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Abstract
In this paper we demonstrate that the results presented in the paper [B. Bin-Mohsin, M. A. Noor, K. I. Noor, S. Iftikhar, J.

Nonlinear. Sci. Appl., 11 (2018),1070–1076] are not true in general. Moreover, we give some new notions, which could be applied
in type problems as in [B. Bin-Mohsin, M. A. Noor, K. I. Noor, S. Iftikhar, J. Nonlinear. Sci. Appl., 11 (2018), 1070–1076].
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1. Introduction

In the introduction of the paper [2], the authors present the following definitions.
Let (X, ‖·‖) be a real normed space, and I be a harmonic convex subset of X.

Definition 1.1. A set I ⊆ R \ {0} is said to be a harmonic set if

xy

tx+ (1 − t)y
∈ I, ∀x,y ∈ I, t ∈ [0, 1] .

Definition 1.2. A function f : I ⊆ R \ {0} → R is said to be a strongly general harmonic convex function if
there exists a non-negative function F : X \ {0}→ R, such that

f

(
xy

tx+ (1 − t)y

)
6 (1 − t)f(x) + tf(y) − t(1 − t)F

(
xy

x− y

)
, ∀x,y ∈ I, t ∈ [0, 1] . (1.1)

If (1.1) is assumed only for t = 1
2 , we have

f

(
2xy
x+ y

)
6
f(x) + f(y)

2
−

1
4
F

(
xy

x− y

)
,

which is called a strongly general harmonic J-convex function.
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Let us now focus on these definitions. First of all, notice that the set I has to be a subset of R, and not
a subset of a real normed space X. In the light of the first definition, it is worth to observe that a subset of
R is a harmonic set (in my opinion it would be better to write ”harmonic convex set”) if and only if it is
only an interval of positive numbers or an interval of negative numbers.

We can not accept Definition 1.2. Namely, the function F is defined on a normed space without the
zero vector, not on subset of the real line; but in (1.1) we take real numbers x,y. From the context of the
main results of the work in question, we conclude that X = R, but it also does not save Definitions 1.2,
because we do not know what happens when x equals y.

Suppose that the deficiencies of Definition 1.2 are removed and let us get to the main results in [2].
The main results in [2] are based on the following two lemmas.

Lemma 1.3 ([2, Lemma 2.1]). Let F : I = [a,b] ⊆ X \ {0} → [0,∞) be an even function. If the function F is a
strongly general harmonic convex function, then

F

(
x

1 − t

)
= (1 − t)2F(x), ∀t ∈ (0, 1), x ∈ I.

Lemma 1.4 ([2, Lemma 2.2]). Let F : I = [a,b] ⊆ X \ {0} → [0,∞) be an even function. If the function F is a
strongly general harmonic J-convex function, then F(x) = 4F(2x) for all x ∈ I.

The authors seem not to have noticed that the theses of these lemmas make sense only when an
interval I is unbounded and contains only numbers with the same sign. In the light of the above, and the
definition o strongly general harmonic convex functions (strongly general harmonic J-convex functions,
resp.) the assumption that F is an even function is incomprehensible.

Moreover, Lemmas 1.3 and 1.4 are not true also if we forget the above comments. A counterexample
will be presented in the next section, together with some general results inspired by the paper [2].

2. Main result

2.1. A counterexample
Let F : (0,∞)→ R be the function defined by the formula F(x) = 1

|x|3
. Consider the inequality

F

(
2xy
x+ y

)
6
F(x) + F(y)

2
−

1
4
F

(
xy

x− y

)
(2.1)

for all positive and different x and y (for the same x and y we may think about the limit ”lim(x,y)→(a,a)”
in both sides). Inequality (2.1) can be rewritten in the following equivalent form

F

( 1
x + 1

y

2

)−1
 6

F
(( 1

x

)−1
)
+ F

((
1
y

)−1
)

2
−

1
4
F

((
1
x
−

1
y

)−1
)

,

which means that for the function G(x) = |x|3 the inequality (2.1) is equivalent to the inequality (2.2).

G

(
x+ y

2

)
6
G(x) +G(y)

2
−

1
4
G(x− y) (2.2)

for all positive real numbers x,y.
Now, instead of proving the inequality (2.1), we prove the inequality (2.2), which is easier. From the

inequality (2.2) we obtain ∣∣∣∣x+ y2

∣∣∣∣3 6
|x|3 + |y|3

2
−

1
4
|x− y|3 . (2.3)
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Due to the symmetry of elements x,y in the inequality (2.3), it will suffice to prove this inequality only
for y 6 x. And for y 6 x it becomes the following equivalent inequality

0 6 x3 + 3x2y− 9xy2 + 5y3. (2.4)

To prove the inequality (2.4), fix an arbitrary positive number x0 and consider the function

h(y) = x3
0 + 3x2

0y− 9x0y
2 + 5y3

for y 6 x0. Calculating the derivative we have

h ′(y) = 15(y− x0)(y−
x0

5
).

And it means that

h(y) > min
{

lim
y→0

h(y),h(x0)

}
= min

{
x3

0, 0
}
= 0.

The inequality (2.4) is valid true.
In conclusion, the function F(x) = 1

|x|3
is a strongly general harmonic J-convex function and F(x) =

8F(2x). Thus Lemmas 1.3 and 1.4 are not true.

2.2. Quasi-arithmetic F-convex and F-midconvex functions
In what follows, X is a real vector space, F : X → R is a fixed function, and D stands for a convex

subset of X.
Recall (see [1]) that a function f : D→ R is called F-convex if

f(tx+ (1 − t)y) 6 tf(x) + (1 − t)f(y) − t(1 − t)F(x− y)

for all x,y ∈ D and t ∈ (0, 1), and we say that f is F-midconvex if

f

(
x+ y

2

)
6
f(x) + f(y)

2
−

1
4
F(x− y)

for all x,y ∈ D.
Now we define quasi-arithmetic F-convex functions and quasi-arithmetic F-midconvex functions, which

will generalize the concept of strongly general harmonic convex functions, strongly general harmonic J-
convex functions (in some sense), and also F-convex and F-midconvex functions, respectively.

Definition 2.1. Let ϕ : D→ X be an injective function such that the set φ(D) is a linear subspace of X. A
function f : D→ R will be called a quasi-arithmetic F-convex function if

f
(
ϕ−1 (tϕ(x) + (1 − t)ϕ(y))

)
6 tf(x) + (1 − t)f(y) − t(1 − t)F

(
ϕ−1 (ϕ(x) −ϕ(y))

)
(2.5)

for all x,y ∈ D and t ∈ (0, 1).
If a function f satisfies condition (2.5) with the zero function F, i.e.,

f
(
ϕ−1 (tϕ(x) + (1 − t)ϕ(y))

)
6 tf(x) + (1 − t)f(y)

for all x,y ∈ D and t ∈ (0, 1), then f will be called a quasi-arithmetic convex function.

Definition 2.2. Let ϕ : D→ X be an injective function such that the set φ(D) is a linear subspace of X. A
function f : D→ R will be called a quasi-arithmetic F-midconvex function if

f

(
ϕ−1

(
ϕ(x) +ϕ(y)

2

))
6
f(x) + f(y)

2
−

1
4
F
(
ϕ−1 (ϕ(x) −ϕ(y))

)
(2.6)

for all x,y ∈ D.
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If a function f satisfies condition (2.6) with the zero function F, i.e.,

f

(
ϕ−1

(
ϕ(x) +ϕ(y)

2

))
6
f(x) + f(y)

2

for all x,y ∈ D, then f will be called a quasi-arithmetic midconvex function.

It is easy to observe that for certain specific functions ϕ these definitions are reduced to the mentioned
notions, namely:

Remark 2.3. If we take ϕ = id, then it is reduced to the definitions of F-convex and F-midconvex functions,
respectively.

Remark 2.4. If we take X = R and ϕ = 1
id defined for positive or negative numbers, then the inequalities

(2.5) and (2.6) become the inequalities proposed for strongly general harmonic convex functions and
strongly general harmonic J-convex functions, respectively.

Lemma 2.5. Let ϕ : D → X be an injective function such that the set φ(D) is a linear subspace of X. A function
f : D → R is a quasi-arithmetic F-convex function if and only if the function g = f ◦ϕ−1 is G-convex on φ(D),
with G = F ◦ϕ−1.

Proof. It is enough to observe that for u = ϕ(x) and v = ϕ(y) the inequality

f
(
ϕ−1 (tϕ(x) + (1 − t)ϕ(y))

)
6 tf(x) + (1 − t)f(y) − t(1 − t)F

(
ϕ−1 (ϕ(x) −ϕ(y))

)
, x,y ∈ D,

is equivalent to the inequality

g (tu+ (1 − t)v)) 6 tg(u) + (1 − t)g(v) − t(1 − t)G (u− v) , u, v ∈ ϕ(D),

which ends the proof.

Corollary 2.6. A function f : D→ R is a quasi-arithmetic convex function if and only if the function g = f ◦ϕ−1

is convex on ϕ(D).

Similarly, the next lemma and corollary hold true.

Lemma 2.7. Let ϕ : D → X be an injective function such that the set φ(D) is a linear subspace of X. A function
f : D → R is a quasi-arithmetic F-midconvex function if and only if the function g = f ◦ϕ−1 is G-midconvex on
ϕ(D), with G = F ◦ϕ−1.

Corollary 2.8. A function f : D → R is a quasi-arithmetic midconvex function if and only if the function
g = f ◦ϕ−1 is midconvex on ϕ(D).

Definition 2.9. Let ϕ : D→ X be an injective function such that the set φ(D) is a linear subspace of X. A
function F : D→ R will be called a quasi-arithmetic quadratic function if

F
(
ϕ−1 (ϕ(x) +ϕ(y))

)
+ F

(
ϕ−1 (ϕ(x) −ϕ(y))

)
= 2F(x) + 2F(y) (2.7)

for all x,y ∈ D.

Remark 2.10. If we take ϕ = id, then the equation (2.7) reduces to the equation of quadratic functions.

Remark 2.11. If we take X = R and ϕ = 1
id defined for positive or negative numbers, then the equation

(2.9) becomes the equation proposed in [2] for quadratic harmonic functions.

Lemma 2.12. Let ϕ : D→ X be an injective function such that the set ϕ(D) is a linear subspace of X. A function
F : D→ R is a quasi-arithmetic quadratic function if and only if the function G = F ◦ϕ−1 is a quadratic function
on ϕ(D).
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Proof. Observe that for u = ϕ(x) and v = ϕ(y) the equation

F
(
ϕ−1 (ϕ(x) +ϕ(y))

)
+ F

(
ϕ−1 (ϕ(x) −ϕ(y))

)
= 2F(x) + 2F(y), x,y ∈ D,

is equivalent to
G (u+ v) +G (u− v) = 2G(u) + 2G(v), u, v ∈ ϕ(D).

The proof is finished.

Theorem 2.13. Let ϕ : X → X be a bijective function and F : X → [0,∞) be a fixed even function. The following
conditions are equivalent.

1. For all functions f : D → R, f is quasi-arithmetic F-midconvex if and only if the function h = f − F is
quasi-arithmetic midconvex.

2. The function F is a quasi-arithmetic F-midconvex function.
3. The function F is a quasi-arithmetic quadratic function.

Proof. Adopting g = f ◦ϕ−1, G = F ◦ϕ−1 and taking into consideration Lemma 2.7 and Lemma 2.12,
we conclude that Theorem 2.13 is equivalent to the theorem obtained in [1] (Theorem 1, p. 1290), with
functions g and G; which ends the proof.

Remark 2.14. We can replace the first condition in Theorem 2.13 with the following:

1. A function f : X → R is quasi-arithmetic F-midconvex if and only if the function h = f − F is
quasi-arithmetic midconvex.

Similarly, using lemmas 2.5, 2.12, and [1, Theorem 2] we derive the following theorem.

Theorem 2.15. Let ϕ : X → X be a bijective function and F : X → [0,∞) be a fixed even function. The following
conditions are equivalent.

1. For all functions f : D → R, f is quasi-arithmetic F-convex if and only if the function h = f− F is quasi-
arithmetic convex.

2. The function F is a quasi-arithmetic F-convex function.
3. The function F is a quasi-arithmetic F-affine function (i.e., F satisfies (2.5) with ”=” instead of ”6”).

Remark 2.16. We can replace the first condition in Theorem 2.15 with the following:

1. A function f : X → R is quasi-arithmetic F-convex if and only if the function h = f− F is quasi-
arithmetic convex.

Remark 2.17. From the third condition of Theorem 2.15 we conclude that F is a quasi-arithmetic quadratic
function and the function F ◦ϕ−1 is homogeneous of degree 2.
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