf1 , tf2 , . . . , tf
S2 ) (4.2)

can be modified by the following fuzzy rule base:

R : If t̃1 is in tf1 , tf2 , . . . , t̃f
S2 is in tf

S2 , then ũ1 is in u1 · · · ũs2 is in us2 , (4.3)

where

(ũ1(n), ũ2(n), . . . , ũs2(n)) =
1
N
((Is ⊗ F(n))−1(Is ⊗ (φ(N− j− 1)−1))(t̃1(N), t̃2(N), . . . , tfi , . . . , t̃s2(N))

− (Is ⊗ F(n))∗(Is ⊗φ(N− j− 1)∗)W−1(0,N)(Is ⊗φ(N)))T̂(0), i = 1, 2, . . . , s2.

Proof. Suppose that the symmetric controllability matrix W(0,N) is nonsingular. Therefore W−1(0,N)

exists. By multiplying equation (4.1) on both sides by W−1(0,N)(Is ×φ(N))T̂0, we get

(Is ⊗φ(N))T̂0 =

N−1∑
j=0

(Is ⊗φ(N− j− 1))(Is ⊗ F(j))

× (Is ⊗ F(n))∗(Is ⊗φ(N− j− 1)∗)W−1(0,N)(IS ⊗φ(N))T̂0.

(4.4)

Now our problem is to find the control Û(n) such that

T̂(N) = T̂f = (Is ⊗φ(N))T̂0 +

N−1∑
j=0

(Is ⊗φ(N− j− 1))(Is ⊗ F(j))Û(j). (4.5)

Since T̂ is fuzzy Û(n) must be fuzzy, otherwise the left side of equation (4.5) cannot be equal to the crisp
right side. Now T̂f can be written as

T̂f =
1
N

N−1∑
j=0

T̂f =
1
N

N−1∑
j=0

(Is ⊗φ(N− j− 1))(Is ⊗ F(j))× (Is ⊗ F(n))−1(Is ⊗φ(N− j− 1))−1T̂f. (4.6)

From (4.5) and (4.6) we have

1
N

N−1∑
j=0

(Is ⊗φ(N− j− 1))(Is ⊗ F(j))× (Is ⊗ F(n))−1(Is ⊗φ(N− j− 1))−1T̂f

= (Is ⊗φ(N))T̂0 +

N−1∑
j=0

(Is ⊗φ(N− j− 1))(Is ⊗ F(j)))Û(j).

From (4.4) and (4.6) it follows that

1
N

N−1∑
j=0

(Is ⊗φ(N− j− 1))(Is ⊗ F(j))(Is ⊗ F(j))−1(Is ⊗φ(N− j− 1))−1T̂f
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=

N−1∑
j=0

(Is ⊗φ(N− j− 1))(Is ⊗ F(j))(Is ⊗ F(n))∗(Is ⊗φ(N− j− 1))∗

×W−1(0,N)(Is ⊗φ(N))T̂0 +

N−1∑
j=0

(Is ⊗φ(N− j− 1))(Is ⊗ F(j))Û(j),

i.e.,

N−1∑
j=0

(Is ⊗φ(N− j− 1))(Is ⊗ F(j))Û(j)

=

N−1∑
j=0

(Is ⊗φ(N− j− 1))(Is ⊗ F(j)){
1
N
(Is ⊗ F(j))−1(Is ⊗φ(N− j− 1))−1T̂f

− (Is ⊗ F(j))∗(Is ⊗φ(N− j− 1))∗W−1(0,N)(Is ⊗φ(N))T̂0}.

Now Û(N) can be expressed as

Û(N) =
1
N
{(Is ⊗ F(j))−1((Is ⊗φ(N− j− 1))−1T̂f) − (Is ⊗ F(j))∗

× ((Is ⊗φ(N− j− 1))∗}W−1(0,N)(Is ⊗φ(N))T̂0.
(4.7)

Now are the following two possible cases for (4.7).

Case(i). When T̂(N) = T̂f = (̃t1(N), t̃2(N), . . . , ts2(N)) is a crisp point, equation (4.7) gives corresponding
control Û(n) and is given by Û(n) = (ũ1, ũ2, . . . , ũs2).

Case(ii). When T̂(N) = (̃t1(N), t̃2(N), . . . , tfi , . . . , t̃s2(N)), equation (4.7) gives the corresponding control
Û(n) and is given by Û(n) = (ũ1, ũ2, . . . ,ui, . . . , ũs2) in which the component of Û(n) is a fuzzy set in E1.

Clearly ũi(n) is in ui(n), µtfi (̃ti(N)) gives the grade of the membership of t̃i(N) in tf
i
. Hence fuzzy

rule base for the control Û given by equations (4.2) and (4.3) follows.

Note 4.2. The converse of the above theorem need not be true. Since fuzzy rule base cannot imply the non
singularity of the controllability matrix W(0,N) given by (4.1), it follows that the condition in the above
theorem is only sufficient condition but not necessary.

5. Observability of fuzzy dynamical discrete systems

Theorem 5.1. Assume that the fuzzy rule base (3.16) holds, then the fuzzy system (3.13)-(3.14) is completely
observable over the interval [0,N] and is non singular. Furthermore if

T̂0 = (̃t1
0, t̃2

0, . . . , t̃s
2

0 ),

then one has the following rule base for the initial value T̂0,

Rl : If ũ1(N) ∈ ul1(N), . . . , ũs2(N) ∈ uls2(N) and ỹ1(N) ∈ yl1(N), . . . , ỹS2(N) ∈ yls2(N)

then t̃1
0 is in tl0(1), . . . , t̃s

2

0 (n) is in tl0(S
2), l = 1, 2, . . . ,m,

(5.1)

where

tl0(i) = (IS ⊗C(N)(Is ⊗φ(N))−1{Vli (N) − (IS ⊗D(N))Û(N)

− (IS ⊗C(N))

N−1∑
j=0

(IS ⊗φ(N− j− 1))(IS ⊗ F(j))Hli(j)},
(5.2)
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T̂0 = ((IS ⊗C(N))((IS ⊗φ(N))−1{Ỹ(n) − (IS ⊗D(N))Ũ(N)

− (Is ⊗C(N))×
N−1∑
j=0

(IS ⊗φ(N− j− 1))(Is ⊗ F(j))Ũ(j),
(5.3)

Hli(n) = ũ1(n)× ũ2(n)×, . . . ,uli(n) · · · × ũS2(n), (5.4)

Vli (n) = ỹ1(n)× ỹ2(n)×, . . . ,yli(n) · · · × ỹS2(n), (5.5)

where i = 1, 2, .., s2; l = 1, 2, . . . ,m.

Proof. Consider the case when l = 1. Let

ũ(n) = (ũ1(n), ũ2(n), . . . , ũs2(n)), ỹ(n) = (ỹ1(n), ỹ2(n), . . . , ỹs2(n)).

Let µu1
i(n)

(ũi(n)) be the grade of the membership of ũi(n) in u1
i(n), and let µy1

i(n)
(ỹi(n)) be the grade

of membership of Ỹi(n) in y1
i(n). Since (Is ⊗C(N))(Is ⊗φ(N)) is non singular and from (3.15) we have

T̂0 = [(Is ⊗C(N))(Is ⊗φ(N))]−1{ỹ(N) − (Is ⊗D(N))ũ(N)

− (Is ⊗C(N))}

N−1∑
j=0

(Is ⊗φ(N− j− 1))(Is ⊗ F(j)ũ(j)).

When the input and output are both fuzzy sets it follows from equation (3.1) that

(Is ⊗C(N))T̂(n) = Ŷ(n) − (Is ⊗D(N))ũ(N)

is a fuzzy set. From equation (3.15), we get

(Is ⊗C(N))(Is ⊗φ(N))T̂0 +

N−1∑
j=0

(Is ⊗φ(n− j− 1))(Is ⊗ F(j))Û(j) = Ŷ(n) − ((Is ⊗D(N)))Û(n)

using Definition 3.8. It follows that

(Is ⊗C(N))(Is ⊗φ(N))T̂0 = {Ŷ(n) − (Is ⊗D(N)))Û(n)

− (Is ⊗C(N))}

N−1∑
j=0

(Is ⊗φ(n− j− 1))(Is ⊗ F(j))Û(j).

Since (Is ⊗C(N))(Is ⊗φ(N)) is nonsingular, we have

T̂0 = [(Is ⊗C(N))(Is ⊗φ(N))]−1{Ŷ(N) − ((Is ⊗D(N))Û(n))

− (Is ⊗C(N))×
N−1∑
j=0

(Is ⊗φ(N− j− 1))(Is ⊗ F(j))Û(j)}.

Now, the initial value T̂0 should be a fuzzy set but not a crisp value. The following assumptions will
enable us to determine each component of T̂0

H1
i(n) = ũ1(n)× ui(n+ 1)× · · · × ũs2(n),

V1
i (n) = ỹ1(n)× yi(n+ 1)× · · · × ỹs2(n), where i = 1, 2, . . . , s2.
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From the Corollary 3.5, we know that the ith component of the set

(Is ⊗φ(N))T̂0 +

n−1∑
j=0

(Is ⊗φ(n− j− 1))(Is ⊗ F(j))H1
i(j).

is a fuzzy set in E1. From the fact that the product of a square matrix of size s2 and column vector whose
elements are α-level sets defined on fuzzy set in Es

2
is again a fuzzy set in Es

2
[6], it follows that the

product

(Is ⊗C(N))×
n−1∑
j=0

(Is ⊗φ(n− j− 1))(Is ⊗ F(j))H1
i(j)

is a fuzzy set in Es
2
. Hence T̂o is a fuzzy set in Es

2
and the ith component of it denoted by t1

0(i) is a fuzzy
set in E1. The grade of membership of t̃i0 in t1

0(i) is defined by µt1
0(i)
t̃i0 = min{µu1

i(n)
ũi(n),µy1

i
(n)ỹi(n)}.

Now the initial value is determined by using the equations (5.1)-(5.5). In general, computation of tl0(i) is
very difficult, but to solve the real value problem the following approximation is chosen. Now we take
the point (̃ti0,µtl0(i)(t̃0

i
)) and the zero level set [tl0(i)]

0 to determine a triangle as the new fuzzy set tl0(i).
We can use the center average defuzzifier

t̃i0 =

∑m
l=1 (̃t

i
0)
lµtl0(i)

(̃ti0)
l∑m

l=1 µtl0(i)
(̃ti0)

l
(5.6)

to determine the initial value T̂0 = (̃t1
0, t̃2

0, . . . , t̃s
2

0 ). To obtain more accurate value for the initial state, more
rule bases may be provided.

Example 5.2. Consider the fuzzy system (3.13) satisfying (3.14) with A(n) =
[

1 0
0 −2

]
, F(n) =

[
2n 0
0 3n

]
,

C(n) =

[
0 1
1 0

]
, and D(n) =

[
0 0
0 0

]
, N = 2, T(0) =

[
1 1
1 1

]
. Let t̂f = (tf1 , tf2 , tf3 , tf4) in E4, where [T̂f]

α =

([tf1 ]
α, [tf2 ]

α, [tf3 ]
α, [tf4 ]

α)T =[[α − 1, 1 − α], [α − 1, 1 − α], [0.1(α − 1), 0.1(1 − α)], [0.1(α − 1), 0.1(1 − α)]T .
We select the points t̃f1 = 0.5, t̃f2 = 0.25, t̃f3 = 0.05, and t̃f4 = 0.025, which are in tf1 , tf2 , tf3 , and tf4

with 0.5, 0.75, 0.5 and 0.75 as respective membership grades. The fundamental matrix of system (2.3) is

φ(n) =

[
1n 0
0 (−2)n

]
. By using the equation (4.1) of Theorem 4.1, we get 22 × 22 symmetric controllable

matrix W(0, 2) =


5 0 0 0
0 37 0 0
0 0 5 0
0 0 0 37

. We can easily observe that symmetric controllability matrix W(0, 2) is

non-singular. Thus, from Theorem 4.1 the α level fuzzy control Û(n) are given by

Ûα(n) =


(−1)−n−1(2)−n−3[α− 1, 1 −α]

1
5 [α− 1, 1 −α]

(−1)−n−1(2)−n−3[0.1(α− 1), 0.1(1 −α)]
1
5 [0.1(α− 1), 0.1(1 −α)].

−


(−2)−n−1

37
1
5

(−2)−n−1

37
1
5

 .

The α-level sets of fuzzy input Û(n) and fuzzy output Ŷ(n) by rule base 1 and rule base 2 given as follows.
Rule Base 1:

[Û(1)]α =


[0,−0.75(α− 1)]
[0.75(α− 1) + 1, 1]
[0,−0.5(α− 1)]
[0.5(α− 1) + 1, 1]

 [Ŷ(1)]α =


[0,−2(α+ 1)]
[0.5α+ 2.5, 3]
[0,−1.5(α− 1)]
[0.5(α− 1) + 3, 3]

 .
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Rule Base 2:

[Û(2)]α =


[0,−0.8(α− 1)]
[0.8α+ 0.2, 1]
[0,−0.5(α− 1)]
[0.5α+ 0.5, 1]

 [Ŷ(2)]α =


[0,−1.5(α− 1)]

[α+ 1, 2]
[0,−2.5(α− 1)]
[(2α+ 1), 3]

 .

From rule base 1, select

ũ1 = (ũ1, ũ2, ũ3, ũ4) = (0.5, 0.85, 0.4, 0.75).

The grades of the membership of ũ1, ũ2, ũ3, and ũ4 are 1
3 , 0.8, 0.2, and 1

2 , respectively. Also

ỹ1 = (ỹ1, ỹ2, ỹ3, ỹ4) = (1, 2.8, 0.5, 2.9).

The grades of the membership of ỹ1, ỹ2, ỹ3, and ỹ4 are 1
2 , 0.6, 2

3 , and 0.8, respectively. From rule base 2,
we select

ũ2 = (ũ1, ũ2, ũ3, ũ4) = (0.5, 0.8, 0.25, 0.75),

the grades of the membership of ũ1, ũ2, ũ3, and ũ4, respectively are 1
3 , 0.8, 0.2, and 1

2 , respectively. Also

ỹ2 = (ỹ1, ỹ2, ỹ3, ỹ4) = (1, 1.75, 2, 1.5),

the grades of the membership of ỹ1, ỹ2, ỹ3, and ỹ4 are 1
3 , 3

4 , 0.2, and 0.25, respectively. From rule base

1 and equation (5.3) we have T̂0 =


[−0.175]
[−15.15]
[0.025]
[−13.75]

. From rule base 1 and equation (5.2) we have t1
0(1) =


[−0.3625 + 1.3125α, 0.7]
[−16.15,−2α− 14.15]

[0.025]
[−13.75]

. When α = 0, we observed that t̃1
0 = −0.175 belongs to the interval [−0.3625, 0.7].

We choose its membership grade in t1
0 as

µt1
0
(1) = min{µu1

1
(ũ1(n)),µy1

1
(n)(ỹ1(n))} = min(

1
3

,
1
2
) =

1
3

.

t1
0(2) =


[0.125α− 0.25,−0.125]
[−18,−3.75 − 14.15α]

[−13.75]
[0.1]

. When α = 0 we observed that t̃2
0 = −15.15 belongs to the interval

[−18,−3.75]. We choose its membership grade in t1
0(2) as µt1

0(2)t̃
1
0 = min(0.8, 0.6) = 0.6.

t1
0(3) =


[−1.75]
[−15.15]

[0.8725α− 0.015, 0.725]
[−14.25,−1.5α− 12.75]

. When α = 0, we observed that t̃3
0 = −0.025 belongs to the interval

[−0.015, 0.725]. We choose its membership grade in t1
0(3) as µt1

0
(3)̃t1

0 = min(0.2, 2
3) = 0.2.

t1
0(4) =


[−1.75]
[−15.15]

[0.125α− 0.75, 0.05]
[−14.25,−1.5α− 12.75]

. When α = 0, we observed that t̃4
0 = −13.75 belongs to the interval

[−14.25,−12.75]. We choose its membership grade in t1
0(4) as µt1

0
(4)̃t1

0 = min( 1
2 , 0.8) = 1

2 .
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Similarly for rule base 2 using equation (5.3) we get T̂0 =


[−0.4375]
[−14.2]
[0.0625]
[−12.25]

. By using rule base 2 and equation

(5.2) we get

t2
0(1) =


[−0.9625 + 1.4α, 0.4375]
[−15.2,−1.5α− 13.7]

[−0.0625]
[−12.25]

 , µt
2
0(1)̃t

2
0 = min(

3
8

,
1
3
) =

1
3

,

t2
0(2) =


[0.25α− 0.625,−0.375]
[−18,−2.8 − 15.2α]

[−0.0625]
[−12.25]

 , µt
2
0(2)̃t

2
0 = min(

3
4

,
3
4
) =

3
4

,

t2
0(3) =


[−0.4375]
[−14.2]

[0.875α− 0.5, 0.425]
[−14.25,−2.5α− 11.75]

 , µt2
0
(3)̃t2

0 = min(
1
2

, 0.2) = 0.2,

t2
0(4) =


[−0.4375]
[−14.2]

[0.5α− 0.1375, 0.3125]
[−17,−9.5α− 7.5]

 , µt
2
0(4)̃t

2
0 = min(

1
2

, 0.25) = 0.25.

By using the center average defuzzifier given by equation (5.6) the initial value T̂0 = (̃t1
0, t̃2

0, t̃3
0, t̃4

0) is given
by

t̃1
0 =

[−0.175× 1
3 + (−0.4375)× 1

3 ]
1
3 +

1
3

= −0.30625, t̃2
0 =

[−15.15× (0.6) + (−14.2)× 0.75]
0.6 + 0.75

= −14.62222,

t̃3
0 =

[−0.025× (0.2) + (−0.0625)× (0.2)]
0.2 + 0.2

= −0.01875, t̃4
0 =

[−13.75× (0.5) + (−12.25)× (0.25)]
0.5 + 0.25

= −13.25.

By considering more rule bases the accuracy of the initial state can be improved.

6. Conclusions

In this article sufficient conditions for the controllability and observability of the fuzzy matrix discrete
dynamical system are established. These are achieved through fuzzy rule base and difference inclusions
approach. Novelty being the construction of rule base for the initial value without actually solving the
system. Established theories are supported by numerical examples.
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