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Abstract
The aim of this paper is to define Θu

β =
{

v ∈ J u : Θ($(u, v)) ≤ [Θ($(u,J u))]β
}

and establish some new fixed point
theorems in the setting of left K-complete T1-quasi metric space. Our theorems generalize, extend, and unify several results of
literature.
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1. Introduction and preliminaries

Definition 1.1 ([7]). Let E 6= ∅. A function $ : E × E → R+ is said to be a quasi-pseudo metric so that
∀u, v, w ∈ E :

• $(u, v) = 0;

• $(u, v) ≤ $(u, w) + $(w, v).

If it satisfies:

• $(u, v) = $(v, u) = 0⇒ u = v,

then $ is called T1-quasi metric.

Remark 1.2 ([7]).

(i) Each metric is a T1-quasi metric.
(ii) Each T1-quasi metric is a quasi metric.

(iii) Each quasi metric is a quasi-pseudo metric.
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Definition 1.3 ([7]). Assume that a quasi-pseudo metric space (E , $). Given u0 ∈ E as centre and ε > 0 as
radius, then

B$(u0, ε) = {v ∈ E : $(u0, r) < ε}

denotes the open ball and
−
B$(u0, ε) = {v ∈ E : $(u0, r) ≤ ε}

denotes the closed ball.

Every quasi-pseudo metric $ on E originate a topology τ$ on E . If $ is a quasi metric on E , then the
originated topology τ$ must be T0. If $ is a T1-quasi metric, then the generated topology τ$ is a T1.

If $ is a quasi-pseudo metric on E , then define $−1, $s, and $+ as

$−1(u, v) = $(v, u), $s(u, v) = max{$(u, v), $−1(u, v)}, and $+(u, v) = $(u, v) + $−1(u, v).

All these metrics are also quasi-pseudo metrics on E . Moreover, if $ satisfies

u 6= v =⇒ $(u, v) + $−1(u, v) > 0,

then $+ (and also $s) is a metric on E . Here cl$(A), cl$−1(A), and cl$s(A) denote the closure of A in E
with respect to τ$ ,τ$−1 , and τ$s , respectively.

We give the following examples in which the mapping $ : E × E → R+ is a quasi metric but not a
T1-quasi metric.

Example 1.4 ([7]).

(i) Let E = R. Define $ : E × E → R+ as follows

$(u, v) = max{v− u, 0)}

∀u, v ∈ E .
(ii) Let E = R and

$(u, v) =
{

0, u = v,
|v|, u 6= v,

∀u, v ∈ E .

We give the following example in which the mapping $ : E × E → R+ is a T1-quasi metric although
not a metric on E .

Example 1.5 ([7]). Let E = R and

$(u, v) =
{

v− u, u ≤ v,
1, u > v,

∀u, v ∈ E .

Let (E , $) be a quasi metric space, B a nonempty subset of E , and u ∈ E . Then

u ∈ cl$(A)⇐⇒ $(u, B) = inf{$(u, a) : a ∈ B} = 0.

Likewise,
u ∈ cl$−1(A)⇐⇒ $(B, u) = inf{$(a, u) : a ∈ B} = 0.

If B is compact subset of E and (E , $) is a metric space, then for each u ∈ E , ∃ a ∈ B so that

$(u, a) = $(u, B).
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But this property does not hold in a quasi metric space (E , $).
However, if (E , $) is a quasi metric space and A is a τ$−1-compact subset of E , then this property holds.

Let (E , $) be a quasi metric space and u ∈ E . A sequence {un} converges to u regarding τ$ is said to be
$-convergence and denoted by un $

−→
u and is defined by

$(u, un)→ 0,

as n → ∞. Similarly, the convergence of {un} to u regarding τ$−1 is said to be $−1-convergence and
denoted by un $−1

−→
u and is defined by

$−1(un, u)→ 0,

as n → ∞. Finally, the convergence of {un} to u regarding τ$s is said to be $s-convergence and denoted
by un $s

−→
u and is defined by

$s(un, u)→ 0,

as n→ ∞. It is clear that un $s

−→
u ⇐⇒ un $

−→
u and un $−1

−→
u.

Definition 1.6 ([7]). Assume that (E , $) is a quasi metric space (QMS).

(i) If ∀ε > 0, ∃ n0 ∈ N so that
∀n, k, n ≥ k ≥ n0, $(uk, un) < ε,

then {un} in E is called a left K-Cauchy.
(ii) If ∀ε > 0, ∃ n0 ∈ N so that

∀n, k, n ≥ k ≥ n0, $(un, uk) < ε,

then {un} in E is called a right K-Cauchy.
(iii) If ∀ε > 0, ∃ n0 ∈ N so that

∀n, k ≥ n0, $(un, uk) < ε,

then {un} in E is said to be $s-Cauchy.

Definition 1.7 ([7]). Assume that (E , $) be a QMS.

• If each left (right) K-Cauchy sequence is $-convergent then (E , $) is called a left (right) K-complete.

• If each left (right) K-Cauchy sequence is $−1-convergent then (E , $) is called a left (right) M-
complete.

• If each left (right) K-Cauchy sequence is $s-convergent then (E , $) is called a left (right) Smyth
complete.

Currently, Jleli and Samet [12] initiated a contemporary kind of contraction and proved a new result
for this contraction in the framework of generalized metric spaces.

Definition 1.8. Let Θ : (0, ∞)→ (1, ∞) be a function satisfying:

(Θ1) Θ is nondecreasing;
(Θ2) for each sequence {αn} ⊆ R+, limn→∞ Θ(αn) = 1⇐⇒ limn→∞(αn) = 0;

(Θ3) ∃ 0 < k < 1 and l ∈ (0, ∞] such that lima→0+
Θ(α)−1

αk = l.

A mapping J : E → E is said to be Θ-contraction if there exist the function Θ satisfying (Θ1)-(Θ3) and
α ∈ (0, 1) so that ∀u, v ∈ E ,

$(J u,J v) 6= 0 =⇒ Θ($(J u,J v)) ≤ [Θ($(u, v))]α.
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Theorem 1.9 ([12]). If J be a Θ-contraction on be a complete metric space (E , $), then u∗ = J u∗.

To be consistent with Samet et al. [12], we denote by Ω the set of all functions Θ : (0, ∞) → (1, ∞)
satisfying the above conditions.

Many researchers [1–6, 9–11, 13–16] have generalized various theorems on metric space by taking the
class Ω.

Subsequently Hancer et al. [8] extended the above definition and added one more condition in this
way.

(Θ4) Θ(inf A) = inf Θ(A), ∀A ⊂ (0, ∞) with inf A > 0.

We denote by Ω∗ the set of all functions Θ satisfying (Θ1)-(Θ4).
The purpose of this manuscript is to define a new family Θu

β for a multivalued mapping and obtain
some fixed point theorems.

2. Main Result

Let (E , $) be a quasi metric space, J : E → P(E), Θ ∈ Ω, and β ≥ 0. For u ∈ E with $(u,J u) > 0,
define the set Θu

β ⊆ E as

Θu
β =

{
v ∈ J u : Θ($(u, v)) ≤ [Θ($(u,J u))]β

}
.

It is obvious that, if β1 ≤ β2, then Θu
β1
⊆ Θu

β2
. Now, we explore these cases for Θu

β.
If J : E → A$(E), then it is clear that Θu

β 6= ∅, ∀β ≥ 0 and u ∈ E with $(u,J u) > 0.
In this section, we defined Θ-contraction with respect to a self mapping and establish a common fixed

point theorem using the concept of dominating and dominated mappings.

Theorem 2.1. Let (E , $) be a left K-complete T1-quasi metric space, Θ ∈ Ω and J : E → A$(E). If ∃ α ∈ (0, 1)
such that for any u ∈ E with $(u,J u) > 0 and v ∈ Θu

β satisfying

Θ($(v,J v)) ≤ [Θ($(u, v))]α,

then u∗ ∈ J u∗ provided that α < β and u→ $(u,J u) is lower semi-continuous regarding τ$.

Proof. Let u∗ 6∈ J u∗. Now, ∀u ∈ E we get $(u,J u) > 0. (Note that if $(u,J u) = 0, then since J u
∈ A$(E), there exists a ∈ J u such that

$(u, a) = $(u,J u) = 0.

So, a = u ∈ J u because $ is a T1-quasi metric). Now, since J u ∈ A$(E) for every u ∈ E , so the set Θu
β is

nonempty. Let u0 ∈ E , be an arbitrary initial point, then ∃ u1 ∈ Θu0
β so that

Θ($(u1,J u1)) ≤ [Θ($(u0, u1))]
α,

and for u1 ∈ E , ∃ u2 ∈ Θu1
β satisfying

Θ($(u2,J u2)) ≤ [Θ($(u1, u2))]
α.

Pursuing in this way, we have a sequence {un}, where un+1 ∈ Θun
β and

Θ($(un+1,J un+1)) ≤ [Θ($(un, un+1))]
α. (2.1)

Now, we will prove that {un} is a left K-Cauchy sequence. As un+1 ∈ Θun
β , we have

Θ($(un, un+1)) ≤ [Θ($(un,J un))]
β. (2.2)
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From (2.1) and (2.2), we have

Θ($(un+1,J un+1)) ≤ [Θ($(un,J un))]
αβ,

and
Θ($(un+1, un+2)) ≤ [Θ($(un, un+1))]

αβ.

By this way we can obtain
Θ($(un, un+1)) ≤ [Θ($(u0, u1))]

(αβ)n
, (2.3)

and
Θ($(un,J un)) ≤ [Θ($(u0,J u0))]

(αβ)n
. (2.4)

By n→ ∞ in (2.3), we have
lim
n→∞

Θ($(un, un+1)) = 1,

which implies that
lim
n→∞

$(un, un+1) = 0,

by (Θ2). From the condition (Θ3), ∃ 0 < k < 1 and l ∈ (0, ∞] so that

lim
n→∞

Θ($(un, un+1))− 1
$(un, un+1)k = l.

Let l < ∞ and λ1 = l
2 > 0. By definition of the limit, ∃ n1 ∈N so that

|Θ($(un, un+1))− 1
$(un, un+1)k − l| ≤ λ1

∀n > n1, which implies that
Θ($(un, un+1))− 1

$(un, un+1)k ≥ l − λ1 =
l
2
= λ1

∀n > n1. Then
n$(un, un+1)

k ≤ λ2n[Θ($(un, un+1))− 1],

∀n > n1, where λ2 = 1
λ1

. Now we suppose that l = ∞. Let λ1 > 0. By the definition of the limit, ∃ n1 ∈N

so that

λ1 ≤
Θ($(un, un+1))− 1

$(un, un+1)k

∀n > n1, which implies that
n$(un, un+1)

k ≤ λ2n[Θ($(un, un+1))− 1]

∀n > n1, where λ2 = 1
λ1

. Hence, in any case, ∃ λ2 > 0 and n1 ∈N so that

n$(un, un+1)
k ≤ λ2n[Θ($(un, un+1))− 1] (2.5)

∀n > n1. Thus by (2.3) and (2.5), we get

n$(un, un+1)
k ≤ λ2n([Θ($(u0, u1))]

(αβ)n − 1).

Taking n→ ∞, we obtain
lim
n→∞

n$(un, un+1)
k = 0.

Hence ∃ n2 ∈N so that

$(un, un+1) ≤
1

n1/k
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∀n > n2. Now for m > n > n2 we get

$(un, um) ≤ $(un, un+1) + $(un+1, un+2) + · · ·+ $(um−1, um)

=
m−1

∑
i=n

$(ui, ui+1) ≤
∞

∑
i=n

$(ui, ui+1) ≤
∞

∑
i=n

1
i1/k .

Since, 0 < k < 1 and ∑∞
i=1

1
i1/k is convergent. So taking n→ ∞, we have $(un, um)→ 0. Hence {un} is left

K-Cauchy in (E , $). As (E , $) is a left K-complete, so ∃ u∗ ∈ E such that {un} is $-convergent to u∗, that
is, $(u∗, un)→ 0 as n→ ∞.

On the other hand, from (2.4) and (Θ2) we have

lim
n→∞

$(un,J un) = 0.

Since u→ $(u,J u) is lower semi-continuous regarding τ$, then

0 < $(u∗,J u∗) ≤ lim
n→∞

inf $(un,J un) = 0,

which contradicts to the supposition. Thus u∗ ∈ J u∗.

Remark 2.2. As K$−1(E) ⊆ A$(E), we can take J u ∈ K$−1(E), ∀u ∈ E in the overhead result.

Theorem 2.3. Let (E , $) be a left M-complete T1-quasi metric space, Θ ∈ Ω, and J : E → A$(E). If ∃ α ∈ (0, 1)
so that for any u ∈ E with $(u,J u) > 0, ∃ v ∈ Θu

β satisfying

Θ($(v,J v)) ≤ [Θ($(u, v))]α,

then u∗ ∈ J u∗ provided that α < β and u→ $(u,J u) is lower semi-continuous regarding τ$−1 .

Proof. Let u∗ 6∈ J u∗. Then $(u∗,J u∗) > 0. By Theorem 2.1, there exists left K-Cauchy sequence {un}. By
the left M-completeness of (E , $), ∃ u∗ ∈ E so that, $(un, u∗)→ 0 as n→ ∞. As

lim
n→∞

$(un,J un) = 0,

and u→ $(u,J u) is lower semi-continuous regarding τ$−1 , then

0 < $(u∗,J u∗) ≤ lim
n→∞

inf $(un,J un) = 0,

which contradicts the supposition. Thus u∗ ∈ J u∗.

If C$(E) is considered on the place of A$(E) in the overhead results with the given conditions, then J
may not have a fixed point. But, if we consider Ω∗ on the place of Ω, then the fixed point of J must exists.

Theorem 2.4. Let (E , $) be a left K-complete quasi metric space, Θ ∈ Ω∗, and J : E → C$(E). If ∃ α ∈ (0, 1) so
that for any u ∈ E with $(u,J u) > 0 and v ∈ Θu

β satisfying

Θ($(v,J v)) ≤ [Θ($(u, v))]α,

then u∗ ∈ J u∗ provided that α < β and u→ $(u,J u) is lower semi-continuous regarding τ$.

Proof. Let J has no fixed point. Then, ∀u ∈ E we get $(u,J u) > 0. (But if $(u,J u) = 0, then u
∈ C$(E) = J u). Since Θ ∈ Ω∗, for every u ∈ E , so the set Θu

β is nonempty. Let u0 ∈ E , be an arbitrary
initial point, then ∃ u1 ∈ Θu0

β so that

Θ($(u1,J u1)) ≤ [Θ($(u0, u1))]
α.
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Considering the condition (Θ4), we can write

Θ($(u1,J u1)) = inf
v∈J u1

Θ($(u1, v)).

Thus from
Θ($(u1,J u1)) ≤ [Θ($(u0, u1))]

α,

we have

inf
v∈J u1

Θ($(u1, v)) ≤ [Θ($(u0, u1))]
α < [Θ($(u0, u1))]

γ,

where 0 < α < γ < 1. Therefore, ∃ u2 ∈ J u1 so that

Θ($(u1, u2)) ≤ [Θ($(u0, u1))]
γ.

Doing the same as the proof of Theorem 2.1 by considering the J u∗ ∈ C$(E).

Following theorem generalized the Feng-Liu’s fixed point theorem.

Theorem 2.5. Let (E , $) be a left M-complete quasi metric space, Θ ∈ Ω∗, and J : E → C$(E). If ∃ α ∈ (0, 1)
such that for any u ∈ E with $(u,J u) > 0 and v ∈ Θu

β satisfying

Θ($(v,J v)) ≤ [Θ($(u, v))]α,

then u∗ ∈ J u∗ provided that α < β and u→ $(u,J u) is lower semi-continuous regarding τ$−1 .

Proof. Let there does not exist u∗ ∈ E such that u∗ ∈ J u∗. From Theorem 2.4, there exists {un} which is
left K-Cauchy. As (E , $) is left M-complete, so ∃ u∗ ∈ E so that, $(un, u∗)→ 0 as n→ ∞. Now as

lim
n→∞

$(un,J un) = 0.

Since u→ $(u,J u) is lower semi-continuous regarding τ$−1 , then

0 < $(u∗,J u∗) ≤ lim
n→∞

inf $(un,J un) = 0,

which contradicts the supposition. Thus u∗ ∈ J u∗.
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