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Abstract
In this paper, we introduce a new generalization of a class of inverse Lindley distributions called the generalized inverse

Lindley power series (GILPS) distribution. This class of distributions is obtained by compounding the generalized class of inverse
Lindley distributions with the power series family of distributions. The GILPS contains several lifetime subclasses such as inverse
Lindley power series, two parameters inverse Lindley power series, and inverse power Lindley power series distributions. It
can generate many statistical distributions such as the inverse power Lindley Poisson distribution, the inverse power Lindley
geometric distribution, the inverse power Lindley logarithmic distribution, and the inverse power Lindley binomial distribution.
The proposed class has flexibility in the sense that it can generate new lifetime distributions as well as some existing distributions.
For the proposed class, several properties are derived such as hazard rate function, limiting behavior, quantile function, moments,
moments generating function, and distributions of order statistics. The method of maximum likelihood estimation can be used
to estimate the model parameters of this new class. A simulation for a selective model will be discussed. At the end, we will
demonstrate applications of three real data sets to show the flexibility and potential of the new class of distributions.
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1. Introduction

Consider the lifetime, Xi, of a system with N components. The life of each component is a positive
continuous random variable and can have any lifetime distribution. Examples might include the expo-
nential, the gamma, the Weibull, the Lindley, the inverse Weibull, the inverse gamma, and the inverse
Lindley. The life of such a system can be modeled as a non-negative random variable X = min{Xi}Ni=1
or Y = max{Xi}Ni=1 based on whether the components are in a series or parallel. The distribution of the
discrete random variable N can be any truncated discrete distribution such as the zero-truncated Poisson,
the geometric, the logarithmic, the binomial and the generalized power series. The continuous random
variables Xi, i = 1, . . . ,N are independent from the random variable N.

The inverted family of distributions is commonly used to model data from reliability experiments that
exhibit unimodal hazard rate functions. Lindley [21] suggested a new distribution as an alternative for
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the exponential distribution that became the well-known Lindley distribution. Since then, many other
generalizations and extensions of the Lindley distributions have been proposed, both to improve its flex-
ibility and to achieve a better fitting of lifetime data. The inverse Lindley (IL) distribution was originally
proposed by Sharma et al. [29]. Sharma et al. [30] added a shape parameter to the IL distribution, and this
work was extended by Alkarni [1]. Another extension of the inverse Lindley distribution was proposed
by Sharma and Khandelwal [28]. Recently, Barco et al. [5] introduced the inverse power Lindley (IPL)
distribution and applied it to real data. It showed good flexibility in fitting the data compared with many
existing distributions.

In recent years, several power series distributions have been proposed in the literature. These distribu-
tions were obtained by compounding some useful lifetime distributions with power series distributions.
Lindley power series (LPS) class of distributions (Liyanage and Pararai [22]), Weibull power series class
of distributions (Morais and Barreto-Souza [25]), compound class of extended Weibull power series of
distributions (Silva et al. [31]), a generalization of the extended Weibull power series family of distribu-
tions (Alkarni [2]), exponentiated extended Weibull power series class of distributions (Tahmasebi and
Jafari [33]), inverse Weibull power series distributions (Shafie et al. [27]), generalized exponential power
series of distributions (Mahmoudi and Jafari [23]), complementary exponential power series (Flores et
al. [14]), double-bounded Kumaraswamy power series (Bidram and Nekoukhou [6]), Burr XII power
series (Silva and Cordeiro [32]), generalized linear failure rate power series of distributions (Alamatsaz
and Shams [16]), Birnbaum Saunders power series of distribution (Bourguignon et al. [7]), linear failure
rate-power series of distributions (Mahmoudi and Jafari [24]), complementary extended Weibull-power
series of distributions (Cordeiro and Silva [8]), Gompertz-power series distributions (Tahmasebi and Jafari
[19]), the Exponential Pareto power series distribution (Elbatal et al. [13]), generalized modified Weibull
power series distribution (Bagheri et al. [4]), Compound family of generalized inverse Weibull power
series distributions (Hassan et al. [18]), and complementary exponentiated inverted Weibull power series
family of distributions (Hassan et al. [17]) are some examples of such distributions. To compound a
continuous distribution with a discrete one, Nadarajah et al. [26] introduced the package: Compounding
in R software (R Development Core Team [34]).

In this paper, we introduce the GILPS by considering a system with parallel components and by com-
pounding the generalized class of inverse Lindley distributions with the power series distributions. The
GILPS class of distributions is a flexible family and contains several inverse Lindley types of distributions
compounded with discrete distributions (truncated at zero).

The proposed family of distributions can be applied to many fields such as business, environmental
science, actuarial science, biomedical studies, demography and industrial reliability. This family contains
several subclasses and lifetime models as special cases. In addition, it gives us the flexibility to choose
any compound lifetime for modeling many behavioral types of lifetime data.

The remainder of this paper is organized as follows. In Section 2, we define the generalized inverse
Lindley (GIL) class of distributions and present some existing models that can be deduced as special
cases of the considered model. In Section 3, we define the GILPS class of distributions in terms of the
cumulative distribution function and introduce some special subclasses. In Section 4, we provide the
general properties of the GILPS class, including density, hazard function, quantile function, moments,
moments generating function and distribution of order statistics. The estimations of GILPS parameters
are investigated in Section 5 using the method of maximum likelihood estimation. In Section 6, some
special distributions are introduced as examples of the GILPS. In Section 7, a simulation is applied to a
GILPS model to test the performance of the maximum likelihood method in estimating the parameters. In
Section 8, we present some real data to illustrate the applicability and flexibility of the GILPS distributions.
Finally, some concluding remarks are offered in Section 9.
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2. The generalized inverse Lindley class of distributions

In this section, we define the generalized inverse Lindley (GIL) class of distributions, which generates
most of the existing inverse Lindley types of distributions and can be used to generate new ones.

Definition 2.1. The GIL class of distributions is defined by its cumulative distribution function (cdf) as
follows:

G(x;β, λ,α) =
β+ λ+βλx−α

β+ λ
e−βx

−α
, β, λ,α, x>0. (2.1)

The corresponding probability distribution function (pdf) becomes:

g(x;β, , λ,α) =
αβ2

β+ λ

(
x−α−1 + λx−2α−1) e−βx−α , β, λ,α,x>0. (2.2)

We note that the GIL class of distributions was introduced as a three-parameter model called ”the ex-
tended inverse Lindley distribution” by Alkarni [1].

Several inverse Lindley distributions can be written in form (2.1) depending on the parameters λ and
α. We present some special distributions in the following sub-section.

2.1. Special cases

2.1.1. Inverse Lindley distribution
For the choice of λ = α = 1, the cdf in (2.1) becomes:

F(x;β) =
(
β+ 1 + x−1

β+ 1

)
e−βx

−1
, β, x>0,

which is the cdf of the inverse Lindley distribution introduced by Sharma et al. [29]. From (2.2), the pdf
is given by

f(x;β) =
β2

β+ 1
(
x−2 + x−3) e−β

x ,β, x>0.

2.1.2. Two-parameter inverse Lindley distribution
For the choice of α = 1, the cdf in (2.1) becomes:

F(x;β, λ) =
β+ λ+βλx−1

β+ λ
e−βx

−1
,β, λ, x>0,

which is the cdf of the two parameters of the inverse Lindley. From (2.2), the pdf is given by:

f(x;β, λ) =
β2

β+ λ

(
x−2 + λx−3) e−βx−1

,β, λ, x>0.

2.1.3. Inverse power Lindley distribution
If λ = 1 then the cdf in (2.1) becomes:

F(x;β,α) =
[
β+ 1 +βx−α

β+ 1

]
e−βx

−α
, β,α, x>0,

which is the cdf of the inverse power Lindley distribution introduced by Barco et al. [5]. From (2.2), the
pdf is given by:

f(x;β,α) =
αβ2

β+ 1
[
x−α−1 + x−2α−1] e−βx−α , β,α, x>0.
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3. The GILPS family

In this section, we derive the family of GILPS distributions by compounding the GIL class of distribu-
tions with the power series distributions.

Let N be a zero-truncated discrete random variable having a power series distribution with the fol-
lowing probability mass function:

pn = p(N = n) =
anθ

n

c(θ)
, n = 1, 2, . . . ,

where an > 0 depends only on n, c(θ) =
∑∞
n=1 anθ

n, and θ ∈ (0, s) is chosen in such a way that c(θ)
is finite. The power series family of distributions, includes Poisson, geometric, logarithmic and binomial
distributions, see Johnson et al. [20]. Useful quantities, such as an, c(θ), the first derivative of c(θ), and
its inverse, for the above mentioned distributions truncated for zero are presented in Table 1.

Table 1: Useful quantities for some power series distributions.

Distribution an c(θ) c
′
(θ) c−1(θ) par. space

Poisson 1
n! eθ − 1 eθ log(θ+ 1) (0,∞)

Geometric 1 θ
1−θ

1
(1−θ)2

θ
(θ+1) (0, 1)

Logarithmic 1
n − log(1 − θ) 1

(1−θ) 1 − e−θ (0, 1)

Binomial
(
m

n

)
(1 + θ)m − 1 m(1 + θ)m−1 (θ+ 1)

1
m − 1 N+

Given N, let X = max(X1, . . . ,XN), where Xi, i = 1, . . . ,N are independent and identically distributed
(iid) random variables with cdf as in (2.1). Then the cdf of X |N = n is given by:

FX|N=n (x) = [G(x;β, , λ,α)]n =

(
β+ λ+βλx−α

β+ λ

)n
e−βx

−α
, x > 0, n > 1.

The GILPS distribution is then defined by the marginal cdf of X, which is given by:

F(x; θ,β, , λ,α) =
∞∑
n=1

anθ
n

c(θ)
[G(x;β, , λ,α)]n

=
c(θG(x;β, , λ,α))

c(θ)
=
c
(
θ(β+λ+βλx−α)

β+λ e−βx
−α
)

c(θ)
, θ,β, λ,α, x>0.

(3.1)

Remark 3.1. LetX(2.1) = min{Xi}Ni=1. Then, the cdf of X(2.1) is given by:

FX(1)(x; θ,β, , λ,α) =
∞∑
n=1

pn(1 −G(x; θ,β, , λ,α))n

= 1 −
c(θ(1 −G(x; θ,β, , λ,α)))

c(θ)
= 1 −

c
(
θ
[
1 − β+λ+βλx−α

β+λ e−βx
−α
])

c(θ)
, θ,β, λ,α,x>0.

Based on the choice of c(θ), λ, and α with form (3.1), this class covers the entire compounded inverse
Lindley types of distributions.

Remark 3.2. Setting λ = α = 1, we obtain the inverse Lindley power series (ILPS) class of distributions. Set-
ting α = 1, we have the two parameters of the inverse Lindley power series (TILPS) class of distributions.
Setting λ = 1, we have the inverse power Lindley power series (IPLPS) class of distributions.
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4. General properties

4.1. Density and hazard functions
The pdf and hazard function (hf) of the GILPS are, respectively, given by:

f(x; θ,β, , λ,α) = θg(x; θ,β, , λ,α)
c
′
(θG(x; θ,β, , λ,α))

c(θ)

=
αθβ2

β+ λ

(
x−α−1 + λx−2α−1) e−βx−α c ′

(
θ(β+λ+βλx−α)

β+λ e−βx
−α
)

c(θ)
,

(4.1)

and

τ(x; θ,β, , λ,α) =
f(x; θ,β, , λ,α)

1 − F(x; θ,β, , λ,α)

= θg(x; θ,β, , λ,α)
c
′
(θG(x; θ,β, , λ,α))

c(θ) − c(θG(x; θ,β, , λ,α))

=
αθβ2

β+ λ

(
x−α−1 + λx−2α−1) e−βx−α c

′
(
θ(β+λ+βλx−α)

β+λ e−βx
−α
)

c(θ) − c
(
θ(β+λ+βλx−α)

β+λ e−βx
−α
) .

(4.2)

Proposition 4.1. The limiting distribution of the GILPS when `→ 0+ is the GIL.

Proof. Using the L’Hôpital’s rule

lim
`→0+

F(x; θ,β, , λ,α) = lim
`→0+

c(θG(x; θ,β, , λ,α))
c(θ)

= lim
`→0+

∑∞
n=1 anθ

n(G(x; θ,β, , λ,α))n∑∞
n=1 anθ

n

= lim
`→0+

a1(G(x; θ,β, , λ,α)) +
∑∞
n=2 nanθ

n−1(G(x; θ,β, , λ,α))n

a1 +
∑∞
n=2 nanθ

n−1

= G(x; θ,β, , λ,α) =
β+ λ+βλx−α

β+ λ
e−βx

−α
,

which is the cdf of the GIL distribution.

Proposition 4.2. The pdf of GILPS distributions can be expressed as an infinite number of linear combinations of
densities of the order statistics and given by

f(x; θ,β, λ,α) =
∞∑
n=1

n−1∑
i=0

(
n− 1
i

)
nanθ

n

c(θ)
(β+ λ)i−nαβ2(βλ)n−i−1

×
(
x−nα+iα−1 + λx−nα+iα−α−1) e−nβX−α

, θ,β, λ,α> 0.

(4.3)

Proof. Given that c
′
(θ) =

∑∞
n=1 nanθ

n−1, we have,

f(x) = θg(x; θ,β, , λ,α)
c
′
(θG(x; θ,β, , λ,α))

c(θ)
=

∞∑
n=1

p(N = n)gY(x;n),

where gY(x;n) is the pdf of Y = max(Y1, . . . ,Yn), and

gY(x;n) = ng(x;β, , λ,α)(G(x;β, , λ,α, ))n−1 =
nαβ2

β+ λ

(
x−α−1 + λx−2α−1

)
e−βx

−α
[
β+ λ+βλx−α

β+ λ
e−βx

−α
]n−1

.
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Hence

f(x; θ,β, λ,α) =
∞∑
n=1

nanθ
n

c(θ)

αβ2

(β+ λ)n
(
x−α−1 + λx−2α−1) [β+ λ+βλx−α

]n−1
e−nβX

−α
,

and using the binomial expansion, the pdf of the GILPS can be written as

f(x; θ,β, λ,α) =
∞∑
n=1

n−1∑
i=0

(
n− 1
i

)
nanθ

n

c(θ)
(β+ λ)i−nαβ2(βλ)n−i−1

×
(
x−nα+iα−1 + λx−nα+iα−α−1) e−nβX−α

, θ,β, λ,α> 0.

4.2. Moments, and moments-generating function

The rthmoment of a random variable X ∼ GILPS(θ,β, λ,α) distribution, µ
′
r, is obtained using (4.3) as:

µ
′
r =

∫∞
0
xrfX(x)dx

=

∞∑
n=1

n−1∑
i=0

(
n− 1
i

)
anθ

n

c(θ)
n
r
α−n+iβ

r
αλn−i−1(β+ λ)i−n[nβ+ λ(n−

r

α
− i)]Γ(n−

r

α
− i).

(4.4)

The moments generating function (mgf) of the GILPS is obtained as MX(t) = E(e
tx), t>0. Using the series

expansion etx =
∑∞
k=0

tkxk

k! , the above expressions are reduced to:

MX(t) =

∞∑
k=0

∞∑
n=1

n−1∑
i=0

(
n− 1
i

)
tk

k!
anθ

n

c(θ)
n
k
α−n+iβ

k
αλn−i−1(β+ λ)i−n[nβ+ λ(n−

k

α
− i)]Γ(n−

k

α
− i),

where Γa =
∫∞

0 x
a−1e−xdx.

Therefore, the mean and the variance of the GILPS distribution, respectively can be obtained easily
from (4.4) as µ = µ1

′
and σ2 = µ2

′
− µ2.

The skewness and kurtosis measures can be obtained from the expressions

skewness =
µ

′
3 − 3µ

′
2µ+ 2µ3

σ3 , curtosis =
µ

′
4 − 4µ

′
3µ+ 6µ

′
2µ

2 − 3µ4

σ4 ,

upon substituting for the raw moments from (4.4).

4.3. Quantile function and order statistics

In this section, the quantile function and order statistics of GILPS distributions will be derived.

Proposition 4.3. Let X∼GILPS(θ,β, λ,α) have the cdf as in (3.1). The quantile function of X is given by:

QX(p) =

[
−

1
λ
−

1
β
−

1
λβ
W−1

(
−(β+ λ)c−1(pc(θ))

θeβ+λ

)]− 1
α

, (4.5)

where W−1(.) is the negative branch of the Lambert W function (see Corless et al. [9]).
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Proof. The quantile function is the root of the equation FX(QX(p)) = p, p∈ (0, 1). Therefore,

c
(
θ(β+λ+βλ(QX(p))

−α

β+λ e−β(QX(p))
−α
)

c(θ)
= p.

Multiplying both sides by c(θ) and applying c−1(.), then multiplying both sides by −(β+λ)
θeβ+λ

, leads to

−β− λ−βλ(QX(p))
−αe−β−λ−β(QX(p))

−α
=

−(β+ λ)c−1(pc(θ))

θeβ+λ
.

Setting z(p) = −β − λ − βλ(QX(p))
−α, we have z(p)ez(p) =

−(β+λ)c−1(pc(θ))
θeβ+λ

. The solution for z(p) is

z(p) =W−1

[
−(β+λ)c−1(pc(θ))

θeβ+λ

]
, solving the equation W−1

[
−(β+λ)c−1(pc(θ))

θeβ+λ

]
= −β− λ− βλ(QX(p))

−α

for QX(p) completes the proof.

Order statistics are the most fundamental tools in non-parametric statistics and inference. These can
be used to address estimation problems and hypothesis tests in many ways. The pdf of the kth order
statistics from a random sample X1, . . . ,Xn from X∼GILPS(θ,β, λ,α) is given by:

fk:n(x) =
n!

(k− 1)!(n− k)!
fGILPS(x)[FGILPS(x)]

k−1[1−FGILPS(x)]
n−k

=
n!

(k− 1)!(n− k)!
fX(x)

n−k∑
i=0

(
n− k
i

)
(−1)i[FGILPS(x)]

k+i−1.

The associated cdf can be defined as:

Fk:n(x) =
n!

(k− 1)!(k− i)!

n−k∑
i=0

(
n− k
i

)
(−1)i

k+ i
[FGILPS(x)]

k+i.

where FGILPS(x) and fGILPS(x) come from (3.1) and (4.1), respectively.

5. Estimation and inference

Let X1, . . . ,Xnbe a random sample with the observed value x = (x1, . . . , xn) obtained from the GILPS
distribution with parameters θ,β, λ, and α. Let Θ = (θ,β, λ,α)T be the 4×1 parameter vector. The log
likelihood function is given by:

ln = ln(Θ; x) = n logα+n log θ+ 2n logβ−n log(β+ λ) −n log(c(θ))

+

n∑
i=1

log(xi−α−1 + λxi
−2α−1) −β

n∑
i=1

xi
−α +

n∑
i=1

log
[
c
′
(
θ(β+ λ+βλx−α)

β+ λ
e−βx

−α

)]
.

Consider pi =
(β+λ+βλx−α)

β+λ e−βx
−α

. The score function, Un(Θ) = (∂ln/∂θ,∂ln/∂β,∂ln/∂λ,∂ln/∂α)T , is
given by:

∂ln

∂θ
=
n

θ
−
nc ′(θ)

c(θ)
+

n∑
i=1

c ′′(θpi)p
′
iθ

c ′(θpi)
,

∂ln

∂β
=

2n
β

−
n

β+ λ
−

n∑
i=1

x−αi +

n∑
i=1

c ′′(θpi)p
′
iβ

c ′(θpi)
,

∂ln

∂λ
= −

n

β+ λ
+

n∑
i=1

1
xαi + λ

+

n∑
i=1

c ′′(θpi)p
′
iλ

c ′(θpi)
,
∂ln

∂α
=
n

α
−

n∑
i=1

(1 + 2λx−αi ) log xi
1 + λx−αi

+

n∑
i=1

c ′′(θpi)p
′
iα

c ′(θpi)
,
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where p
′
iθ = ∂p

∂θ ,p
′
iβ = ∂p

∂β ,p
′
iλ = ∂p

∂λ , and p
′
iα = ∂p

∂α .

The maximum likelihood estimation (MLE) of Θ, say Θ̂, is obtained by solving the nonlinear system
Un(x; Θ) = 0. Since this nonlinear system of equations does not have a closed form solution, any nu-
merical method (such as the Newton-Raphson procedure) can be used. For the interval estimation and
hypothesis tests on the model parameters, we require the following observed information matrix:

In(Θ) = −


Iθθ Iθβ Iθλ Iθα
Iβθ Iββ Iβλ Iβα
Iλθ Iλβ Iλλ Iλα
Iαθ Iαβ Iαλ Iαα

 ,

where the elements of In (Θ) are the second partial derivatives of Un(Θ). Under the standard regularity
conditions for the large sample approximation as mentioned in Cox and Hinkley [10], and verified here
that these are fulfilled by the proposed model, the distribution of Θ̂ is approximately Np(Θ, J−1

n (Θ)),
where Jn(Θ) = E[In(Θ)]. Whenever the parameters are in the interior of the parameter space and not on
the boundary, the asymptotic distribution of

√
n(Θ̂ − Θ) is Np(0, J−1(Θ)), where J−1(Θ) = lim

n→∞n−1In(Θ)

is the unit information matrix, and p is the number of parameters of the distribution. The asymptotic
multivariate normal Np(Θ, I−1

n (Θ̂)) distribution of Θ̂ can be used to approximate the confidence interval
for the parameters, the hazard rate and the survival functions. An 100(1 − γ) asymptotic confidence
interval for parameter Θi is given by

(Θ̂i −Zγ2

√
Îii, Θ̂i +Zγ2

√
Îii),

where Îii is the (i, i) diagonal element of I−1
n (Θ̂) for i = 1, . . . ,p, and Zγ

2
is the quantile 1 − γ

2 of the
standard normal distribution.

6. Special cases of GILPS model

In this section, we shall show that various models can be obtained as special cases of the GILPS class
of distributions.

6.1. Inverse power Lindley Poisson distribution

The inverse power Lindley Poisson (IPLP) distribution (truncated at zero) is a special case of the GILPS
distribution with c(θ) = eθ − 1(θ>0), λ = 1. Using (3.1), the cdf of the IPLP distribution is:

F(x; θ,β,α) =
e
θ(β+1+βx−α)

β+1 e−βx
−α

− 1
eθ − 1

, θ,β,α, x>0.

Using (4.1) and (4.2), the associated pdf and hf are given respectively by:

f(x) =
αθβ2

(β+ 1)(eθ − 1)
(x−α−1 + x−2α−1)e−βx

−α+
θ(β+1+βx−α)

β+1 e−βx
−α

,

τ(x) =
αθβ2

β+ 1
(x−α−1 + x−2α−1)e−βx

−α+
θ(β+1+βx−α)

β+1 e−βx
−α

eθ − e
θ(β+1+βx−α)

β+1 e−βx
−α

for θ,β,α, x > 0.
Plots of the pdf and hf of the IPLP distribution for some selected parameter values are shown in Figure

1.
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Figure 1: Plots of the density function of the IPLP distribution for different values of θ,β, and α.

The rth moment of a random variable X following the IPLP distribution can be obtained from (4.4)
with an = 1

n! :

µ
′
r =

∞∑
n=1

n−1∑
i=0

(
n− 1
i

)
θn

eθ − 1
n
r
α−n+i−1β

r
α (β+ 1)i−n[nβ+ (n−

r

α
− i)]Γ(n−

r

α
− i).

From (4.5), the quantile function of the IPLP distribution can be readily expressed as

QX(p) =

[
−1 −

1
β
−

1
β
W−1

(
−(β+ 1) log(p(eθ − 1))

θeβ+1

)]− 1
α

.

For α = 1, we have the inverse Lindley Poisson (ILP) distribution.

6.2. Inverse power Lindley geometric distribution
The inverse power Lindley geometric (IPLG) distribution (truncated at zero) is a special case of the

GILPS distribution with c(θ) = θ
1−θ , λ = 1, (0<θ< 1). Using (3.1), the cdf of the IPLG distribution is:

F(x; θ,β,α) =
(1 − θ)(β+ 1 +βx−α)

(β+ 1)eβx−α − θ(β+ 1 +βx−α)
.

From (4.1) and (4.2), the associated pdf and hf are given respectively by

f(x) =
αβ2(β+ 1)(1 − θ)(x−α−1 + x−2α−1)e−βx

−α

[β+ 1 − θ(β+ 1 +βx−α)e−βx
−α

]2
,

τ(x) =
αβ2(β+ 1)(1 − θ)(x−α−1 + x−2α−1)

[(β+ 1)eβx−α − θ(β+ 1 +βx−α)][(β+ 1)eβx−α − (β+ 1 +βx−α)
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for 0<θ< 1,β,α, x>0.
Plots of the pdf and hf of the IPLG distribution for some selected parameter values are shown in

Figure 2.

Figure 2: Plots of the density function of the IPLG distribution for different values of θ,β, and α.

The rthmoment of a random variable X following the IPLG distribution can be obtained from (4.4)
with an = 1:

µ
′
r =

∞∑
n=1

n−1∑
i=0

(
n− 1
i

)
θn−1(1 − θ)β

r
αn

r
α+i−n(β+ 1)i−n[nβ+ (n−

r

α
− i)]Γ(n−

r

α
− i) .

From (4.5), the quantile function of the IPLG distribution can be readily defined by:

QX(p) =

[
−1 −

1
β
−

1
β
W−1

(
−(β+ 1)
θeβ+1

pθ

θ(p− 1) + 1

)]− 1
α

.

For α = 1, we have the inverse Lindley geometric (ILG) distribution.

6.3. Inverse power Lindley logarithmic distribution
The inverse power Lindley logarithmic (IPLL) distribution (truncated at zero) is a special case of the

GILPS distribution with c(θ) = − log(1 − θ), λ = 1, (0<θ< 1). Using (3.1), the cdf of the IPLL distribution
is:

F(x; θ,β,α) =
1

log(1 − θ)
log
[

1 −
θ(β+ 1 +βx−α)

β+ 1
e−βx

−α

]
.

By using (4.1) and (4.2) the associated pdf and hf are given respectively by:

f(x) =
−θαβ2

log(1 − θ)

x−α−1 + x−2α−1

(β+ 1)eβx−α − θ(β+ 1 +βx−α)
,
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τ(x) =
−θαβ2(x−α−1 + x−2α−1)e−βx

−α

[(β+ 1)
{

log(1 − θ) − log
[
1 −

θ(β+1+βx−α)
β+1 e−βx

−α
]}{

β+ 1 − (β+ 1 +βx−α)e−βx
−α
}

for 0<θ< 1,β,α, x>0.
Plots of the pdf and hf of the IPLL distribution for some selected parameter values are shown in Figure

3.

Figure 3: Plots of the density function of the IPLL distribution for different values of θ,β, and α.

The rth moment of a random variable X following the IPLL distribution can be obtained from (4.4)
with an = 1

n :

µ
′
r =

∞∑
n=1

n−1∑
i=0

(
n− 1
i

)
(−θn)

log(1 − θ)
β
r
αn

r
α+i−n−1(β+ 1)i−n[nβ+ (n−

r

α
− i)]Γ(n−

r

α
− i).

From (4.5), the quantile function of the IPLL distribution can be expressed as:

QX(p) =

[
−1 −

1
β
−

1
β
W−1

(
−(β+ 1)(1 − ep log(1−θ))

θeβ+1

)]− 1
α

.

For α = 1, we have the inverse Lindley logarithmic (ILL) distribution.

6.4. Inverse power Lindley binomial distribution

The inverse power Lindley binomial (IPLB) distribution (truncated at zero) is a special case of the
GILPS distribution with c(θ) = (1 + θ)m − 1, λ = 1, (0<θ< 1), where m is a positive integer. Using (3.1),
the cdf of the IPLB distribution is:

F(x; θ,β,α) =

[
θ(β+1+βx−α)

β+1 e−βx
−α

+ 1
]m

− 1

(θ+ 1)m − 1
.
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By using (4.1) and (4.2), the associated pdf and hf are given respectively by:

f(x) =
θmαβ2

(β+ 1)m
(x−α−1 + x−2α−1)[θ(β+ 1 +βx−α)e−βx

−α
+β+ 1]m−1e−βx

−α

(θ+ 1)m − 1
,

τ(x) =
θmαβ2(x−α−1 + x−2α−1)[θ(β+ 1 +βx−α)e−βx

−α
+β+ 1]m−1e−βx

−α

(β+ 1)m(θ+ 1)m − [θ(β+ 1 +βx−α)e−βx
−α

+β+ 1]m

for 0<θ< 1,β,α, x>0.
Plots of the pdf and hf of the IPLB distribution for some selected parameter values are shown in Figure

4.

Figure 4: Plots of the density function of the IPLB distribution for different values of θ,β,α, and m = 4.

The rth moment of a random variable X following the IPLB distribution can be obtained from (4.4)

with an =

(
m

n

)
:

µ
′
r =

∞∑
n=1

n−1∑
i=0

(
n− 1
i

)(
m

n

)
θn

(1 + θ)m − 1
β
r
αn

r
α+i−n(β+ 1)i−n[nβ+ (n−

r

α
− i)]Γ(n−

r

α
− i) .

From (4.5), the quantile function of the IPLB distribution can be expressed as:

QX(p) =

[
−1 −

1
β
−

1
β
W−1

(
−(β+ 1){[p(1 + θ)m − p+ 1]

1
m − 1}

θeβ+1

)]− 1
α

.

For α = 1, we have the inverse Lindley binomial (ILB) distribution.

7. Simulation study

In this section, we present the results of simulations for different sample sizes to assess the perfor-
mances of the MLE estimators. For illustrative purposes, we choose the IPLG distribution. The simulation
technique for the IPLG distribution is the inversion method using the following lemma.
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Lemma 7.1. Let U be a standard uniform variable between zero and one. Then, the random variable:

X =

[
−1 −

1
β
−

1
β
W−1

(
−(β+ 1)
θeβ+1

Uθ

θ(U− 1) + 1

)]− 1
α

,

is said to come from the IPLG distribution with parameters θ,β, and α.

Samples of size n = 25, 50, 100, 200, 400, and 600 are generated for two sets of parameters, namely
(θ = 0.2, β = 0.8, α = 0.75) and (θ = 0.8, β = 1.1, α = 2). Using Lemma 7.1, we repeated the simula-
tions for N = 5000, and evaluated the average estimate (AE), average bias (AB), and root mean squared
error (RMSE). The empirical results are obtained by using the statistical computing software R and are
presented in Table 2. It can be seen that as the sample size increases, the RMSE and AB decrease toward
zero and the AE converges to the actual parameter. Thus, we can conclude that the MLE method provides
consistent estimates of the model parameters.

Table 2: The AE, AB, and RMSE for varying n, θ,β, and α.
θ = 0.2,β = 0.8,α = 0.75 θ = 0.8,β = 1.1,α = 2

Par. n AE AB RMSE AE AB RMSE

θ

25 0.3205 0.1205 0.3597 0.4801 -0.3199 0.4686
50 0.3115 0.1115 0.3441 0.5494 -0.2506 0.4029
100 0.3057 0.1057 0.3285 0.6352 -0.1648 0.3123
200 0.2934 0.0934 0.3005 0.7073 -0.0927 0.2128
400 0.2545 0.0545 0.2469 0.7576 -0.0424 0.1319
600 0.2405 0.0405 0.2249 0.7743 -0.0257 0.0984

β

25 0.6968 -0.1032 0.2805 1.7280 0.6280 0.9525
50 0.7064 -0.0936 0.2507 1.5581 0.4581 0.7408
100 0.7155 -0.0845 0.2298 1.3941 0.2941 0.5632
200 0.7257 -0.0743 0.2006 1.2680 0.1680 0.4080
400 0.7572 -0.0428 0.1540 1.1759 0.0759 0.2886
600 0.7668 -0.0332 0.1374 1.1456 0.0456 0.2331

α

25 0.8346 0.0846 0.1748 1.9462 -0.0538 0.3890
50 0.8056 0.0556 0.1247 1.9158 -0.0842 0.2993
100 0.7909 0.0409 0.0991 1.9282 -0.0718 0.2388
200 0.7822 0.0322 0.0781 1.9594 -0.0406 0.1809
400 0.680 0.0180 0.0554 1.9828 -0.0172 0.1334
600 0.7633 0.0133 0.0485 1.9914 -0.0086 0.1083

8. Applications

In this section, we fit the IPLP, IPLG, IPLL, and IPLB to three real datasets and compare the results
with two three-parameter distributions. The first is the generalized inverse Weibull (GIW) distribution
introduced by Gusmão et al. [11]. The cdf of the GIW distribution is given by

F(x; θ,β,α) = e−θ(
α
x )
β

, θ,β,α, x>0.

The second is the extended inverse Lindley (EIL) distribution proposed by Alkarni [1]. The cdf of the EIL
is given by

F(x; θ,β,α) =
[

1 +
θβ

θ+β

1
xα

]
e−

θ
xα , θ,β,α, x>0.
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The first data set represents the relief times (in minutes) of 20 patients receiving an analgesic (reported
by Gross and Clark [15]). These data consist of 20 observations and have the following values: 1.1, 1.4,
1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, and 2.0.

The second data corresponds to 46 observations reported on active repair times (hours) for an airborne
communication transceiver discussed by Alven [3]. The data are: 0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7,
0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7,
5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5.

The third data set represents the flood levels for the Susquehanna River at Harrisburg, Pennsylvania,
over 20 four-year periods from 1890 to 1969 and was obtained in a civil engineering context and give the
maximum flood level (in millions of cubic feet per second). This data has been widely used by authors
and were initially reported by Dumonceaux and Antle [12]. The values of this data are: 0.654, 0.613, 0.315,
0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.324, 0.269, 0.740, 0.418, 0.412, 0.494, 0.416, 0.338, 0.392, 0.484, 0.265.

For each distribution, we derive the maximum likelihood estimates (MLE), the maximized log likeli-
hood (Log L), the Kolmogorov–Smirnov statistics (K-S) with their respective p-value, the Akaike Infor-
mation Criterion (AIC), and the Bayesian Information Criterion (BIC). The K-S test is valid to test the
quality of the fit of the underlying distributions to the failure data, as shown in Bagheri et al. [4]. The
results of all data sets are presented in Table 3, 4, and 5. The fitted densities of GILPS models and the
competitor’s models for all the data sets are shown in Figures 5, 6, and 7. These indicate that the GILPS
distributions fits the data better than the other distributions. The KS test statistic has smallest value with
largest p-value for the GILPS distributions. This is confirmed by the log likelihood, the AIC and the BIC
also.

Table 3: Parameter estimates, KS statistic, P-value, log likelihood, AIC, and BIC of relief times data.

Dist. θ̂ β̂ α̂ K-S p-value − log(L) AIC BIC
IPLP 1.2114 5.7405 4.4234 0.0880 0.9939 15.38 36.76 39.74
IPLG 0.3820 6.0742 4.3965 0.0877 0.9941 15.39 36.76 39.74
IPLL 0.4759 6.3464 4.2787 0.0853 0.9959 15.40 36.80 39.78
IPLB 0.1444 5.7078 4.4048 0.0790 0.9986 15.36 36.75 39.74
EIL 6.0286 0.0062 4.0175 0.0886 0.9934 15.41 36.82 39.80

GIW 1.1396 4.0175 1.5135 0.0897 0.9923 15.41 36.82 39.80

Figure 5: Plots of fitted models of the relief times data.
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Table 4: Parameter estimates, KS statistic, P-value, log likelihood, AIC, and BIC of active repair times data.

Dist. θ̂ β̂ α̂ K-S p-value − log(L) AIC BIC
IPLP 2.5689 0.8989 1.0700 0.0795 0.9106 100.45 206.89 212.38
IPLG 0.8783 0.5691 1.2594 0.0717 0.9584 100.07 206.14 211.62
IPLL 0.9947 0.4503 1.6347 0.0759 0.9357 99.83 205.67 211.15
IPLB 0.3032 0.9454 1.0530 0.0796 0.9104 100.49 206.98 212.46
EIL 1.1316 0.00001 1.0127 0.0798 0.9085 100.69 207.38 212.87

GIW 0.4788 1.0127 2.3380 0.0803 0.905 100.69 207.38 212.87

Figure 6: Plots of fitted models of the repair times data. Figure 7: Plots of fitted models of the flood levels data.

Table 5: Parameter estimates, KS statistics, P-value, log likelihood, AIC, and BIC the flood levels data.

Dist. θ̂ β̂ α̂ K-S p-value − log(L) AIC BIC
IPLP 1.1918 0.0583 3.2719 0.1295 0.8491 -16.23 -26.47 -23.48
IPLG 0.5622 0.0460 3.4086 0.1250 0.8757 -16.26 -26.52 -23.54
IPLL 0.8379 0.0390 3.5432 0.1274 0.8615 -16.27 -26.53 -23.55
IPLB 0.1324 0.0602 3.2555 0.1302 0.8444 -16.23 -26.46 -23.47
EIL 0.1056 4.2781 2.9546 0.1388 0.7865 -16.23 -26.47 -23.48

GIW 0.1214 4.3143 0.5842 0.1546 0.6698 -16.10 -26.19 -23.28

9. Concluding remarks

The purpose of this paper was to define a new family of lifetime distributions called the GILPS
family of distributions. The GILPS class contains some lifetime subclasses and has the ability to produce
many useful and flexible distributions for modeling lifetime data. The properties of the GILPS class of
distributions have been derived in flexible and useful forms, including density, hazard function, quantile
function, moments, moments generating function, distribution of order statistics and maximum likelihood
estimates. Some subclasses and models were introduced to show the beneficiary of the proposed class.
A simulation was conducted to test the estimating method performance for the model parameters. In
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addition, some of the GILPS distributions applied to three real data sets and then compared to some
existing distributions.
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