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Abstract

This paper is concerned with the higher order nonlinear neutral differential equation

[a(t) (x(t) + b)x(t(£))) T 4 £(t, x(g1 (1), ..., x(gi (1)) = c(t), t > to.

By dint of the Leray-Schauder nonlinear alternative, Rothe fixed point theorem and some new techniques, we prove the exis-
tence of uncountably many bounded positive solutions for the equation. Several nontrivial examples are given to illustrate the
applications and advantages of the results presented in this paper.
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1. Introduction

Recently, many results have been obtained on the oscillation, nonoscillation and existence of solutions
for some neutral differential equations, see for example, [1-7] and the references cited therein.

Zhang et al. [4] discussed the existence of a bounded positive solution for the second order nonlinear
neutral differential equation

[x(t) = p(Ox(T(t)]” + f1(t, x(0o1(1) — f2(t, x(02(1))) = g(t), t > to. (1.1)

Zhou [5] obtained some new sufficient conditions for the existence of a nonoscillatory solution for the
second order nonlinear neutral differential equation

F(O) (et +pe)x(t—1) T+ D qu(t)filx(t—0i)) =0, t=>to. (1.2)
i=1

*Corresponding author
Email addresses: jiangguojing@qq.com (Guojing Jiang), weisun_d1@163.com (Wei Sun), zhefuan@163.com (Zhefu An),
liangshizhao85@163.com (Liangshi Zhao)

doi: 10.22436/jnsa.012.10.06
Received: 2019-02-24 Revised: 2019-04-06  Accepted: 2019-05-14


http://dx.doi.org/10.22436/jnsa.012.10.06
http://crossmark.crossref.org/dialog/?doi=10.22436/jnsa.012.10.06&domain=pdf

G. Jiang, W. Sun, Z. An, L. Zhao, J. Nonlinear Sci. Appl., 12 (2019), 675-698 676

Zhou et al. [7] proved the existence of a nonoscillatory solution for the forced higher order nonlinear
neutral functional differential equation

m

(1) +p(tx(t =)™ + Y qi(t)filx(t—o01) = g(t), t=>to. (1.3)
i=1

Recently, Zhou and Yu [6] investigated the oscillatory behavior of the higher order nonlinear neutral

forced differential equation with oscillating coefficients

m

(1) = p(Ox(T())™ + Y qi(t)fil(x(oi(t))) =s(t), t= to. (1.4)

i=1

Liu et al. [3] studied the existence and Mann iterative approximations of nonoscillatory solutions for the
nth order neutral delay differential equation

[x(t) + px(t — )™ + (D)™, x(t—01),...,x(t— oK) = g(t), t = to. (1.5)

Motivated by the results in [1-7], in this paper we investigate the existence and multiplicity of bounded
positive solutions for the higher order nonlinear neutral delay differential equation

[a(t)(x(t) +b(t)x(t(t)) 1™+ £(t,x(g1(t),..., x(gk(t))) =c(t), t 3 to, (1.6)
where
(C1) ke N,n € N\{1}, and ty € R are constants;
(C2) a,b,¢,1,9; € C([to, +o0), R), f € C([tg, +00) x R*,R) and
allto,+00)) CR\(0}, lim =(t) =+o0, lim g;(t) =+o0, j€Jis

t—+o0

(C3) 7 is strictly increasing in [to, +00);
(C4) T(t) <t, telty,+o0).

It is clear that Eqgs. (1.1)-(1.5) are special cases of Eq. (1.6). By using the Leray-Schauder nonlinear
alternative, Rothe fixed point theorem and a few new techniques, we establish several sufficient conditions
for the existence of uncountably many bounded positive solutions of Eq. (1.6) under certain conditions.
The results presented in this paper extend, improve and unify all results in [3-5]. Five nontrivial examples
are presented to illuminate our results.

2. Preliminaries

Throughout this paper, we assume that R = (—oo,+o0), RT = [0,400), IN stands for the sets of all
positive integers,

Jk = {1/2/' "Ik}l [50 = min {tOI inf T(t)/ tlgfo 9j (t) 1) € Ik}

t>1t)

For each f € R, CB ([B, —I—oo),]R) denotes the Banach space of all continuous and bounded functions on
[B, +00) with norm ||x|| = sup, 5 [x(t)|, and

V(N)={x € CB([B,—FOO),IR) x(t) =N, t > B},
U(M) = {x € V(N) : [x]| < M},
B(M,N) ={x € CB([B,—i—oo),IR) dlx—M|| < N}

for any M > N > 0. It is easy to see that V(N) is a closed convex subset of CB([B,—i—oo),]R), UM)isa
bounded open subset of V(N) and B(M, N) is a bounded open convex subset of CB ([[3, +oo),IR).
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By a solution of Eq. (1.6), we mean a function x € C([B,~|—oo),IR) for some B > |to| + |Bo| such that
x(t) + b(t)x(t(t)) is continuously differentiable and a(t)(x(t) + b(t)x(t(t)))" is n —1 times continuously
differentiable on [, +00) and such that Eq. (1.6) is satisfied for all t > f3.

The following lemmas play important roles in this paper.

t
t

Lemma 2.1 (Leray-Schauder nonlinear alternative theorem, [1]). Let U be an open subset of a closed convex
set K in a Banach space E with p* € U. Let f : U — K be a continuous, condensing mapping with f(U) bounded.
Then either

(a) f has a fixed point in U; or
(b) there exist an x € OU and a A € (0,1) such that x = (1 —A)p* + Afx.

Lemma 2.2 ([2, Rothe fixed point theorem]). Let D be a bounded convex open subset of a Banach space E and
A : D — E be a continuous, condensing mapping, and A(dD) C D. Then A has a fixed point in D.

Lemma 2.3. Let T : [tg, +00) — R be continuous, lim¢_, o T(t) = 400 and (C3) and (C4) hold. Then for each
t € [t(to), +00)

{T " (t)Imen is strictly increasing and li_I)n T "(t) = o0, (2.1)
n o0

where T~ denotes the inverse function of T, T ™ = v (1 1) for each n € N and 1° is the identity function.

Proof. Since T is continuous, it follows from (C3) that the inverse function T—! of T exists and T~ ! is contin-
uous and strictly increasing in [T(tp), +00). Let t € [T(tp), +00). Now we show that lim; o T (1) = +00.
It follows from (C3) and (C4) that

Tto) <t<t )<t 2(t) < <T M) <--- . (2.2)

Suppose that {T7™(t)}hen is bounded. In view of (2.2) we know that there exists a constant A satisfying

lim T ™(t) = A. (2.3)

n—oo

Using the continuity of v and (2.3), we get that

v A) =7t lim T (1)) = lim v " (t) = A,

n—o0 n—o0

which together with (C4) yields that
A=1(A) <A,

which is a contradiction. Consequently, {17 (t)}hen is unbounded, which together with (2.2) yields that
(2.1) holds. This completes the proof. O

3. Main results

Now we use the Leray-Schauder nonlinear alternative theorem to show the existence and multiplicity
of bounded positive solutions of Eq. (1.6).

Theorem 3.1. Let (C1) and (C2) hold. Assume that there exist four constants N, M, b, and b* and a function
p € C([to, +00), RT) satisfying

|f(t,U.1,'LL2,. --/uk)| < p(t)/ (tlu]) S [tOr +OO) X [N/ M]/ ] € ]k/ (31)

+oo ptoo Sn—Z
J J it max{p(s),|c(s)|}dsdp < +o0, (3.2)
to 188

and
0<N<(I-b,—=b* )M, b, >0, b*>0, by+b" <1, and —b, <b(t) <b*, eventually.  (3.3)

Then Eq. (1.6) has uncountably many bounded positive solutions.
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Proof. Let L € (b*M + N, (1 —b,)M). Now we prove that there exists a mapping S; : U(M) — V(N) such
that it has a fixed point x € U(M), which is also a bounded positive solution of Eq. (1.6). It follows from
(3.2), (3.3), and (C2) that there exist two sufficiently large numbers T and 3 satisfying

T> B > max{[to] +[Bol,1}, —b. <b(t)<Db*, t=>p and t(t)=p, t=>T; (3.4)
1 +o0 p+oo sn 2
oo in{L—b*M —N, (1 —b,)M — L}, ,
(n—2)! JB Ju |a(u)‘[P(s) +lc(s)ldsdu < min{L — b ,(1—0b,) } (3.5)

Put p* = M —¢*, where ¢* € (0,min {L—b*M —N, (1—b,)M — L, MM 1) is enough small and

1 +00 (oo gn—2 (L M N (1 ML §
(n—Z)!Jﬁ L |a(u)|[P(S)+|c(s)|]dsdu<mm{ —b*M —N,(1-b, )M —L}—¢*. (3.6)

Obviously, p* € U(M). Define a mapping Sy : um) — CB([B,+00),R) by

(Sex)(t) = (S1ex)(t) + (S2rx)(t), B <t <+oo, x € UM), (3.7)

where the mappings S11, So1 : U(M) — CB([B, +o0), R) are defined by

CL-vx(t), t=T,
(S1x)(t) = {(S1Lx)(T), B<t<T, (3.8)
and
(—=1)™*1 400 ptoo (s—p)n2
(Sorx)(t) = { m—2)r Jt J‘M aﬁt) [f(S/X(Ql(S))/---/X(gk(s))) —c(s)ldsdy, t>T, (3.9)
(S2x)(T), B<t<T,

for each x € U(M). It follows from (3.1), (3.4), and (3.6)-(3.9) that for any x € UM)and t > T

Lx(t) = (Sle)(t) (Sarx)(t)
—b(t)x(t(t))
(_1)n+1 J'—b—oo J'—b—oo (S _ u)n72

[f(s,x(g1(s)),...,x(gx(s))) —c(s)]dsdn

(n—=2)! J¢ n a(u)

. 1 et (s—pn?
>L-b"M———— i o dsd
g moi), | TTagur P Hlesldsdn

1 r+oo p+oo (S_H)n—Z
>L-b"M — — 2"
g B )y Ly Tagor P Hle(s)ldsdu
>L_b*M_$ B sn*Z[ (s)+c(s)[ldsd
~ -2 Ju la(wi "

>L—b*M—min{L—b*M —N, (1 —b, )M — L} +¢*
>N+e" >N,

which yields that Sy (U u(m)) c V( ).
Next we show that Sy : U(M) — CB([B, +00), R) is a continuous and relatively compact mapping.

Let {xmtmen € U(M) and x € U(M) with limm 00 Xm = Xx. By virtue of (3.1), (3.6), (3.9), and the
continuity of f, we infer that

_1yn+1 p+oo ptoo _ g \—2
1520 %m — Saux|| = sup | =2 J J T 6 xm (91(8)), - Xem (9 (5)))

t>B (n—2)! n a(p)

=
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—f(s,x(g1(s)), -, x(gk(s)))] dsdp
1 +o00 p+oo San
il | e kg1 81 ko g (s)) = s X1 (5)) . xlgls))dscls
1 +00 Sn72
Cerl R U CAEAC RN ENE))
*f(S X(91( )), -, x(gk(s)))[dsdp, meN,
+
f(s,xm(g1(s)), -, xm (g (s))) —f(s,x(g1(s)), ..., x(gk(s)))|ds
w
0 sn72
<2J |a(u)|p(s)ds, ue B, +oo)
and
(s, xm(g1(s)), -, xm(gk(s))) — (s, x(g1(s)), ..., x(g(s)))| =0 as m — 00, s & [B,+00),
which together with the Lebesgue dominated convergence theorem yield that
nlllgl [S21xm — Sarx|| =0,
that is, Syp is continuous in U(M).
In light of (3.1), (3.6), and (3.9), we deduce that for all x € U(M)
- _ (_1)n+1 +o00 p+o0 (S— p')1172
[Sarx|| = f;}gBZLX(t” AT L L “apy Flsx(gi(s)), - x(gk(s))) —els)ldsdu
1 +00 p4o00 Sn72
S v dsd
il |, oo+ enasan
1 +o00 pto0 Sn72
< —— dsd
iy |, e elsasan
<min{L—b*"M —N,(1-b, )M —L}—¢* < M,
which means that Sy; (U(M)) is uniformly bounded in [f3, +00).
Let ¢ > 0. Notice that (3.2) ensures that there exists T* > T satisfying
1 400 p4o0 s™ 2 €
o ) e P e ldsdu < 5
which together with (3.1) and (3.9) yields that for all x € U(M) and t, > t; > T*
-1 n+1 p+oo p+oo o \n—2
(5203t = S| = | 2y [ | Bt x(gn (). xlauts)) —efslasan
n+1 +o0 _ n—2
- J %[f(s,x(gl(s)),...,x(gk(s))) ~cls)dsdu
o
+o00o s 2
[ [p(s) +lc(s)|ldsdn (3.10)
+00 sn— 2

+J1 J'u |a(p)|[ p(s) +lc(s)lldsdp

2 +oo ptoo n— 2
<ozl | el etsdsau <
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Put

M; = max{

1 +o00 San . B e
n_2) Ju |G(H)|[p(3) +le(s)lds: T<u<T } and & = vy

It follows from (3.1) and (3.9) that for all x € U(M) and tq,t; € [T, T*] with t; <tp <t;+ 0

|(S20%) (t2) = (S2x) ()]
_1\n+1 p+oo p+oo . n—2
_ ‘((nl_)z). L J (Sa(“i)[f(s,x(gl(s)),...,x(gk(s)))—c(s)]dsdu
.
(_1)n+1 J'+oo J—O—oo w
(n=2)"g Ju ap)

1 ty ptoo (S_u)an
<(n_z)!J L a(p)]

[f(s,x(g1(s)),...,x(gr(s))) —c(s)]dsdu
(3.11)

[t(s,x(g1(s)), ..., x(gx(s))) —c(s)ldsdp

t

1 ty ptoo gn-—2
< (n—an1 L () [p(s) +lc(s)ldsdp

<Milt, -ty <e.

By virtue of (3.9), we get that for all x € U(M) and tq,t; € [}, T]

|(S21%) (t2) = (Saux) (t1)| = | (S2rx)(T) — (Saux)(T)| =0 < e. 3.12)

It follows from (3.10)-(3.12) that Syr (U(M)) is equicontinuous in [, +o0). Thus Sy1 (U(M)) is relatively
compact. In view of (3.4) and (3.8), we infer that forall x, y e UM)and t > T

[(S1x) () = (Siey) (D) = [b(t)x(T(t)) —y(T(t)] < (bs +b7)[[x —yl|,

which yields that
IS1x = S1yll < (bs +b7) [x =y,

that is, S11 is a contraction mapping in U(M) and [|S;1 (U(M))]| < ZM(b* + b*). Hence S; is a continuous,
condensing mapping and Sy (U(M)) is bounded. Put

P={x € CB([B,4+00),R) : N <x(t) <M, t>p and ||x|| = M} (3.13)
and
Q=1{xe CB([B,+o0),R): N <x(t) <M, t=>p and there exists t* > {3 satisfying x(t*) = N}. (3.14)
It is easy to see that OU(M) = P U Q. Suppose that there exist x € 9U(M) and A € (0,1) with
x=(1—AN)p*+ASrx. (3.15)

Now we consider two possible cases as follows:
Case 1. Let x € P. It follows from (3.4), (3.6)-(3.9), (3.13), and (3.15) that

x(t) = (1= A)p* +AS x(t)

= (1=Np"+A [L—b(t)x(r(t)) I i J s

m=2) ¢ Jyu a(u)

x [f(s,x(g1(s)),...,x(gK(s))) —c(s)]dsdn

1 r+oo p+o0o snfz
<(1—?\)(M—e*)+?\[l_+b*i\/l+ J

m—=2)! )t
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<(1=A)(M =€) +A[L+ b,M+min{l —b*M —N, (1 — b, )M — L} —¢*]
éM—E*, t>T/

which implies that

M= x| =supx(t) < M—¢" <M,
t2p

which is a contradiction;

Case 2. Let x € Q. It follows from (3.4), (3.6)-(3.9), (3.14), and (3.15) that

N =x(t") = (1 —A)p* +ASrx(t¥)

(-t J“’O r"" (s —p)2

:(1—7\)p*+7\[L—b(t*)x(’f(t*))+ m—2)! wooal

max{t*, T}

< (5, %(1()) - x(gx(s)) —c(sndsdu]

1-M)(M Aicom- L[ [T
2 _ ok _b* o
13- 2| T e TP+

1—A)(M—¢") +A[L—b*M —min{L —b*M — N, (1—b,)M — L} + ¢*]
1—-AN(M—=¢*)+A(N+¢e")
min{M — &*, N +¢*} = N + ¢¥,

A\YARR\VARRVS

which is absurd. Thus Lemma 2.1 ensures that there exists x € U(M) satisfying Sy x = Sipx + Sorx = X,
that is,

_1\n+1 p+oo ptoo . n—2
(—1) J J S o6, x(ga(s)), ., x(gx(s)) — cls)ldsdp, t3T,

t 08 a(H)

which means that

_1\n +oo
a(t)(x(t)-f-b(t)x(’f(t)))/:(51_1)2)!L (s =)™ 2[f(s, x(gu(s)), ..., x(gi(s)) —c(s)lds, t>T,
which yields that
+o0o
(n-2) _ 1)2J [f(s,x(g1(s)), ..., x(gk(s))) —c(s)lds, t>T
t
and

[a(t)(x(t) + b(t)x(t(t) 1™V = —f(t, x(g1(t)), ..., x(gr(t)) +c(t), t=T,

that is, x is a bounded positive solution of Eq. (1.6) in U(M).

Finally we show that Eq. (1.6) has uncountably many bounded positive solutions in U(M). Let
L,L; € (™M +N,(1—-b,)M) and L; # L,. Similarly we infer that for each 6 € {1,2}, there exists
a mapping Sy, : U(M) — V(N) satisfying (3.4)-(3.9), where L,3,T,S11,So1, and Sy are replaced by
Lo, Bo, Try, Si1,4,S214, and St ,, respectively, and the mapping St , has a fixed point x% € U(M), which is
a bounded positive solution of Eq. (1.6) in U(M), that is,

(1) = Lo — b(thx(x(t)) + J N rm (Gt

n—2)Jy J. a(u) (3.16)
x [f(s,x%(g1(s)),...,x°(gk(s))) —c(s)ldsdp, t = Tp,.
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It follows from (3.2) that there exists T, > max{Ty,, Tr,} satisfying

1 J+oo JJroo sn72 |L1 —L2|
_— s)dsdy < ———=. 3.17
m=2) )y ). JauiPedsdr < T (17)

In order to prove that the set of bounded positive solutions of Eq. (1.6) is uncountable, it is sufficient to
verify that x! # x2. In terms of (3.1), (3.16), and (3.17), we deduce that for t > T,

_1\n+1 00 ., \n—2
[xL(t) —x2(1)] = Ll—Lz—b(t)xl(T(t))+b(t)x2('t(t))—|—(1)+J r (s—wn?

m-2r) ). el

x [f(s,%'(g1(s)), ..., x (gi(s))) — (s,X*(g1(s)), ..., x*(gk(s)))]dsdy

1 0o r+oo (S_u)n72
> Ly — Lol — b (t)][x! (x(t)) —x3(x(t JJ
=l = (0! () =) — = || S
x [[f(s,x (gu(s)), -+, X! (gk($)))| +[F(s,x*(ga(s), ..., X*(gk(s)))] ] dsdp
1 ) 2 400 ptoo Sn72
> |L; — L/ — (bs +b* —X°|| = J J dsd
1= Lol = (bn + %) —x H =2y, ), TaquPlsdsas
> %|L1 — Lo|— (bs +b%) ||x! =7,
which means that L1
HXl—XZH > | 1— 2| ,
2(1+b. +b*)
that is, x! # x2. This completes the proof. O

Theorem 3.2. Let (C1), (C2), and (C3) hold. Assume that there exist four constants N, M, b, and b* and a
function p € C([to, +00), R") satisfying (3.1), (3.2), and

0 < Nb*b, < M(b? —b*), 1<b,<b(t)<b*<b?, -eventually. (3.18)

Then Eq. (1.6) has uncountably many bounded positive solutions.

Proof. Let L € (E—:M +b*N,b,.M). First of all we prove that there exists a mapping Sy : U(M) — V(N)

such that it has a fixed point x € U(M), which is also a bounded positive solution of Eq. (1.6). Note that
(C2) and (C3) imply that the inverse function v 1loftis strictly increasing and continuous in [T(tp), +00)
and lim¢_, ;o T 1(t) = +o0. It follows from (3.2) and (3.18) that there exist constants T and f satisfying

min {t '(T), T} > B > max{L, [to| +Bol, It(to)]}, 1<b. <b(t) <b*<bi, t=>p; (3.19)

1J+wrm " 1p(s) + [els)ldsa <min{b M-L E_M_b N} o
m=2tl o Talul” " o |

Let p* = M — ¢*, where ¢* € (0, min {b,M —L, bb} M —Db.N, HMibN)}) is enough small and

b.L
b*

+o00 pt+oo n—2
! )J J > [p(s)+|c(s)|]dsdu<min{b*ML,

e N T Mb*N}e. (3.21)

Clearly p* € U(M). Define a mapping S : U(M) — CB([B,+0),R) by (3.7), where the mappings
S1t, Sor s U(M) — CB([B, +00), R) are defined by

L x(T7 (1))
(S1ix)(t) = (T 1)) b(r (1)’ t>T, (3.22)
(S1x)(T), B<t<T,
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and
_1\n+1 00 00 (s—p)n—2
(Syx)(t) — s i S B[ (s, x(g1(s)), -, x(gk(s))) — c(s)ldsdp, t > T, (523)
(Saux)(T), B<t<T,

for each x € U(M). In view of (3.1), (3.7), (3.19), and (3.21)-(3.23), we infer that for any x € U(M) and
t>T
Six(t) = (Six)(t) + (Saux)(t)

() J+°° J+°° (s— 2

bt () —2)! )1y Ju a(p)
x [f(s,x(g1(s)), ..., x(gk(s))) —c(s)ldsdp
+o0 +o0 n—2
e I e e CRE R
> . b*(nl—zn J:o J:OO ﬁu; [p(s) +le(s)ldsd
> ;—x—bl*mm{b*m L,b;*L—M—b*N}Jr:
>N+ i >N,

which implies that S; (U(M)) C V(N).

Secondly we prove that Sy : U(M) — CB([[S,—i—oo),]R) is a continuous and relatively compact map-
ping.

Let {Xxm}men € U(M) and x € U(M) with lim, o Xxm = x. It follows from (3.1), (3.19), (3.21), (3.23),
and the continuity of f that

_1)n+1 oo proo (g yn—2
(—1) J J B s xom(91(5)), ) Xom (G5 (8))

b(t (1)) (n—2)! n ap)

HSZLxm — SzLxH = sup
t>pB T 1(t)

—f(s,x(g1(5)),- -, x(gk(s)))] dsdu‘

1 r+oo +00 Sn—2
o))
ba(n—2)! J1m)

| ‘f(slxn(gl(s))/ .. -an(Qk(S)))

—f(s,x(g1 s)),...,x(gk(s)))}dsdu, m e N,

+00 n—2
J |sa( )|\f(s,xm(91( )), - xm(gi(s))) — (s, x(g1(s)), - ., x(gk(s)))|ds
i +o00 Sn—Z

"

and
(s, xm(g1(s)), .., xm(gx(s))) — (s, x(g1(s)), ..., x(g(s)))| = 0 as m — oo, s € [B,+00),
which together with the Lebesgue dominated convergence theorem yield that

lim HSZLXm — SZLXH == O,
m—o00
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that is, Syp is continuous in U(M).
By virtue of (3.1), (3.19), (3.21), and (3.23), we get that for all x € U(M)

B (_1)n+1 +o0 +o0 (S _ PL)7172 B
5o = sup et | [ e xan 9 (o) —elslasa

+o0 400 n—2
<1j j " fp(s) + le(s)dsdy

b.(n—2)! T HT)Ju la(p)]
1 +o00 p+o00 Sn72
< ———=— [p(s) +lc(s)ldsd
b*(n—z)!Jﬁ L fagu) PU8) +lels)lldsdu
1 «L

which gives that Sy1 (U(M)) is uniformly bounded in [f3, +o0).
Let ¢ > 0. It follows from (3.2) that there exist two constants T; and T, with min {Tfl(Tz),Tz} >T; >
max{T,T(T)} satistying
b.e

1 oo ptoo n—2 .
(Tl—z)!Ll L g Ps) Flels)ldsdn < ==,

which together with (3.1) and (3.21) yields that for all x e U(M) and t; > t; > T»

_ 1 1 +oo +oo (g2
|[(S2rx)(t2) — (Sarx)(t1)] = m—2)!b(t 1(ty)) Ll(tz) Ju Tm[ﬂsf"(gl(s))/-~-rX(9k(S)))
—c(s)ldsdp
1 +oo +oo (s— u)1172
_b(fcl(tle(tlJL g (e x(g1(s)) -, x(gk(s))) —cls)dsdp
1 +oo +oo gn—2
S b2 le(tz) J, et +letodsan -
+oo oo gn—2
+le)L fa PUe) Hle(s)lldsdu
2 +oo +oo n—2
S b*(n—Z)!Ll(Tz) L Gy P(s) Fle(s)ldsdu
2 “+o00 pt+oo Sniz
S m J.T1 JLL la(w) [p(s) +lc(s)ldsdp < ¢;

In view of (C2), (C3), and (3.2), we conclude that there exist positive constants A; and M, satisfying
A1 = min {Ia(t)l 'te [T_l(T),T_l(Tz)]}

and

M —1[ ! roo sh2) (s)+|c(s)|]ds+1J+oo roo . (s)+|c(s)|]dsd} (3.25)
T m=2HAR Je b 62 e Je Talwl” al ‘

According to (C2), we infer that 71 and b(t!) are continuous on [T, T,], which mean that there exists
o > 0 satisfying

sup { [b(r (1)) — b(!(t2))

_ _ &
) =t ()| e, 10 € [T, T, |t1—t2|<5} <5 (3.26)
2

4
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By (3.1), (3.23), (3.25), and (3.26), we obtain that for all t1,t € [T, To] with [t; —t2] < &

|(S2rx) (t2) — (Sarx) (t1))|

— 7 5= J:itz)ﬂooW{f(sm(gl(s)),...,x(gk(s)))—c(s)]dsdu
—mrw@jm(s‘{gz[f(s X(1(5)), .., x{gi(s))) — e(s)ldsds
1 -

~ ot | L s )l 5) —cls)asan
_wi(tz))fﬂ;l) L a(“i) (5, x(gn(s)) ., x(guls))) — cls))dsd
bt | [ S s Alan () X5 cls)dsa
et | | s a6 () —c(s)dsan
* o FOO(JJ:OOW

x |f(s,x(g1(s)), ..., x(gk(s))) —C(S)dsdu]

1 1 e n—2
< | = " 2[p(s) + le(s)ds |t (t1) — T (t)]
()

+00 +o0o .n—2
+J J S [p(s) +lc(s)dsdu[b(T™ ))—b(T_l(tz))@

%2}

+00 JJroo Sn—Z

1 “+o00 o 1
J 2[p(s) +c(s)]] )|ds+bi L ) |a(u)|[p(s)+|c(s)|]dsdu}

X sup {‘b(”ffl(tl)) —b(t ()], [T t) =T M) [t 2 € [T, T, It — ol < 5}

By means of (3.23), we infer that for all x € U(M) and t,t, € [B,T]
|(S2%) (t2) = (S2rx) (t1)] = [ (S2ux) (T) — (S2ex)(T)| < e. (3.28)

It follows from (3.24), (3.27), and (3.28) that S,; (U(M)) is equicontinuous in [(3, +00). Hence Sy1 (U(M))

is relatively compact.
It follows from (3.19) and (3.22) that for all x, y e UM)and t > T

[(S1x)(t) = (S1iy) (B)] = x(t(t)) —y(r(t)] < biHX —yll,

_
b(t (1)
which gives that

Is1x—Siyll < o-lx—yl,
that is, Sii is a contraction mapping in U(M) and ||S1(U(M))]| < %. Hence Sp is a continuous,

condensing mapping and S (U(M)) is bounded.
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Let P and Q are defined by (3.13) and (3.14). It is clear that OU(M) = P U Q. Suppose that there exist
x € 0U(M) and A € (0, 1) satisfying (3.15). Now we consider two possible cases as follows:

Case 1. Let x € P. It follows from (3.1), (3.13), (3.15), (3.19), and (3.21)-(3.23) that
xX(t) = (1—A)p* +ASpx(t)

o . L B X(T_l(t)) (71)71—0—1 +00 +00 (Sf u)n—Z
= (1= Ap7HA {b(rlm) (e 1)) +b(T1(t))(n—2)!L1(t) L alw)
< [£(5,%(g1())s -, x(gi(5))) —c(s)]dsdu}
. L N 1 —+00 “+o00 Sn—z
<1-NM—¢ )”[b*_b*ﬂmz)!le L |a(u)|[p(s)+c(s)udsdu}
. L N 1 b,L e
<(1-ANM-—¢ )+)\[b*_b*+b*mm{b*M_L'b*_M_b*N}_bJ
gmaX{M—s*,M—g—i}, t>T,

which yields that

N *
M = |x|| = sup [x(t)| < max{M—s*,M—— S} <M,
©>p b* b,

which is a contradiction.
Case 2. Let x € Q. It follows from (3.7), (3.14), (3.15), (3.19), and (3.21)-(3.23) that

N =x(t*) = (1 —=A)p* + ASyx(t*)

_ . L x(t () (=
= (1 _)\)p +}\|:b("tl(t*)) - b(’tfl(t*)) + b(ﬂ[*l(t*))(n—z)!
- s - ]
XJmax{Tl(t*),Tl(T)}L auy O x{gels)) = elsldsdn

L M 1
SA-ANM—e)4n|—-M_ 1
A=NM—e")+ {b* b, b.(n_2)

+o00 “+o00 _ n—2
< | s+ etsasan
max{t1(t*),T1(T)} Ju |G(H)|

>(1-AN(M—g¢*)+A

77777 min{b*M—L,}l;L—M—b*N}—ks]

> (1—7\)(M—£*)—|—7\<N+£*)

e* I3
2 i M — >|</]\l . =N . 7/
rnm{ I3 +b*} +b*

which is impossible. Thus it follows from Lemma 2.1 that there exists x € U(M) satisfying Six =
S1ix + So1x = x, that is,

B L B X(Tfl (t)) (_1)n+1 +00 +00 (S _ u)an
= g 1) bh*ﬁn+bh*ﬂnm—2ﬂL4mJu a(u)

x [f(s,%(g1(s)), ..., x(gx(s))) —c(s)ldsdp, t=max{T }(T),T},

which gives that

B L X(t) (_1)n+1 +o00 p+4o0 (S— H)n—Z
W) =55 "o T eiom—2) L L a(w)

x [f(s,x(g1(s)), ..., x(gk(s))) —c(s)ldsdp, t > max {T_l(T),T}
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and

(_1)n+1 +o0 400 (S— u)n—Z
J L a(p)
x [f(s,x(g1(s)), ..., x(gi(s))) —c(s)ldsdp, t>max{t }(T), T},
which means that

[a(t)(x(t) + b(t)x(t(t) 1™V = (=1)[f(t, x(g1 (1)), ..., x(gk(t)) —c(t)], t=max{t '(T),T},

that is, x is a bounded positive solution of Eq. (1.6) in U(M).
Lastly we show that Eq. (1.6) has uncountably many bounded positive solutions in U(M). Let Ly, L, €
(g—iM +b*N,b,M) and L; # L,. Analogously, we deduce that for each 6 € {1,2}, there exist constants

Ti,,Be and a mapping S, : U(M) — V(N) satisfying (3.7) and (3.19)-(3.23), where L, 3, T, Sy, So1, and
St are replaced by Lg, Bg, Ty, S11,4,S21,, and Sg,, respectively, and the mapping Sy, has a fixed point

x? € U(M), which is a bounded positive solution of Eq. (1.6) in U(M), that is,
Xe (t) _ Le B XG (T_l (t)) N (_1)n+1 J+oo J+oo (S . p')n—z
b(r7l(t)) bt i) bt -2 e ) a(p) (3.29)
x [£(5,x°(g1(s)), ..., x%(gx(s))) —c(s)ldsdy, t=>Ti,.
It follows from (3.2) that there exists a constant T, with min {T*, ! (T*)} > max{Ty,, T, } satisfying

1 JJroo JJroo Snfz b*|I—1_I—2|
—_— (s)dsdp < ———=.
=2 ey dy Ta(I? 4b*

(3.30)
In order to prove that the set of bounded positive solutions of Eq. (1.6) is uncountable, it is sufficient to
prove that x! # x2. From (3.1), (3.29), and (3.30), we get that for t > T,

. L _ xl(Tfl (1)) XZ(Tfl(t)) (_1)n+1
) b)) - b(ri(Y) b(t (1) (n—2)!

L
X () —x3(t)| = ‘b(T_}(t

—f(s,x*(g1(s)), ..., x*(gx(s)))]dsdu

RIS TIPS 65 S N [l
> it Ll e o el g ]

x [If(s,x!(g1(s)), - X! (gi ()] + [F(5, %% (g1 (s)), .., %P (gic[s)))] | dsdp

e e S (s)dsd
Z e TRy, b.n—2)! Jerry )y Ta(l? W

> 2:)* I — Lof — bl*Hxl -2,
which means that oo le
2| > M >0,
that is, x! # x2. This completes the proof. O

Theorem 3.3. Let (C1), (C2), and (C3) hold. Assume that there exist four constants N, M, b, and b* and a
function p € C([to, +oo),R+) satisfying (3.1), (3.2), and

(1+b* )M < (1+b,)N <0, b, <b(t) <b*<—1, eventually. (3.31)

Then Eq. (1.6) has uncountably many bounded positive solutions.
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Proof. Let L € ((1 +b*I)M, (1+ b*)N). Now we show that there exists a mapping St : U(M) — V(N) such
that it has a fixed point x € U(M), which is also a bounded positive solution of Eq. (1.6). (C2) and (C3)
mean that T is strictly increasing and continuous in [t(tg), +00) and lim¢_, ;. T 1(t) = +o00. It follows
from (3.2) and (3.31) that there exist two constants 3 and T satisfying

min {TfTil(T)} > B > max{1, [tol + |Bol, IT(to)l}, b < b(t) <b* < -1, t=4, (3.32)
1 +oo ptoo sT‘L*Z dsd ) L , b IM b* N(1 b .
ﬁ’L—Z)!JB L |a(u)|[P(s)+Ic(s)I] s p<mm{ — (1+b)M, E[ (14b,)— }}

Let p* = M — ¢*, where ¢* € (0,min {L — (14 b*)M, g—: [N(1+b,)—L, %] }) is enough small and

*

1 +oo p+4o00 Sn72 ‘ § b N )
(n_z)!L L |a(u)|[]9(s)+|c(5)l]dsdu<mm{L—(1+b )M,b—*[ (1—|—b*)—L]}—£. (3.33)

Obviously, p* € U(N, M). Define a mapping S : U(M) — CB([B, +o0), R) by (3.7), where the mappings

S, S s U(M) — CB([B,—i—oo),]R) are defined by (3.22) and (3.23), respectively.
By virtue of (3.1), (3.7), (3.22), (3.23), (3.32), and (3.33), we get that forany x €¢ UM)and t > T

(Sp)(x) = (S1rx)(t) + (Sarx)(t)
(1)
(t)

x(T
b(t-1(t)) b(t?

(! rw rw (s— w2

)
) o ) (n—2)! L a

Tt

x [f(s,x(g1(s)), ..., x(gk(s))) —c(s)ldsdp
> B BTy P s
e b(nl_z), Em Km ﬁ;;j' [p(s) + lc(s)ldsdy
S E—$+émin{L— (14b°)M, E:[N(ub*)—u}—bl*e*

b
>N — is* >N
= b* 4
which gives that Sy (U(M)) € V(N). The rest of the proof is similar to that of Theorems 3.2, and is
omitted. This completes the proof. O

Next we employ the Rothe fixed point theorem to prove the existence and multiplicity of bounded
positive solutions of Eq. (1.6).

Theorem 3.4. Let (C1), (C2), (C3), and (C4) hold. Assume that there exist two constants M and N with M >
N > 0 and a function p € C([t, +00), R™) satisfying (3.1), (3.2), and

b(t) =1, eventually. (3.34)

Then Eq. (1.6) has uncountably many bounded positive solutions.

Proof. Let L € (M —N,M + N). First of all we prove that there exists a mapping S; : B(M,N) —
CB([B,—I—OO),]R) with S; (0B(M, N)) C B(M, N) such that Sy has a fixed point x € B(M, N), which is also
a bounded positive solution of Eq. (1.6). It follows from (3.2), (3.34), (C3), and (C4) that there exist two

constants T and 3 satisfying

T H(T) > T > B > max{l, ltol + Bol, [t(to)l}, b(t) =1, t=>p; (3.35)
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2 +oo ptoo s™ 2 .
m_2) Jﬁ L ()] [p(s) +lc(s)ldsdp < min{M + N —L,N—M + L. (3.36)
Define a mapping S; : B(M,N) — CB([B,—i—oo),]R) as follows:

n72

(SLx)(t):{LJr T Z) 1f z;+1 eroo_7[1‘(8,76(91(3)),---,X(gk(s)))*C(S)]dsdu, t>T,
(SLX)(T) B<t<T,

(3.37)

It follows from (3.1), (3.13), (3.14), (3.27), (3.28), and Lemma 2.3 that for any

for each x € N).
,Njandt > T

B(M,N).
x € 9B(M,N) C B(M, N)

(S0~ M| =L M+((;1_)T;+)jjioljjij:t)J:w S s a5 ¥ll5)) — el dsdn
<IL-Mi+ o ij(;t) | pts) et lasan
<m0 )+ lels)lasan
clMis ot [ e etsasa

1
<|L—M|—|—§min{M—|—N—L,N—M+L}<N,

which yields that S; (0B(M, N)) C B(M, N).

Now we assert that Sy is a continuous, condensing mapping in B(M, N). Let {xm}men € B(M, N) and
x € B(M,N) with limy 0 Xm = x. By virtue of (3.1), (3.36), (3.37), and the continuity of f and Lemma
2.3, we infer that for each m € N

n+1 00 =2 () 400 . \n—2
J J &[f(s,xm(gﬂsn,---/Xm(gk(s)))

)! a(p)

HSLxm — SLXH = sup
t>T 72]+1

—f(s,x(g1(s)), ..., x(gk(s)))] dsdp

1 400 400 STL*Z
<t | g 919 xn(g(5)

—f(s,x(g1(s)), ..., x(gk(s)))|dsdu

1 “+o00 p+o0 g™ 2
<(nz)!Je, L a6 Xm {918, Xm (91 (s)))

—f(s,x(g1(s)), ..., x(gk(s)))|dsdp,

+o0 .n—2
J ° . (s, xm(g1(s)), -, xm(gi(s))) — (s, x(g1(s)), ..., x(gk(s)))|ds

+o00 s™ 2
<2L |a(u)|p(s)ds, ne [B,+o0),

and

(s, xm(g1(8)), -, xm(gi(s))) — f(s,x(g1(s)), ..., x(gk(s)))| = 0 as m — oo, s € [B,+00),
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which together with the Lebesgue dominated convergence theorem give that
lim S]_Xm = S[_X,
m—00
that is, Sy is continuous in B(M, N).
In light of (3.1), (3.36), (3.37), and Lemma 2.3, we get that for any x € B(M, N)
() & JT‘Z"(” J+°° (s — w2
Six|| = |L+ ——F—- — (s, x s)),...,x s))) —c(s)ldsd
Isux] Cos D) N R e L
1 +oo +oo Sn—2
<L+ J J [p(s) +lc(s)ldsd
=2 e Jy TaGu P Flelslidsdn
1 +oo p+oo Sn—Z
<L+ J J p(s) +lc(s)ldsd
-2ty Jy Taqo P el )ldsdu
< L+%min{M+N—L,N—M+L}< w
which implies that Sy (B B(M,N)) is uniformly bounded in [, +o0).
Let ¢ > 0. Notice that (3.2) ensures that there exists T* > t~!(T) satisfying
1 +00 p+oo Sn—Z €
—_— [p(s) +lc(s)ldsdu < —, 3.38
ey, | gt elodsdn < ¢ (339)
which together with (3.1), (3.37), and Lemma 2.3 yields that for all x € B(M,N) and t; > t; > T*
}(SLX)(’LZ) (SLX (t1)|
1i J S g x(@u(s)), .. xlgu(s))) —cls)ldsd
s, x(g1(s)),...,x s))) —c(s)lds
21! Pt T2+ (t,) a(p) g Je H
n+1 S 2 (1) +o00 (S o u)nfz
—[f(s,x s)),...,x s))) —c(s)ldsd
o le ] s M) xonts)) —elsldsan
1 +o0 +o0 sn— 2
< [p(s) +lc(s)ldsd 3.39
(n—z)!“ ) g+ elsiasan (339)
+o00 +o00 Sn—Z
| p(s) + |c(s)|]dsdu]
1) Ju la(w)]
2 +o0 +o00 Sn—2
< ——=w [p(s) +lc(s)lldsd
(n—2)! le) L (i ? "

2 +o0 p4o00 s“*Z
S (TL—Z)!L* Ju ‘a(u”[p(s) +lc(s)lldsdp < e.

Notice that (3.2), (C2)-(C4), and Lemma 2.3 guarantee that there exists H € IN satisfying tT—2H*1(T) > T*.

Put
Ay =min{la(t): t € [t (T), v (T*)],1 <j < 2H}

and

(3.40)
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Since T is uniformly continuous in [T, T*] for 1 < j < 2H, it follows that there exists 6 > 0 satisfying

. N €
sup { |77 (t) =7 (t2)] 11 <5 < 2H, 1yt € [T, T, [t — il < 8} < g,

which together with (3.1), (3.37), (3.38), and (3.40) that for all t;,t, € [T, T*] with t; < t, < t; + 06 and all
x € B(M,N)

|(5LX)(’C2) — (S1x)(t1)]

Pt & ) oo (g yne
o) ZJ s L (Sa(“i)[f(s,x(gl(s)),...,x(gk(s)))—c(s)]dsdu
(-t & (t) (oo (g yn—2
B (mn—2)! P J’Czj“(tl)Ju Tm[f(slx(gl(s))/---,X(gk(s)))—C(s)]dsdu
1

H 12 (1) +00( o )n72
ZJ J B (s, x(g1(5)), .-, x(gk(s))) — cls)]dsd

= (n_Z)' i1 T2+ (1) Ju a(u)

H =2 (1) +00 (S _ IML)an
_ZLM(W L oy Hlexlgi(s)),- x(gi(s))) —els)ldsdn
Jsz (t2) JJroo (s — H)n—z

o ety s X x(ge(s)) — elsdsd

(t1) too (¢ \)n—2
J J &[f(s,x(gl(s)),...,X(gk(S))) —c(s)ldsdp

T2+ (¢) Cl(pL)

H o178 (ty) p+oo (¢ (\n—2
J J S s x(u(s)) ... x(gx(s))) — c(s) dsdu

S (n—2)!{ g

Slenn Ju a(w)
(t1) +oo (s — PL)n—z -
* LZMML T [f(s,x(g1(s)), ..., x(gk(s))) —c(s)]dsdp (3.41)

(t1)  pFoo (o _ (12
J J &[f(s,x(gl(s)),...,X(gk(S))) —c(s)ldsdu

2+ (1;) Jp a(p)

© T I(t) oo (¢ yn-2
+ Z J . J ¢[P(S)+Ic(s)l]dsdp
j=H+1 T It (k) I la(p)
e () 00 (o N2
+ Z J . J (H)[P(s)+|c(s)l]dsdu}
j=H+1 T () Ju la(w)]
1

H 172 (1) p+o0 gn—2
< —— [p(s) +lc(s)lldsd
(=2 ;szL a(wl? g
H T72j+1(t2)

+o0 Sn72
+ZJ 1 (t,) J [p(s) +lc(s)ldsdp
T2j+1 t

o o Ta(]
+o0 +oo snfz 400 +oo STI*Z
dsd dsd
+L2HHHZ)L Pl Hlets)nas “Lw(mL o p(s) +els)ds u}
1 2H o1 (1) pHoo (2
< dsd
) (n—zJ!{;Lml)L au) P Flelldsdn
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“+o00 p4o0 snfz
+zj* L |a(u)|[p(8)+|0(3)l]dsdu}

< 2HMasup { [t () — 7~ (tz)}:1<j<2H,t1,tze[T,T*],|t2—t1|<5}+§<e.

In view of (3.37), we infer that for all x € B(M,N) and t1,t; € [}, T]
(LX) (t2) — (SLx) (1) ] = |(SLx)(T) — (SLx)(T)| < e. (3.42)

It follows from (3.39), (3.41), and (3.42) that Sy (U(M)) is (M)) is equicontinuous in [, +c0). Hence Sy (B(M, N))
is relatively compact, that is, S; is condensing in B(M, N).
Thus Lemma 2.2 ensures that there exists x € B(M, N) such that S; x = x, which means that

x(t) =L+ [f(s,%(g1(s)), .-, x(gx(s))) —c(s)dsdp, t =T '(T),

(_1)n+l a7 A(t) oo (S—u)“*z
(m—2)! j_lj L a(w

T2j+1 (t)

which together with Lemma 2.3 implies that

x(t) +x(T(t)) =2L+

_ayn+l © B () p400 (o M2
(—1) J J S s, X(g1(5)s ... x(gw () — e(s)]dsdu

(-2l & . al

T2j+2 (t)

_ (_1)n+1 +o00 (S_H)n 2 .
ot || e M9 xok(s) elsldsdw, 2T

which leads that

a(t)(x(t) + b(t)x(t(t)) = . J (s =)™ 2If(s,x(91(5)), .., x(gk(s))) —c(s)lds, t =7 '(T),
which guarantees that

[a(t) (x(t) +x(e(£)) 1™ = (=Dt x(g1 (), -, x(g (1)) —e(v)], t =7 (T),

which together with (3.35) gives that x is a bounded positive solution in B(M, N).

Next we show that Eq. (1.6) has uncountably many bounded positive solutions in B(M, N). Let
L, € (M—N,M+N) and L; # L,. For every 0 € {1,2}, we infer similarly that there exist constants
Ti,,Be and a mapping St satisfying (3.35)-(3.37), where L, 3, T and S; are replaced by Lg, Bg, T, and
S1,, respectively, and the mapping S;, has a fixed point x € B(M,N), which is a bounded positive
solution of Eq. (1.6) in B(M, N), that is,

X()—Le-l-

n+l X 2 (t) +o00 -2
(=1) J J S g xO(g1 (). xO(gi(s))) — cls)ldsd, 3 Try. (3.43)

(n—2)! Sl a(p)

In terms of (3.2), we get that there exists T, with TN T) > T, > max{T, Ty, } satisfying

1 400 p+o00 Sn—Z |L1_]_2|
—_— s)dsdu < .
(n—2)!L L a(Pls)dsdr < =

(3.44)

In order to prove that the set of bounded positive solutions of Eq. (1.6) is uncountable, it is sufficient to
verify that x! # x2. On account of (3.1), (3.43), and (3.44), we infer that for t > T,

L —L+

(1 JT‘““) J+°° (s—wm?

1 2 —
X! () —x*(t)| = (n—2) & woalw

T72]'+1 (t]
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X [f(S,Xl(gl(S)),. . .,Xl(gk(S))) - f(S,XZ(gl(S)),. . -/XZ(Qk(S)))]deH

1 +o00 +o00 s — n—2
>|]—1—L2|—(n_2)|J J %

My Ju la(uw)
x [[f(s,x (g1(s)), .., x (gu ()] + | f(s,%*(g1(s)), - .., x*(gx(s)))]] dsdp
2 +o0 +o0 sn72
> —L —J J s)dsd
L TN AT M T LA
2 +o00 ptoo Sn—2 |L1 _ ]_2|
> L —L—— s)dsdp > ,
bt L aquP(e)d4sdn > =
that is, x! # x2. This completes the proof. O

Theorem 3.5. Let (C1), (C2), (C3), and (C4) hold. Assume that there exist two constants M and N with M >
N > 0 and a function p € C([to, +00), R") satisfying (3.1) and

X r+oo +o00 sm 2
J J [p(s) +lc(s)ldsdu < 4o, (3.45)
Sl Ju la(p)|

b(t) = —1, eventually. (3.46)
Then Eq. (1.6) has uncountably many bounded positive solutions.

Proof. Let Le (M —N, M + N). Now we prove that there exists a mapping Sy : B(M,N)— CB([[S, +oo),]R)
with S; (dB(M,N)) ¢ B(M,N) such that S; has a fixed point x € B(M, N), which is also a bounded
positive solution of Eq. (1.6). It follows from (3.45), (3.46), (C3), and (C4) that there exist two constants T
and {3 satisfying

T (1) > T > B > max{Lltol + [Bol It(to)l, b(t)=—1, t>B, (647)
2 X (oo +o0o sn 2

! ~LN=M+L} 3.48

(n—2)! 1L J(mL o Ps) +le(s)ldsdn < minN +M—1,N —M+1) (3.48)

Define a mapping St : B(M,N) — CB([B,—i—oo),]R) as follows:

2

St - d LT T D5 S5 J Bt (s x@1(s)) - xgls) —els)ldsdy, £>T, (3.49)
(SLX)(T), B<t<T,

for each x € B(M, N). By (3.1), (3.13), (3.14), (3.48), and (3.49), we obtain that for any x € 9B(M,N) C
B(IM,N)andt>T

(-1) n+1 ~+o00
(S0 ~MI= |L- Mo+ J J [£(s, x(g1(s)), .., x(gic(s))) — c(s)ldsdys
Rl (ORI
1 X prtoo +o00
<IL—Mi+ Z J WM et (ga()), . xlgis)))] +lels)] dsdu
(m_2)! e
L-M 1 3 o
< |+ T le L s) + le(s)[ldsdp
1 & +oo
<IL—MJ+ T Z Ju s) + lc(s)[ldsdp

I
—

)

1
<IL—=Mi+ o minN+M-LN-M+L} <N,

which means that S; (0B(M, N)) C B(M, N).
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We claim that Si is a continuous, condensing mapping in B(M, N). Put {xm}men € B(M,N) and

x € B(M, N) with limy, o Xm = x. Using (3.1), (3.48), (3.49), and the continuity of f, we infer that

DM (T (P st
(nz)!j;Li(t)L a(p) [fls, xm(g1(s), -, xm(gi(s)))

HSLxm — S]_XH = sup
=T

—f(s,x(g1(s)),..., x(gk(s)))] dsdu

1 o
S

+00 +oo ¢n—2
J .(T)J m‘f(srxm(gl(s))/---/Xm(gk(s)))
T) w

—_

—f(s,x(g1(s)), ..., x(gk(s)))|dsdu
1 X rtoo oo gn—2
—f(s,x(g1(s)),-..,x(gk(s)))|dsdn, me N,

—

|a(H)| ‘f(S/Xm(gl(S)),. . .,Xm(gk(s)))
"

+o0o .n—2
| s xmlgr(s)) e xmlgn(s))) = s x(gr(8)) .. xlguls)] s
w

+o0 San 1
<2L |a(u)‘p(s)ds, ne [t (B),+o0)

and
(s, xm(91(s)), .-, xm(gk(s))) —f(s,x(g1(s)),...,x(gk(s)))| = 0 as m — oo, s € [t }(B),+00),
which together with the Lebesgue dominated convergence theorem gives that

lim S]_Xm = S[_X,
m—o00

that is, St is continuous in B(M, N).
By virtue of (3.1), (3.48), and (3.49), we deduce that for any x € B(M, N)

_1\yn+1 X r+o0 400 . n—o2
(—1) J J W s, x(91(5), .. x(gw () — e(s)]dsdu

Six|| = sup|Six(t) = L+
|Scx|| i1>11T>| Lx(t)| ‘ . )

>

)
»
M

[p(s) +lc(s)ldsdp

0 ptoo 400 n—2
Steton || SRl +lels)ldsdu

N
<L+%MMN+M—LN—M+U<—i%Ei,

which implies that Sy (B(M, N)) is uniformly bounded in [3, +o0).
Let ¢ > 0. Notice that (3.45) ensures that there exists T* > T satisfying

(e ¢]

1

(n—2)! =

+oo +oo Sn—Z .
LJ'(T*)Ju |a(u)\[p(s)+|c(8)l]dsdp< 7 (3.50)
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It follows from (3.1), (3.49), and (3.50) that for all x € U(M) and t, > t; > T*
[(SLx)(t2) = (SLx)(t1)]

B (_1)n+1 O r+oo +o00 (s—u)“*Z
[ (n=2)! J tz)L ap)

[f(s,x(g1(s)), ..., x(gx(s))) —c(s)ldsdp

T (

j=1

[f(s,x(g1(s)), ..., x(gx(s))) —c(s)ldsdp

GOSRRS rm r“ (s—w2

(n—2)! j=1 T (1) Ju a(u)
! i A i (3.51)
g(“—z)!{jzlez)L au] Pe) T lel)ldsdu

O oo +00 n—2
1530 I I [p(s)+|c(smasau}

Sl Ju la(w)l

e +o00 sn—z
S (n— 2|ZJ J |a(u)|[ p(s) +lc(s)ldsdu < e.

On account of (3.2), (C2)-(C4), and Lemma 2.3, we get that there exists H € IN satisfying T—H(T) > T*. Set
Az =min{la(t)|: t € [t (T), v 7 (T%)],1<j < H}

and

M= 14— [ 2 e 352
4= +(11—2)!A3JT s p(s) +lc(s)llds. (3.52)

Since T is continuous on [T, T*] for 1 < j < H, it follows that there exists & > 0 satisfying

sup {|t7 (t1) =1~ tz)‘:léng,tLtze[T,T*},Itz—t1|<6}<ﬁ,

which together with (3.1), (3.49), (3.50), and (3.52) yields that for all t1,t, € [T, T*], t; < t2 < t; +6 and
x € B(M,N)

[(SLx)(t2) — (SLx)(t1)]
(_1)n+1 o J+m J+m (S— u)nfz

(n—2)! Sl e a(p)

[f(s,x(g1(s)), ..., x(gx(s))) —c(s)ldsdp

n+l 2 rtoo +00 (¢ _ )2
( 1) J t )J &[f(s’x(gl(s))"--rx(gk(s)))—C(S)]dsdu

T i a(p)
i o (s 2 a1 () xlarls))) — clsldsdn
] =1 T ] t1 I.L a(U) ’ ! !
+ j roo (s, x(g1(5)), ., x(gr(s))) — c(s)]dsdn 659)
) H4+1 T ) 1;1 53 .
+oo
j (s, x(91(5)), ., x(gr(s))) — c(s)}dsdn }

j=H+1 (t2) Ju

> I
1 {
S (n=2)! =

T (tp) oo §n—2
ZlLim) L fagu e Tle(s)ldsdp
+ZZJ

“+00 Sn 2
J ‘ (S)+IC(S)]dsdu}
2 ) a(w P

<HMysup {[t7 () =77 () 1< < H o € T, o —ti] < 8} 4+ <.
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By means of (3.49), we infer that for all x € B(M, N) and ty,t> € [(3, T]
|(SLx)(t2) = (Sex) (t)| = [(SLx)(T) — (SLx)(T)| < e. (3.54)

It follows from (3.51), (3.53), and (3.54) that SL(B(M N)) is equicontinuous in [(3, +c0). Thus St (B(M, N))
is relatively compact, that is, S; is condensing in B(M, N).
It follows from Lemma 2.2 that Sy has a fixed point x € B(M, N), that is,

B (_1)n+1 0 ~t00 +o0 (s_u)n—Z B 1
MO =L ) | Lty e xans, xlan(s) —elsldsdw, +2 (T,
which gives that
x(t) — x(x(t) = rwr%—u)“—z[f(s X(91(8)), - x(g(s))) —c(s)ldsdp, t =1 Y(T)
m-2t), ). a1 oo ’ ‘
which means that
_1\n+1
a(t)(x(t)—x(T(t)))'z(”J (s — ™ 2[f(s,x(g1(5)), .., x(gw(s))) — c(s)]dsdy, ¢ > (T),
(m—2)! J¢

[a(t) (x(t) = x(t(£)) 1" = —f(t,x(g1 (1)), ..., x(gi(t))) +¢(t), =7 }(T),

which together with (3.47) guarantees that x € B(M, N) is a bounded positive solution of Eq. (1.6). The
rest of the proof is similar to that of Theorems 3.4, and is omitted. This completes the proof. O

Remark 3.6. Theorems 3.1-3.5 extend and improve Theorems 2.1-2.6 in [3], Theorem 1 in [5], and Theorems
2.1-2.5 in [4], respectively. The examples in Section 4 show that our results are indeed generalizations of
the corresponding results in [3-5].

4. Examples

In this section we construct five examples to clarify the applications and superiority of the results
presented in Section 3.

Example 4.1. Consider the following higher order nonlinear neutral differential equation

—2t++1+1t)sint M= 8122t —1) — (L + 1)
10 _
[t <X(t) + 1+ 3t2 x(t \/ﬂ> ] * e + (12 + 1) cos?(3t3)

\/1 + t2 — tsin(3t?)

tn+3 4

(4.1)
t>1,

wheren € N\{1}, tp=land k=3. Letb, =b* =1 N=1, M =4, Bo=0and

— 2t 4+ /1 '
at) = 1, p(t) = (L2t VI Ftsint (W) =t—vi, gult) =2, gat) =t—1,
1+ 3t2
1 2 4,3.2 .2
gs(t) =t+1, oty = VIFEtsInB) o twv ot
{n+3 6 4 (12 + 1) cos?(3t3)
1024t3 + 16
p( ) = T/ (t/ulvlw) S [t0,+00) X R3

It is easy to verify that (C1), (C2), and (3.1)-(3.3) are satistied. Hence Theorem 3.1 implies that Eq. (4.1)
has uncountably many bounded positive solutions. But the results in [3-5] are not applicable for Eq. (4.1).
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Example 4.2. Consider the following higher order nonlinear neutral differential equation

5+12In°t 1)\ 1V
t*1In(1 + t2 <xt +>x<t—>> ]
[ ( X 1+In’t 2t

N X2 (82— Ox (V) + /[ tx(5)] 21+ Ve 1)
tn+5 —|—sin2t o 1 +tn+4 4
wheren €e N\ {1}, to=1and k=3. Letb, =5,b* =12, N=1, M =13, g =0 and

(4.2)

t>1,

5+12Int 1
a(t) =t*In(1+t?), b(t) = =L ) =t— -, gty =t —t, gt) =4,
1+1In°t 2t
3 L2In(1+vV3+1 312 t
93(t) = 5 c(t) = n( + i )/ f(t,u,V,W) = M/
2 14 tn+4 tn+5 4 sin t
219743 + /13t
plt) = s (t,w,v, W) € [to, +00) x R®.

It is obvious that (C1)-(C3), (3.1), (3.2), and (3.18) are satisfied. Thus Theorem 3.2 ensures that Eq. (4.2)
has uncountably many bounded positive solutions. But the results in [3-5] are not valid for Eq. (4.2).

Example 4.3. Consider the following higher order nonlinear neutral differential equation
th3 (2 Int) + (12 —3)x3 (13 — 1)
tn2(14-1)8/1 4+ x2(t2 — t)

(£ +1) (x(t) — (5—cos t)x(Vt)) ] (n=1)

. B—sinV4tS—t
B 4 cos(t+ V)]
wheren e N\ {1}, tr=1and k=3. Letb, =—6,b*=—4,N=1, M =3,B¢p=0and
a(t)=t®+1, b(t)=-5+cost, T(t)=+v1t, qi(t)=t2Int, go(t) =t>—1,
t3 —sinV4t5 —t t*ud 4+ (12 — 3?2
= , flbuv,w) = ,
43 4 cos(t + v/1)] tn2(1 4+ 1)8v1 + w2
otd 427t + 27
Pt =~
tn2(1 + 1)

It is clear that (C1)-(C3), (3.1), (3.2), and (3.31) are satisfied. Therefore Theorem 3.3 means that Eq. (4.3)
has uncountably many bounded positive solutions. But the results in [3-5] are inapplicable for Eq. (4.3).

(4.3)

gs(t) =t?—t, c(t)

(t/ulvlw) € [tO, +OO) X R3.

Example 4.4. Consider the following higher order nonlinear neutral differential equation

O\ 1Y X2+ 1) In(1 + 1)) (t— 122+ 1)
[_t4<x(t)+x<2)> ] " tn+2 C M H2(141)(2 +sint)

5 e 5 (4.4)
7+ (1—-3t%) cos(t” +1) 5

I (t+1)(t+2)
wheren €e N\ {1}, t=2and k=2. Let N =1, M =2, 3p=1and

alt) = —t4, b{) =1, T(t):%, gi() =241, glt) = ln(1+1),

t2 4+ (1 —3t3) cos(t? + t) ne (t—1)u?
C(t) - 7 f(t,u,V) - - . 7
S (t+1)(t+2) 2 gnH+2(1 4+ t)(2 +sint)

12
p(t) = tnﬁ/ (t,u,\)) S [tO/ +OO) X RZ'

It is easy to see that (C1)-(C4), (3.1), (3.2), and (3.34) are satisfied. Therefore Theorem 3.4 guarantees that
Eq. (4.4) has uncountably many bounded positive solutions. But the results in [3-5] are not valid for Eq.
(4.4).
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Example 4.5. Consider the following higher order nonlinear neutral differential equation

x2(t2 + Int)x(t + 1+ t2)
(1+t2)t"2[1 +1n(1+x2(t2 +1nt))]

(£ +1) (x(t) — x(nt)) ] ™7V 4

1+ t3sin(t?) *5)

(14 t4)5 4 Int]

t>2,

wheren €e N\ {1}, tr=2and k=2. Let N =1, M =3, g =In2 and

a(t):(t5+l)%, b(t)=—1, t(t)=Int, gi(t) =t>+Int, gt)=t+V1+12

1+ t3sin(t?) u?v
C(t) = 4 ’ f(tlulv) - 9 7
tO[(1 4+ 14)3 +Int] (1+t2)t"2[1 +In(1 +u?)]
27
pt) = ————,  (t,u,v) € [to, +00) x RZ.

(1+t2)tn2

It is easy to verify that (C1)-(C4), (3.1), (3.45), and (3.46) are satisfied. Thus Theorem 3.5 yields that Eq.
(4.5) has uncountably many bounded positive solutions. But the results in [3-5] are inapplicable for Eq.
(4.5).
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