Fixed point theorems for Θ-contractions in left K-complete T_1-quasi metric space

Durdana Lateefa, Jamshaid Ahmadb,*

aDepartment of Mathematics, College of Science, Taibah University, Al Madina Al Munawara, 41411, Kingdom of Saudi Arabia.

bDepartment of Mathematics, University of Jeddah, P. O. Box 80327, Jeddah 21589, Saudi Arabia.

Abstract

The aim of this paper is to define $\Theta^\beta_u = \{ v \in \mathcal{J}(u) : \Theta(\rho(u,v)) \leq \Theta(\rho(u,\mathcal{J}(u)))^\beta \}$ and establish some new fixed point theorems in the setting of left K-complete T_1-quasi metric space. Our theorems generalize, extend, and unify several results of literature.

Keywords: Θ-contractions, property P, property Q, fixed points.

2010 MSC: 47H10, 54H25.
Definition 1.3 ([7]). Assume that a quasi-pseudo metric space \((E, \rho)\). Given \(u_0 \in E\) as centre and \(\epsilon > 0\) as radius, then
\[
B_\rho(u_0, \epsilon) = \{v \in E : \rho(u_0, v) < \epsilon\}
\]
denotes the open ball and
\[
\overline{B}_\rho(u_0, \epsilon) = \{v \in E : \rho(u_0, v) \leq \epsilon\}
\]
denotes the closed ball.

Every quasi-pseudo metric \(\rho\) on \(E\) originate a topology \(\tau_\rho\) on \(E\). If \(\rho\) is a quasi metric on \(E\), then the originated topology \(\tau_\rho\) must be \(T_0\). If \(\rho\) is a \(T_1\)-quasi metric, then the generated topology \(\tau_\rho\) is a \(T_1\).

If \(\rho\) is a quasi-pseudo metric on \(E\), then define \(\rho^-\), \(\rho^+\), and \(\rho_+\) as
\[
\rho^-(u, v) = \rho(v, u), \quad \rho^+(u, v) = \max\{\rho(u, v), \rho^{-1}(u, v)\}, \quad \text{and} \quad \rho_+(u, v) = \rho(u, v) + \rho^{-1}(u, v).
\]
All these metrics are also quasi-pseudo metrics on \(E\). Moreover, if \(\rho\) satisfies
\[
u \neq v \implies \rho(u, v) + \rho^{-1}(u, v) > 0,
\]
then \(\rho_+\) (and also \(\rho^+\)) is a metric on \(E\). Here \(\text{cl}_\rho(A), \text{cl}_{\rho^{-1}}(A), \text{cl}_{\rho^+}(A)\) denote the closure of \(A\) in \(E\) with respect to \(\tau_\rho, \tau_{\rho^{-1}}, \text{and} \tau_{\rho^+}\), respectively.

We give the following examples in which the mapping \(\rho : E \times E \rightarrow \mathbb{R}^+\) is a quasi metric but not a \(T_1\)-quasi metric.

Example 1.4 ([7]).

(i) Let \(E = \mathbb{R}\). Define \(\rho : E \times E \rightarrow \mathbb{R}^+\) as follows
\[
\rho(u, v) = \max\{|v - u, 0|\}
\]
for all \(u, v \in E\).

(ii) Let \(E = \mathbb{R}\) and
\[
\rho(u, v) = \begin{cases} 0, & u = v, \\ |v|, & u \neq v, \end{cases}
\]
for all \(u, v \in E\).

We give the following example in which the mapping \(\rho : E \times E \rightarrow \mathbb{R}^+\) is a \(T_1\)-quasi metric although not a metric on \(E\).

Example 1.5 ([7]). Let \(E = \mathbb{R}\) and
\[
\rho(u, v) = \begin{cases} v - u, & u \leq v, \\ 1, & u > v, \end{cases}
\]
for all \(u, v \in E\).

Let \((E, \rho)\) be a quasi metric space, \(B\) a nonempty subset of \(E\), and \(u \in E\). Then
\[
u \in \text{cl}_\rho(A) \iff \rho(u, B) = \inf\{\rho(u, a) : a \in B\} = 0.
\]
Likewise,
\[
u \in \text{cl}_{\rho^{-1}}(A) \iff \rho(B, u) = \inf\{\rho(a, u) : a \in B\} = 0.
\]
If \(B\) is compact subset of \(E\) and \((E, \rho)\) is a metric space, then for each \(u \in E\), there exists \(a \in B\) so that
\[
\rho(u, a) = \rho(u, B).
\]
But this property does not hold in a quasi metric space \((E, \rho)\).
However, if \((E, \rho)\) is a quasi metric space and \(A\) is a \(\tau_{\rho^{-1}}\)-compact subset of \(E\), then this property holds. Let \((E, \rho)\) be a quasi metric space and \(u \in E\). A sequence \(\{u_n\}\) converges to \(u\) regarding \(\tau_{\rho}\) is said to be \(\rho\)-convergence and denoted by \(u_n \xrightarrow{\rho} u\) and is defined by

\[
\rho(u, u_n) \rightarrow 0,
\]
as \(n \rightarrow \infty\). Similarly, the convergence of \(\{u_n\}\) to \(u\) regarding \(\tau_{\rho^{-1}}\) is said to be \(\rho^{-1}\)-convergence and denoted by \(u_n \xrightarrow{\rho^{-1}} u\) and is defined by

\[
\rho^{-1}(u_n, u) \rightarrow 0,
\]
as \(n \rightarrow \infty\). Finally, the convergence of \(\{u_n\}\) to \(u\) regarding \(\tau_{\rho}\) is said to be \(\rho^s\)-convergence and denoted by \(u_n \xrightarrow{\rho^s} u\) and is defined by

\[
\rho^s(u_n, u) \rightarrow 0,
\]
as \(n \rightarrow \infty\). It is clear that \(u_n \xrightarrow{\rho^s} u \iff u_n \xrightarrow{\rho} u\) and \(u_n \xrightarrow{\rho^{-1}} u\).

Definition 1.6 ([7]). Assume that \((E, \rho)\) is a quasi metric space (QMS).

(i) If \(\forall \epsilon > 0, \exists n_0 \in \mathbb{N}\) so that

\[
\forall n, k, \ n \geq k \geq n_0, \ \rho(u_k, u_n) < \epsilon,
\]

then \(\{u_n\}\) in \(E\) is called a left K-Cauchy.

(ii) If \(\forall \epsilon > 0, \exists n_0 \in \mathbb{N}\) so that

\[
\forall n, k, \ n \geq k \geq n_0, \ \rho(u_n, u_k) < \epsilon,
\]

then \(\{u_n\}\) in \(E\) is called a right K-Cauchy.

(iii) If \(\forall \epsilon > 0, \exists n_0 \in \mathbb{N}\) so that

\[
\forall n, k \geq n_0, \ \rho(u_n, u_k) < \epsilon,
\]

then \(\{u_n\}\) in \(E\) is said to be \(\rho^s\)-Cauchy.

Definition 1.7 ([7]). Assume that \((E, \rho)\) be a QMS.

- If each left (right) K-Cauchy sequence is \(\rho\)-convergent then \((E, \rho)\) is called a left (right) K-complete.
- If each left (right) K-Cauchy sequence is \(\rho^{-1}\)-convergent then \((E, \rho)\) is called a left (right) M-complete.
- If each left (right) K-Cauchy sequence is \(\rho^s\)-convergent then \((E, \rho)\) is called a left (right) Smyth complete.

Currently, Jleli and Samet [12] initiated a contemporary kind of contraction and proved a new result for this contraction in the framework of generalized metric spaces.

Definition 1.8. Let \(\Theta : (0, \infty) \rightarrow (1, \infty)\) be a function satisfying:

\(\Theta_1\) \(\Theta\) is nondecreasing;

\(\Theta_2\) for each sequence \(\{\alpha_n\} \subseteq \mathbb{R}^+\), \(\lim_{n \to \infty} \Theta(\alpha_n) = 1 \iff \lim_{n \to \infty} (\alpha_n) = 0\);

\(\Theta_3\) there exists \(0 < k < 1\) and \(l \in (0, \infty)\) such that \(\lim_{a \to 0^+} \frac{\Theta(a)}{\alpha^k} = l\).

A mapping \(J : E \rightarrow E\) is said to be \(\Theta\)-contraction if there exist the function \(\Theta\) satisfying \((\Theta_1)-(\Theta_3)\) and \(\alpha \in (0, 1)\) so that for all \(u, v \in E\),

\[
\rho(Ju, Jv) \neq 0 \implies \Theta(\rho(u, v)) \leq \Theta(\rho(Ju, Jv)) \leq \Theta(\rho(u, v))^{\alpha}.
\]

Theorem 1.9 ([12]). If \(J\) be a \(\Theta\)-contraction on a complete metric space \((E, \rho)\), then \(u^* = Ju^*\).
To be consistent with Samet et al. [12], we denote by \(\Omega \) the set of all functions \(\Theta: (0, \infty) \to (1, \infty) \) satisfying the above conditions.

Many researchers [1–6, 9–11, 13–16] have generalized various theorems on metric space by taking the class \(\Omega \).

Subsequently Hancer et al. [8] extended the above definition and added one more condition in this way.

\[(\Theta_4) \ \Theta(\inf \Lambda) = \inf \Theta(\Lambda), \text{ for all } \Lambda \subset (0, \infty) \text{ with } \inf \Lambda > 0.\]

We denote by \(\Omega^* \) the set of all functions \(\Theta \) satisfying \((\Theta_1)-(\Theta_4)\).

The purpose of this manuscript is to define a new family \(\Theta^u_n \) for a multivalued mapping and obtain some fixed point theorems.

2. Main Result

Let \((\mathcal{E}, \rho) \) be a quasi metric space, \(\mathcal{J}: \mathcal{E} \to \mathcal{P}(\mathcal{E}) \), \(\Theta \in \Omega \), and \(\beta \geq 0 \). For \(u \in \mathcal{E} \) with \(\rho(u, \mathcal{J}u) > 0 \), define the set \(\Theta^u_\beta \subseteq \mathcal{E} \) as

\[\Theta^u_\beta = \{ v \in \mathcal{J}u : \Theta(\rho(u, v)) \leq [\Theta(\rho(u, \mathcal{J}u))]^{\beta} \} \]

It is obvious that, if \(\beta_1 \leq \beta_2 \), then \(\Theta^u_{\beta_1} \subseteq \Theta^u_{\beta_2} \). Now, we explore these cases for \(\Theta^u_{\beta} \).

If \(\mathcal{J}: \mathcal{E} \to \mathcal{A}_{\rho}(\mathcal{E}) \), then it is clear that \(\Theta^u_{\beta} \neq \emptyset \) for all \(\beta \geq 0 \) and \(u \in \mathcal{E} \) with \(\rho(u, \mathcal{J}u) > 0 \).

In this section, we defined \(\Theta \)-contraction with respect to a self mapping and establish a common fixed point theorem using the concept of dominating and dominated mappings.

Theorem 2.1. Let \((\mathcal{E}, \rho) \) be a left \(K \)-complete \(T_1 \)-quasi metric space, \(\Theta \in \Omega \) and \(\mathcal{J}: \mathcal{E} \to \mathcal{A}_{\rho}(\mathcal{E}) \). If there exists \(\alpha \in (0, 1) \) such that for any \(u \in \mathcal{E} \) with \(\rho(u, \mathcal{J}u) > 0 \) and \(v \in \Theta^u_{\beta} \) satisfying\n
\[\Theta(\rho(v, v)) \leq [\Theta(\rho(u, v))]^{\alpha},\]

then \(u^* \in \mathcal{J}u^* \) provided that \(\alpha < \beta \) and \(u \to \rho(u, \mathcal{J}u) \) is lower semi-continuous regarding \(\tau_\rho \).

Proof. Let \(u^* \notin \mathcal{J}u^* \). Now, for all \(u \in \mathcal{E} \) we get \(\rho(u, \mathcal{J}u) > 0 \). (Note that if \(\rho(u, \mathcal{J}u) = 0 \), then since \(\mathcal{J}u \in \mathcal{A}_{\rho}(\mathcal{E}) \), there exists \(a \in \mathcal{J}u \) such that

\[\rho(u, a) = \rho(u, \mathcal{J}u) = 0.\]

So, \(a = u \in \mathcal{J}u \) because \(\rho \) is a \(T_1 \)-quasi metric. Now, since \(\mathcal{J}u \in \mathcal{A}_{\rho}(\mathcal{E}) \) for every \(u \in \mathcal{E} \), so the set \(\Theta^u_{\beta} \) is nonempty. Let \(u_0 \in \mathcal{E} \), be an arbitrary initial point, then there exists \(u_1 \in \Theta^u_{\beta} \) so that

\[\Theta(\rho(u_1, \mathcal{J}u_1)) \leq [\Theta(\rho(u_0, u_1))]^{\alpha},\]

and for \(u_1 \in \mathcal{E} \), there exists \(u_2 \in \Theta^u_{\beta} \) satisfying

\[\Theta(\rho(u_2, \mathcal{J}u_2)) \leq [\Theta(\rho(u_1, u_2))]^{\alpha}.\]

Pursuing in this way, we have a sequence \(\{u_n\} \), where \(u_{n+1} \in \Theta^u_{\beta} \) and

\[\Theta(\rho(u_{n+1}, \mathcal{J}u_{n+1})) \leq [\Theta(\rho(u_n, u_{n+1}))]^{\alpha}. \tag{2.1}\]

Now, we will prove that \(\{u_n\} \) is a left \(K \)-Cauchy sequence. As \(u_{n+1} \in \Theta^u_{\beta} \), we have

\[\Theta(\rho(u_n, u_{n+1})) \leq [\Theta(\rho(u_n, \mathcal{J}u_n))]^{\beta}. \tag{2.2}\]

From (2.1) and (2.2), we have

\[\Theta(\rho(u_{n+1}, \mathcal{J}u_{n+1})) \leq [\Theta(\rho(u_n, \mathcal{J}u_n))]^{\alpha \beta},\]
and
\[\Theta(\rho(u_{n+1}, u_{n+2})) \leq \Theta(\rho(u_n, u_{n+1}))^{\alpha \beta}. \]

By this way we can obtain
\[\Theta(\rho(u_n, u_{n+1})) \leq \Theta(\rho(u_0, u_1))^{(\alpha \beta)^n}, \tag{2.3} \]
and
\[\Theta(\rho(u_n, \partial u_n)) \leq \Theta(\rho(u_0, \partial u_0))^{(\alpha \beta)^n}. \tag{2.4} \]

By \(n \to \infty \) in (2.3), we have
\[\lim_{n \to \infty} \Theta(\rho(u_n, u_{n+1})) = 1, \]
which implies that
\[\lim_{n \to \infty} \rho(u_n, u_{n+1}) = 0, \]
by \((\Theta_2)\). From the condition \((\Theta_3)\), there exists \(0 < k < 1 \) and \(l \in (0, \infty) \) so that
\[\lim_{n \to \infty} \frac{\Theta(\rho(u_n, u_{n+1})) - 1}{\rho(u_n, u_{n+1})^k} = l. \]

Let \(l < \infty \) and \(\lambda_1 = \frac{1}{2} > 0 \). By definition of the limit, there exists \(n_1 \in \mathbb{N} \) so that
\[\left| \frac{\Theta(\rho(u_n, u_{n+1})) - 1}{\rho(u_n, u_{n+1})^k} - l \right| \leq \lambda_1 \]
for all \(n > n_1 \), which implies that
\[\frac{\Theta(\rho(u_n, u_{n+1})) - 1}{\rho(u_n, u_{n+1})^k} \geq 1 - \lambda_1 = \frac{1}{2} = \lambda_1 \]
for all \(n > n_1 \). Then
\[n\rho(u_n, u_{n+1})^k \leq \lambda_2 n[\Theta(\rho(u_n, u_{n+1})) - 1], \]
for all \(n > n_1 \), where \(\lambda_2 = \frac{1}{\lambda_1} \). Now we suppose that \(l = \infty \). Let \(\lambda_1 > 0 \). By the definition of the limit, there exists \(n_1 \in \mathbb{N} \) so that
\[\lambda_1 \leq \frac{\Theta(\rho(u_n, u_{n+1})) - 1}{\rho(u_n, u_{n+1})^k} \]
for all \(n > n_1 \), which implies that
\[n\rho(u_n, u_{n+1})^k \leq \lambda_2 n[\Theta(\rho(u_n, u_{n+1})) - 1] \]
for all \(n > n_1 \), where \(\lambda_2 = \frac{1}{\lambda_1} \). Hence, in any case, there exists \(\lambda_2 > 0 \) and \(n_1 \in \mathbb{N} \) so that
\[n\rho(u_n, u_{n+1})^k \leq \lambda_2 n[\Theta(\rho(u_n, u_{n+1})) - 1] \tag{2.5} \]
for all \(n > n_1 \). Thus by (2.3) and (2.5), we get
\[n\rho(u_n, u_{n+1})^k \leq \lambda_2 n[(\Theta(\rho(u_0, u_1))^{(\alpha \beta)^n} - 1). \]

Taking \(n \to \infty \), we obtain
\[\lim_{n \to \infty} n\rho(u_n, u_{n+1})^k = 0. \]

Hence there exists \(n_2 \in \mathbb{N} \) so that
\[\rho(u_n, u_{n+1}) \leq \frac{1}{n_1^{1/k}} \]
\[
\]
for all $n > n_2$. Now for $m > n > n_2$ we get
\[
\rho(u_n, u_m) \leq \rho(u_n, u_{n+1}) + \rho(u_{n+1}, u_{n+2}) + \cdots + \rho(u_{m-1}, u_m)
\]
\[
= \sum_{i=n}^{m-1} \rho(u_i, u_{i+1}) \leq \sum_{i=n}^{\infty} \rho(u_i, u_{i+1}) \leq \sum_{i=n}^{\infty} \frac{1}{i^1/k}.
\]
Since, $0 < k < 1$ and $\sum_{i=1}^{\infty} \frac{1}{i^1/k}$ is convergent. So taking $n \to \infty$, we have $\rho(u_n, u_m) \to 0$. Hence $\{u_n\}$ is left K-Cauchy in (\mathcal{E}, ρ). As (\mathcal{E}, ρ) is a left K-complete, so there exists $u^* \in \mathcal{E}$ such that $\{u_n\}$ is ρ-convergent to u^*, that is, $\rho(u^*, u_n) \to 0$ as $n \to \infty$. \hfill \qed

On the other hand, from (2.4) and (Θ2) we have
\[
\lim_{n \to \infty} \rho(u_n, J u_n) = 0.
\]
Since $u \to \rho(u, J u)$ is lower semi-continuous regarding τ_ρ, then
\[
0 < \rho(u^*, J u^*) \leq \lim_{n \to \infty} \inf \rho(u_n, J u_n) = 0,
\]
which contradicts to the supposition. Thus $u^* \in J u^*$.

Remark 2.2. As $K_{\rho^{-1}}(\mathcal{E}) \subseteq A_\rho(\mathcal{E})$, we can take $J u \in K_{\rho^{-1}}(\mathcal{E})$ for all $u \in \mathcal{E}$ in the overhead result.

Theorem 2.3. Let (\mathcal{E}, ρ) be a left M-complete T_1-quasi metric space, $\Theta \in \Omega$, and $J : \mathcal{E} \to A_\rho(\mathcal{E})$. If there exists $\alpha \in (0, 1)$ so that for any $u \in \mathcal{E}$ with $\rho(u, J u) > 0$, there exists $v \in \Theta^u_\rho$ satisfying
\[
\Theta(\rho(v, J v)) \leq [\Theta(\rho(u, v))]^\alpha,
\]
then $u^* \in J u^*$ provided that $\alpha < \beta$ and $u \to \rho(u, J u)$ is lower semi-continuous regarding $\tau_{\rho^{-1}}$.

Proof. Let $u^* \not\in J u^*$. Then $\rho(u^*, J u^*) > 0$. By Theorem 2.1, there exists left K-Cauchy sequence $\{u_n\}$. By the left M-completeness of (\mathcal{E}, ρ), there exists $u^* \in \mathcal{E}$ so that, $\rho(u_n, u^*) \to 0$ as $n \to \infty$. As
\[
\lim_{n \to \infty} \rho(u_n, J u_n) = 0,
\]
and $u \to \rho(u, J u)$ is lower semi-continuous regarding $\tau_{\rho^{-1}}$, then
\[
0 < \rho(u^*, J u^*) \leq \lim_{n \to \infty} \inf \rho(u_n, J u_n) = 0,
\]
which contradicts the supposition. Thus $u^* \in J u^*$. \hfill \qed

If $C_\rho(\mathcal{E})$ is considered on the place of $A_\rho(\mathcal{E})$ in the overhead results with the given conditions, then \mathcal{J} may not have a fixed point. But, if we consider Ω^* on the place of Ω, then the fixed point of J must exists.

Theorem 2.4. Let (\mathcal{E}, ρ) be a left K-complete quasi metric space, $\Theta \in \Omega^*$, and $J : \mathcal{E} \to C_\rho(\mathcal{E})$. If there exists $\alpha \in (0, 1)$ so that for any $u \in \mathcal{E}$ with $\rho(u, J u) > 0$ and $v \in \Theta^u_\rho$ satisfying
\[
\Theta(\rho(v, J v)) \leq [\Theta(\rho(u, v))]^\alpha,
\]
then $u^* \in J u^*$ provided that $\alpha < \beta$ and $u \to \rho(u, J u)$ is lower semi-continuous regarding τ_ρ.

Proof. Let J has no fixed point. Then, for all $u \in \mathcal{E}$ we get $\rho(u, J u) > 0$. (But if $\rho(u, J u) = 0$, then $u \in C_\rho(\mathcal{E}) = J u$). Since $\Theta \in \Omega^*$, for every $u \in \mathcal{E}$, so the set Θ^u_ρ is nonempty. Let $u_0 \in \mathcal{E}$, be an arbitrary initial point, then there exists $u_1 \in \Theta^{u_0}_\rho$ so that
\[
\Theta(\rho(u_1, J u_1)) \leq [\Theta(\rho(u_0, u_1))]^\alpha.
\]
Considering the condition \((\Theta_4)\), we can write
\[
\Theta(\rho(u_1, J u_1)) = \inf_{v \in J u_1} \Theta(\rho(u_1, v)).
\]
Thus from
\[
\Theta(\rho(u_1, J u_1)) \leq [\Theta(\rho(u_0, u_1))]^\alpha,
\]
we have
\[
\inf_{v \in J u_1} \Theta(\rho(u_1, v)) \leq [\Theta(\rho(u_0, u_1))]^\alpha < [\Theta(\rho(u_0, u_1))]^\gamma,
\]
where \(0 < \alpha < \gamma < 1\). Therefore, there exists \(u_2 \in J u_1\) so that
\[
\Theta(\rho(u_1, u_2)) \leq [\Theta(\rho(u_0, u_1))]^\gamma.
\]
Doing the same as the proof of Theorem 2.1 by considering the \(J u^* \in C_\rho(\mathcal{E})\).

Following theorem generalized the Feng-Liu’s fixed point theorem.

Theorem 2.5. Let \((\mathcal{E}, \rho)\) be a left M-complete quasi metric space, \(\Theta \in \Omega^\ast\), and \(J : \mathcal{E} \to C_\rho(\mathcal{E})\). If there exists \(\alpha \in (0, 1)\) such that for any \(u \in \mathcal{E}\) with \(\rho(u, J u) > 0\) and \(v \in \Theta^\beta\) satisfying
\[
\Theta(\rho(v, J v)) \leq [\Theta(\rho(u, v))]^\alpha,
\]
then \(u^* \in J u^*\) provided that \(\alpha < \beta\) and \(u \to \rho(u, J u)\) is lower semi-continuous regarding \(\tau_{\rho^{-1}}\).

Proof. Let there does not exist \(u^* \in \mathcal{E}\) such that \(u^* \in J u^*\). From Theorem 2.4, there exists \(\{u_n\}\) which is left K-Cauchy. As \((\mathcal{E}, \rho)\) is left M-complete, so ther exists \(u^* \in \mathcal{E}\) so that, \(\rho(u_n, u^*) \to 0\) as \(n \to \infty\). Now as
\[
\lim_{n \to \infty} \rho(u_n, J u_n) = 0.
\]
Since \(u \to \rho(u, J u)\) is lower semi-continuous regarding \(\tau_{\rho^{-1}}\), then
\[
0 < \rho(u^*, J u^*) \leq \lim_{n \to \infty} \inf \rho(u_n, J u_n) = 0,
\]
which contradicts the supposition. Thus \(u^* \in J u^*\).

References

