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Abstract

In this paper, we shall be concerned with the existence and uniqueness of solution to three- point boundary value problems
associated with a system of first order matrix difference system. Shortest and Closest Lattice vector methods are used as a tool to
obtain the best least square solution of the three-point boundary value problem when the characteristic matrix D is rectangular.
An efficient decode algorithm is presented to find the shortest and closest vector and prove that this vector is the best least
square solution of the three-point boundary value problem.
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1. Introduction

In this paper, we shall be concerned with the existence and uniqueness of solutions to first order linear
system of difference equation

yn+1 = A (n)yn + bn, (1.1)

where A is an (s× s) matrix whose elements aij (n) are real or complex functions defined on N+
n0 and

yn ∈ Rs (orCs) with components that are functions defined on the same set N+
n0. The corresponding

homogeneous linear difference equation is

yn+1 = A (n)yn. (1.2)

When the initial vector y (n0) = y0 is given, both (1.1) and (1.2) determine the solution uniquely on
the set N+

n0 as can be easily seen by induction. Let e1, e2, . . . , es be the standard base vectors in Rs and
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y (n,n0, ei), i = 1, 2, . . . , s be the s linearly independent solutions having ei as initial base vectors and
let S be the solution space of (1.2). It may be noted that any element of S can be expressed as a linear
combination of the set of n solutions of y(n,n0, ei), i = 1, 2, . . . , s i.e., if Zn is any solution then

Zn =

n∑
i=1

ciy (n,n0, ei) , i = 1, 2, . . . , k.

We define K functions fi(n) on N+
n0

as

K (n) =


f1 (n) f2 (n) · · · fk (n)

f1 (n+ 1) f2 (n+ 1) · · · fk (n+ 1)
...

...
. . .

...
f1 (n+ k− 1) f2 (n+ k− 1) · · · fk (n+ k− 1)

 .

If fi(n), i = 1, 2, . . . , k are solutions of yn+1 = A(n)yn, then det K(n) 6= 0 for all n > n0, provided
that det(K(n0)) 6= 0. If yn is any solution of (1.1) and ȳn is a particular solution of (1.1), then yn − ȳn
is a solution of (1.2) and any solution of (1.2) is of the form

∑s
i=1 αiy (n,n0,αi), where α1,α2, . . . ,αs are

arbitrary constants and hence

yn = yn +

k∑
i=1

αiy (n,n0,αi) .

To establish our main result, we use the qualitative properties of difference systems as developed in
[9]. For linear system of differential equations we refer to [13].

We consider the three point boundary value problem

y (n+ 1) = A (n)y (n) + b (n) , (1.3)
My (n0 ) +Ny (nm) + Ry (nf) = α, (1.4)

where b is an (s× 1) vector, M,N, and R are constant square matrices of order s, and α is an s× 1 vector.
Let ϕ (n,n0) be a fundamental matrix of y(n+ 1) = A(n)yn. Then, if y(n) is any solution of (1.3) and yn
is a particular solution of (1.3) then y (n) − y (n) is a solution of (1.2) and any solution of (1.2) is of the
form ϕ (n,n0)C, where C is an (s× 1) vector. Thus

y (n) = y (n) +ϕ (n,n0)C.

In the algorithm we discussed in Section 3, we assume that the boundary condition matrices M,N,
and R are constant rectangular matrices of order (rxs).

Theorem 1.1. A particular solution y (n) of (1.3) is given by

y (n) =

n−1∑
j=n0

ϕ (n, j+ 1)bj.

Proof. Any solution of the homogeneous system (1.2) is of the form y (n) = ϕ (n,n0)C, where C is a
constant n-vector. Such a solution cannot be a solution of (1.3), unless b(n) ≡ 0. Let C be a function of n
defined on N+

n0
and seek a particular solution of (1.3) in the form

y (n) = ϕ (n,n0)C (n) .

Then

ϕ (n+ 1,n0)C (n+ 1) = A (n)ϕ (n,n0)C (n) + b (n) ,
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ϕ (n+ 1,n0) [C (n+ 1) −C (n)] = b (n) ,
ϕ (n+ 1,n0)∆C (n) = b (n) ,

or
∆C (n) = ϕ (n0,n+ 1)b (n) .

Therefore,

C (n) = C (n0) +

n−1∑
j=n0

ϕ (n0, j+ 1)b (j) .

Thus, any solution y (n,n0,C) can be written as

y (n,n0,C (n)) = ϕ (n,n0)Cn0 +

n−1∑
j=n0

ϕ (n,n0)ϕ (n0, j+ 1)bj = ϕ (n,n0)Cn0 +

n−1∑
j=n0

ϕ (n, j+ 1)bj. (1.5)

Note that ϕ (n,n0)ϕ (n0, j+ 1) = ϕ (n, j+ 1).

The above formula is known as the method of variation of constants formula. Note further that
ϕ−1 (n,n0) = ϕ (n0,n) and the fact that |A (n) | 6= 0 is not in fact necessary to derive variation parameters
formula as given in [6]. If the components of A(n) are continuous functions on N+

n0
, then a fundamental

matrix ϕ (n,n0) always exists.

2. Three-point boundary value problems

In this section, we consider the three-point boundary value problem associated with the non-homog-
eneous matrix difference system (1.3) satisfying the boundary conditions:

My (n0) +Ny (nm) + Ry (nf) = α, (2.1)

where n0,nm and nf ∈ N+
n0

, n0 < nm < nf. Substituting the general form of the solution given in (1.5)
in the boundary condition matrix (2.1), we get

[Mϕ (n0,n0) +Nϕ (nm,n0) + Rϕ (nf,n0)]Cn0

= α−

M n−1∑
j=n0

ϕ (n0, j+ 1)bj +N
n−1∑
j=n0

ϕ (nm, j+ 1)bj + R
n−1∑
j=n0

ϕ (nf, j+ 1)bj

 .

We assume that the homogeneous three-point boundary value problem is in-compatible, and it ensures
that the characteristics matrix D defined by

D =MI+Nϕ (nm,n0) + Rϕ (nf,n0)

is non-singular. Hence

Cn0 = D
−1

α−

M n−1∑
j=n0

ϕ (n0, j+ 1)bj +N
n−1∑
j=n0

ϕ (nm, j+ 1)bj + R
n−1∑
j=n0

ϕ (nf, j+ 1)bj

 .

Note that ϕ (n0,n0) = I. If D is non-invertible, then

DC = f,

where

f = D−1

α−

M n−1∑
j=n0

ϕ (n0, j+ 1)bj +N
n−1∑
j=n0

ϕ (nm, j+ 1)bj + R
n−1∑
j=n0

ϕ (nf, j+ 1)bj

 .

We solve the system of equations by using closest and shortest Lattice vector problems only in the least
square sense. We present some algorithms on this in the next section.
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3. Algorithms for finding shortest and closest Lattice vector problem

The problem of finding a shortest non-zero lattice vector in a lattice of dimension s2 is a landmark
problem in complexity theory. Lenstra et al. [7], popularly known as LLL-algorithm is used in basic
reduction criteria, by factoring polynomials. Kannan [3, 4] has proposed an algorithm to find the shortest
lattice vector in time no(n), which was later improved by Schnorr [11] to n

n
2 +o(n). The LLL-reduction is

often used in most cases, where as the Korkine-Zolotarev (KZ) [5] reduction is time consuming. For that
reason we present the modified Gram-schimidt process of Rice [10] for the computation of the best least
square solution of (2.1) in the general case. For that, we consider the general first order matrix system of
the form,

DC = f, (3.1)

where D is an (m× n) rectangular matrix and C is an n-vector (unknown) and f is a given (m× 1) vector.
If the columns of D are linearly independent, then we multiply the system of equations (3.1) by DT and
get

DTDC = DT f.

We assume that m < n. In this case C is determined uniquely as

C =
(
DTD

)−1
DT f.

On the other hand if the rows of D are linearly independent then, the transformation C = DTy gives

DDTy = f or y =
(
DDT

)−1
f.

Hence C = DTy gives
C = DT

(
DDT

)−1
f.

In both cases, we can determine the vector C uniquely. If D is an (r× s) rectangular matrix and C
is a s-vector (unknown) and f is a given (r× 1) vector then the system of equations (3.1) can have either
an infinite number of solutions or no solution. On the other hand, if D is singular and R(D) and N(D)
represent, respectively, the range and the null space of D, then (3.1) will have a solution if f ∈ R (D) .
In this case if C is any s-vector in N(D) and C0 is any solution of (3.1), then the vector C+C0 will also
be a solution of (3.1). Otherwise if /∈ R (D), the problem (3.1) will not have solution. If D is an (r× s)
matrix, then for a given D ∈ Cr×s and f ∈ Cr, the linear system (3.1) is consistent if and only if b ∈ R (D) .
Otherwise the residual vector

r = f−DC (3.2)

is non-zero for all C ∈ Cn, and it may be desired to find an approximate solution of (3.1), by which we
mean a vector C making the residual vector in (3.2) “Closest” or “shortest” to zero in some sense.

The next theorem shows that ‖DC− f‖ is minimized by choosing C = D+f, where D+ is such that

DD+D = D, (3.3)(
DD+

)∗
= DD+. (3.4)

Theorem 3.1. Let D ∈ Cr×s and f ∈ Cr. Then ‖DC− f‖ is smallest when C = D+f, where D+ satisfies (3.3)
and (3.4). Conversely, if DT ∈ Cs×r has the property that for all f, ‖DC− f‖ is smallest when C = D+f, then D+

satisfies (3.3) and (3.4).

Proof. The proof of the theorem is similar to proof of the Theorem 1 in [8].

If D+ satisfies the conditions

D+DD+ = D+,
(
D+D

)∗
=
(
D+D

)
,

then a similar result holds as in Theorem 3.1.
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Our main interest in the paper is to obtain the best least square solution of (3.1) in the non-invertible
case. In such situations, one normally seeks solutions which satisfy the boundary conditions exactly and
solves the differential equation in the best least square sense. We now present few algorithms for finding
the shortest and closest lattice vector problems and refine these algorithms by using modified encoding
and decoding algorithms. Note that, the boundary condition matrices in (1.4), namely M,N, and R, are
constant rectangular matrices of order (rxs).

4. Shortest and closest Lattice vector problems

The shortest and closest vector problem consists of finding a vector C ∈ Zs\0 minimizing ‖DC‖, where
vector D ∈ Zr×s is given as input. The closest Lattice vector problem consists in finding a vector C ∈ Zs

minimizing ‖DC− f‖, where D ∈ Zr×s and f ∈ Cr are given as input. SVP and CVP have been a topic of
discussion for more than a century. Among many investigations, the works of Hermite [2] Korkine and
Zolotarev [5], minkowski [8] and Voronoi [15] are of some importance. However, the algorithmic study
of lattice took off rather lately at the beginning of 1980. At that time, lattice happened to be a bottleneck
in combinational optimization and in algorithmic number theory and earthshaking results were then
obtained by Lenstra et al. [7] proposed the first polynomial time approximation algorithm for SVP [7]
whereas Van Emde Boas [14] showed that the decisional variant of CVP is NP-hard. Shortly afterwards,
Kannan [3, 4] obtained first SVP and CVP algorithms in a fruitful way. In mid 1990s public key cryptosys-
tems from lattice reduction problems came into existence. The practicality of SVP solves attracted much
attention than their CVP counterparts due to the their importance in cryptology applications.

The concept of public key cryptography algorithm has a long mathematical history right from 1976.
Many of the public key encryption using cryptographic techniques are insecure. Some of the public key
cryptography algorithms developed are even though secure but they are not practicable. One reason
may be they have a very large key or the ciphertext is much larger than the plaintext. Only a very few
algorithms are both secure and practical. The method we describe in this section here are more secure and
more practicable and are infact based on closest point general lattice search algorithms. We first present
an algorithm that computes a closest vector without any representation choice, but the computational
aspect with which it reaches the required result varies significantly. We present a decode algorithm which
is of practical importance and very effective in finding shortest Lattice vector. The main question we
answer in this section is the following.

How can a given search problem be processed in order to make the efficient use of decode?

Definition 4.1. G is said to be a generator matrix if it has real entries and has linearly independent rows
over R.

Let D be given (r× s) matrix with real entries and C ∈ Rr. By means of a linear integer transformation
we first transform D into another matrix R2, which in fact generates an identical Lattice and then rotate
and reflect R2 to generate a lower triangular matrix R3, so that∧

(R3) w ∧ (R2) = ∧ (D) .

Next, we rotate and reflect the input vector x in the same way, so that the transformed input vector,
say xz, is in same relation to (R3) as x in related to n(A).

All this can be regarded as a change of coordinate system. It may be noted that by the above trans-
formation the input vector x also changes, so that the transformed input vector becomes x2. By reversing
the operation of rotation and reflection enables us to produce x, which is the lattice point closest to x in
(D). We are now in a position to present the detailed algorithm to compute closest vector point and this
closest vector is the best least square solution of the system of equations

DC = f.
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Algorithm 4.2 (Closest vector point (D,C)).

Input: A lattice point C ∈
∧
(D) the closest to C.

Step 1: Let R2 = ωD, where ω is an (m×n) matrix with integer entries and detω = ±1.
Step 2: Compute an (m×n) orthogonal matrix Q with orthonormal columns such that R2 = R3Q, where

R3 is an (m×n) lower-triangular matrix with all the diagonal elements greater then 0.
Step 3: Let H3R

−1
2 .

Step 4: Let x3CQ
T .

Step 5: Let U3 := decode (R3,C3).
Step 6: Return CU3R2.

Note that step1 is a basic reduction. If no basic reduction is needed, we can take ω as a unit matrix.
Further, the speed and numerical stability of the search can be improved significantly, if proper search is
made. Step 2 implies rotation and reflection of R2 into lower triangular form. The usual method adopted
to achieve this is presented below as an algorithm.

Result 4.3. Let D be an (r× s) given matrix with rank p 6 min{r, s}. Then there exists a factorization
DP = QR with the following properties:

(i) P is an (s× s) permutation matrix with first P columns of DP form a basis of Im(D);
(ii) Q is an (r× p) matrix with orthonormal columns and R is a (p× s) upper trapezoidal matrix of the

form R = [R1,R2], where R1 is an non-singular (p× p) upper triangular matrix and R is a (p× s− p)
matrix.

Result 4.4. Let D be an (r× s) with rank p. Write D = [d1,d2, . . . ,dn], where dj ∈ Rr and P be an (s× s)
permutation matrix such that DP = QR, where Q is an (r× p) matrix with orthonormal columns and R is
a (p× s) upper trapezoidal matrix of rank p. Further, dj ∈ Rr and the first p columns of AP are linearly
independent and all the least square solutions of DC = f are obtained by solving the consistent system

RPTC = Q∗f.

Write R = [R1,R2], where R1 is (p×p) upper triangular. Then C = P

[
u

v

]p
s−p

, where v ∈ Rs−p is arbitrary

and u = R−1
1 (Q∗f− R2v) are the least square solutions ofDC = f. A basic least square solution is obtained

by taking v = 0. To compute the least square solution of DC = f we refer the algorithm presented in [8].
The modified QR-algorithm is also presented in [11]. In our context QR decomposition, R2 gives both QT

and R3 with R3 being equal to RT . All the transformations can be thought of as a change of coordinate
system. Measure first coordinate along v (the first row of R2), the second in the rows spanned by v1 and
v2, and the third in the rows spanned by v1, v2, and v3 and so on. The generator matrix in this new
coordinate system will be in general a square and lower triangular.

As an alternate to QR decomposition, R3 can be obtained by cholesky decomposition and it states that
one can find a real lower triangular matrix L such that D = LLT . In our context, R3 is equal to L and the
rotation matrix is given by Q = R−1T

3 R2. Another way, to find QR decomposition is the decomposition of
D = LU, where L is lower triangular and U is upper triangular and in our context Q = RT3 R2. All these
algorithms can be found in [11].

In steps 4-6, the input vectors are processed. They are transformed into the coordinate system of R2
decode, and transformed back again. One can also compute QR by house holders reflection. In fact reflect
every vector C ∈ Rr in the hyperplane span {v}+ and is given by

H = I−
2vvT

vTv
= HT ,

where v is the house holder vector. However the modified QR algorithm is generally the recommended
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one for calculating the least square solutions of the system of equations DC = f. In this paper we replace
QR-algorithm by the modified QR algorithm given in [14]. Note that the decomposition D = QR is
unique, whatever technique we adopt and Q is orthonormal implies det(Q) = ±1. The method works
even if D is illconditioned. The methods, we presented in this paper are the most effective tools and
gives the best least square solution of the three point boundary value problems associated with first order
matrix difference system.

We now present the decode algorithms.
General algorithm for DC = f, where D is (m×n), C is (n× 1), and f is (m× 1) vector.

Algorithm 4.5 (algorithm decode (H , x)).

Input: an m-dimensional vector u ∈ Zm such that uH−1 is a Lattice point C that is closed to C;
1. m the size of H, /∗ dimension∗ /;
2. bestdist := ∞, /∗ current distance record∗ /;
3. Km, /∗ dimension of the matrix under examination∗ /;
4. dissk0, /∗ distance to examined layer∗ /;
5. ek : xH;
6. uk := ekk, /∗ examined lattice point∗ /;
7. y := ekk−uk

hkk
, /∗ m = |um − um|.‖V⊥‖ is the orthonormal distance distance∗ /;

8. stepk := sgn∗ (y) , /∗ offset to next layer in(15)∗ /;
9. loop;

10. newdis := disK+ y2;
11. if newdis < bestdist then{;
12. ifk 6= 1then{;
13. ek−1,jeki − ynki for i = 1, 2, . . . , k− 1;
14. kk− 1;
15. distk : newdis;
16. ukekk;
17. y := ekk−uk

hkk
;

18. stepk := sg∗n (y) ;
19. }else{;
20. uu;
21. Best dist := newdis;
22. kk+ 1;
23. uk := uk + step k;
24. y := ekk−uk

hkk
;

25. step k := step k− sg∗n (step k);
26. };
27. }else{;
28. if k = m then return to u (and exit);
29. else{;
30. k = k+ 1, /∗ move up∗ /;
31. ukj = uk + step k, /∗ next layer ∗ /;
32. y := ekk−uk

hkk
;

33. go to step25;
34. };
35. };
36. go to < loop >
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In the above algorithm m, k is the dimension of the sub layer structure that is currently being inves-
tigated. In case, if A is an ill-conditioned matrix, then the above algorithm finds a K-dimensional layer,
the distance to which is less than the smallest distance, and thus layer is expanded to (k− 1) dimensional
sub layer. Conversely, if the distance to the examined layer is greater than the lower distance. The algo-
rithm moves one step up in the hierarchy of layer. This is done in case B is invoked, when the algorithm
has been successfully moved down all the way down to the zero dimensional layer without exceeding
the lowest distance (that is a lattice point). The lattice point stores in the output, the lowest distance is
updated, and the algorithm moves back upon carefully selected preprocessing. Note that such a selection
is not possible in each and every case. The method we presented will eliminate such careful selection and
minimizes decoding time and at the same time reduces the complexity of the closest vector point search
significantly.
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