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Abstract

The aim of this article is to prove some coincidence and fixed point theorems of hybrid contractions involving left total
relations and single-valued mappings in the setting of F-metric spaces which was first introduced by Jleli and Samet [M. Jleli,
B. Samet, J. Fixed Point Theory Appl., 20 (2018), 20 pages]. Finally, an example is also presented to verify the effectiveness and
applicability of our main results.
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1. Introduction and preliminaries

Over the past few decades, fixed point theory become a distinguished mathematical theory which is a
pretty mixture of analysis, topology, and geometry. It is an interdisciplinary theory in which the existence
of linear and nonlinear problems is frequently transformed into fixed point problems, for example, the
existence of solutions to partial differential equations, the existence of solutions to integral equations, and
the existence of periodic orbits in dynamical systems. This makes fixed point theory a contemporary area
and a subject of active scientific research, constantly evolving and growing in a perpetual progress.

Banach’s contraction principle [2] is one of the pivotal results of fixed point theory, which establishes
that, if F is a mapping from a complete metric space (X,d) into itself and there exists a constant k ∈ [0, 1)
such that

d(Fx, Fy) 6 kd(x,y),

for all x,y ∈ X, then F has a unique fixed point in X.
In 2012, Azam [1] obtained some coincidence points of self mappings and left total relations under

generalized contractive conditions in a metric spaces.
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Let S1 and S2 be arbitrary nonempty sets. A relation R from S1 to S2 is a subset of S1×S2 and is denoted
by R : S1 � S2. The statement (x,y) ∈ R is read ”x is R-related to y”, and is denoted by xRy. A relation
R : S1 � S2 is called left-total, if for all x ∈ S1 there exists a y ∈ S2 such that xRy that is R is a multivalued
function. A relation R : S1 � S2 is called right-total, if for all y ∈ S2 there exists an x ∈ S1 such that xRy.
A relation R : S1 � S2 is known as functional, if xRy, xRz implies that y = z, for x ∈ S1 and y, z ∈ S2. A
mapping F : S1 → S2 is a relation from S1 to S2 which is both functional and left-total.

For R : S1 � S2, J ⊂ S1 we define

R (J) = {b ∈ S2 : aRb for some x ∈ J} ,
dom (R) = {a ∈ S1 : R ({a}) 6= φ} ,

Range (R) = {b ∈ S2 : b ∈ R ({a}) for some a ∈ dom (R)} .

For convenience, we denote R ({a}) by R {a} . The class of relations from S1 to S2 is denoted by R (S1,S2).
Thus the collection M (S1,S2) of all mappings from S1 to S2 is a proper sub collection of R (S1,S2). An
element x∗ ∈ S1 is called coincidence point of F : S1 → S2 and R : S1 � S2 if Fx∗ ∈ R {x∗} . In the following
we always suppose that X is nonempty set and (Y,d) is a metric space. For R : X� Y and a,b ∈ dom (R) ,
we define

D (R {a} ,R {b}) = inf
aRx,bRy

d(x,y).

The author [1] gave the following results as a consequence of his main result.

Theorem 1.1 ([1]). Let X be a nonempty set and (Y,d) be a metric space. Let F : X→ Y be single-valued mapping,
R : X � Y be such that R is left-total, Range(F) ⊆ Range(R) and Range(F) or Range(R) is complete. If there
exists a constant k ∈ [0, 1) such that

d(Fx, Fy) 6 kD(R{x},R{y}),

for all x,y ∈ X. Then there exists w ∈ X such that Fw ∈ R{w}.

Theorem 1.2 ([1]). Let X be a nonempty set and (Y,d) be a metric space. Let F,R : X→ Y be two mappings such
that Range(F) ⊆ Range(R) and Range(F) or Range(R) is complete. If there exists a constant k ∈ (0, 1) such that

D(Fx, Fy) 6 kD(Rx,Ry),

for all x,y ∈ X. Then F and R have a coincidence point in X. Moreover, if either F or R is injective, then R and F
have a unique coincidence point in X.

Very recently, Jleli and Samet [5] introduced an interesting generalization of a metric space in the
following way.

Let F be the set of continuous functions f : (0,+∞)→ R satisfying the following conditions:

(F1) f is non-decreasing, i.e., 0 < s < t implies f(s) 6 f(t);

(F2) For every sequence {tn} ⊆ R+, limn→∞ αn = 0 if and only if limn→∞ f(αn) = −∞.

Definition 1.3 ([5]). Let X be a nonempty set, and let D : X×X → [0,+∞) be a given mapping. Suppose
that there exists (f,α) ∈ F× [0,+∞) such that

(D1) (x,y) ∈ X×X, D(x,y) = 0 if and only if x = y;

(D2) D(x,y) = D(y, x), for all (x,y) ∈ X×X;

(D3) For every (x,y) ∈ X×X, for every N ∈N, N > 2, and for every (ui)
N
i=1 ⊂ X, with (u1,uN) = (x,y),

we have

D(x,y) > 0⇒ f(D(x,y)) 6 f(
N−1∑
i=1

D(xi, xi+1)) +α.
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Then D is said to be an F-metric on X, and the pair (X,D) is said to be an F-metric space.

Remark 1.4. They showed that any metric space is an F-metric space but the converse is not true in general,
which confirms that this concept is more general than the standard metric concept.

Example 1.5 ([5]). The set of real numbers R is an F-metric space, if we define D by

D(x,y) =
{

(x− y)2, if (x,y) ∈ [0, 3]× [0, 3],
|x− y|, if (x,y) 6∈ [0, 3]× [0, 3],

with f(t) = ln(t) and α = ln(3).

Definition 1.6 ([5]). Let (X,D) be an F-metric space.

(i) Let {xn} be a sequence in X. We say that {xn} is F-convergent to x ∈ X if {xn} is convergent to x with
respect to the F-metric D.

(ii) A sequence {xn} is F-Cauchy, if
lim

n,m→∞D(xn, xm) = 0.

(iii) We say that (X,D) is F-complete, if every F-Cauchy sequence in X is F-convergent to a certain
element in X.

Theorem 1.7 ([5]). Let (X,D) be an F-metric space and g : X→ X be a given mapping. Suppose that the following
conditions are satisfied:

(i) (X,D) is F-complete;

(ii) there exists k ∈ (0, 1) such that
D(g(x),g(y)) 6 kD(x,y).

Then g has a unique fixed point x∗ ∈ X. Moreover, for any x0 ∈ X, the sequence {xn} ⊂ X defined by

xn+1 = g(xn), n ∈N,

is F-convergent to x∗.

Afterward, Hussain et al. considered the notion of α–ψ–contraction in the setting of F–metric spaces
and proved the following fixed point theorem.

Theorem 1.8 ([3]). Let (X,D) be an F–metric space and T : X → X be β–admissible mapping. Suppose that the
following conditions are satisfied:

(i) (X,D) is F-complete;

(ii) there exist two functions β : X×X→ [0,+∞) and ψ ∈ Ψ such that

β(x,y)D(T(x), T(y)) 6 ψ(M(x,y)),

where
M(x,y) = max{D(x,y),D(x, Tx),D(y, Ty)},

for x,y ∈ X;

(iii) there exists x0 ∈ X such that β(x0, T(x0)) > 1.

Then T has a unique fixed point x∗ ∈ X.

In this paper, we prove some coincidence point theorems of left total relations and single-valued
mappings in the context of F–metric spaces and derive the results of Azam and Jleli and Samet.
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2. Main results

Now we state and prove our main results in this section.

Theorem 2.1. Let X be a nonempty set and (Y,D) be an F–metric space. Let F : X→ Y be single-valued mapping,
R : X � Y be such that R is left-total, Range(F) ⊆ Range(R) and Range(F) or Range(R) is F–complete. If there
exists a constant k ∈ (0, 1) such that

D(Fx, Fy) 6 kD(R{x},R{y}), (2.1)

for all x,y ∈ X, then there exists w ∈ X such that Fw ∈ R{w}.

Proof. Let x0 ∈ X be an arbitrary, but fixed element. We define the sequences {xn} ⊂ X and {yn} ⊂
Range(R). Let y1 = Fx0, since Range(F) ⊆ Range(R). We may choose x1 ∈ X such that x1Ry1, since R is
left-total. Let y2 = Fx1, since Range(F) ⊆ Range(R). If Fx0 = Fx1, then we have x1Ry2. This implies that x1
is the required point that is Fx1 ∈ R{x1}. So we assume that Fx0 6= Fx1, then from (2.1) we get

D(y1,y2) = D(Fx0, Fx1) 6 kD(R{x0},R{x1}). (2.2)

We may choose x2 ∈ X such that x2Ry2, since R is left-total. Let y3 = Fx2, since Range(F) ⊆ Range(R). If
Fx1 = Fx2, then we have x2Ry3. This implies that Fx2 ∈ R{x2} and x2 is the coincidence point. So Fx1 6= Fx2,
then from (2.1), we get

D(y2,y3) = D(Fx1, Fx2) 6 kD(R{x1},R{x2}). (2.3)

By induction, we can construct sequences {xn} ⊂ X and {yn} ⊂ Range(R) such that

yn = Fxn−1 and xnRyn, (2.4)

for all n ∈ N. If there exists n0 ∈ N for which Fxn0−1 = Fxn0 . Then xn0Ryn0+1. Thus Fxn0 ∈ R{xn0} and
the proof is finished. So we suppose now that Fxn−1 6= Fxn for every n ∈ N. Then from (2.2), (2.3) and
(2.4), we deduce that

D(yn,yn+1)) = D(Fxn−1, Fxn) 6 kD(R{xn−1},R{xn}), (2.5)

for all n ∈ N. Since xnRyn and xn+1Ryn+1, therefore by the definition of D for left total relation, we get
D(R{xn−1},R{xn}) 6 D(yn−1,yn). Thus from (2.5), we have

D(yn,yn+1) 6 kD(yn−1,yn),

which further implies that

D(yn,yn+1) 6 kD(yn−1,yn) 6 k2D(yn−2,yn−1) 6 ... 6 knD(y0,y1).

It further yields that
m−1∑
i=n

D(yi,yi+1) 6
kn

1 − k
D(y0,y1), m > n.

Since
lim
n→∞ kn

1 − k
D(y0,y1) = 0,

there exists some N ∈N such that

0 <
kn

1 − k
D(y0,y1) < δ, n > N. (2.6)

Next, let (f,α) ∈ F× [0,+∞) be such that (D3) is satisfied. Let ε > 0 be fixed. By (F2), there exists δ > 0
such that

0 < t < δ =⇒ f(t) < f(δ) −α. (2.7)
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Hence, by (2.6), (2.7) and (F2), we have

f(

m−1∑
i=n

D(yi,yi+1)) 6 f(
kn

1 − k
D(y0,y1)) < f(ε) −α,

for m > n > N. Using (D3) and (2.5), we obtain D(yn,ym) > 0, m > n > N implies

f(D(yn,ym)) 6 f(
m−1∑
i=n

D(yi,yi+1)) +α < f(ε),

which implies by (F1) that D(yn,ym) < ε, m > n > N. This proves that {yn} is F–Cauchy in Range(R).
Since Range(R) is F–complete, there exist z ∈ Range(R) such that {yn} is F–convergent to z, i.e.,

lim
n→∞D(yn, z) = 0. (2.8)

Now since R is left-total, so wRz for some w ∈ X. Now

D(yn, Fw) = D(Fxn−1, Fw) 6 kD(R{xn−1},R{w})
6 kD(yn−1, z).

By (D3), we have

f(D(z, Fw)) 6 f(D(z,yn) +D(yn, Fw)) +α
= f(D(z,yn) +D(Fxn−1, Fw)) +α, n ∈ N.

By (2.1) and (F1), we obtain

f(D(z, Fw)) 6 f(D(z,yn) + kD(R{xn−1},R{w})) +α
6 f(D(z,yn) + kD(yn−1, z)) +α, n ∈ N,

for n ∈ N. On the other hand, using (F2) and (2.8), we have

lim
n→∞ f(D(z,yn) + kD(yn−1, z)) +α = −∞,

which is a contradiction. Therefore, we have d(z, Fw) = 0, i.e., z = Fw. Hence Fw ∈ R{w}. In the case when
Range(F) is F–complete. Since Range(F) ⊆ Range(R), so there exists an element z∗ ∈ Range(R) such that
yn → z∗. The remaining part of the proof is same as in previous case.

Example 2.2. Let X = Y = R endowed with F–complete F–metric D given by

D(x,y) =
{

exp(|x− y|), if x 6= y,
0, if x = y.

Take f(t) = −1
t and α = 1. Define F : X→ Y as

Fx =

{
0 if x ∈ Q′,
1 if x ∈ Q ,

and R : X� Y

R = (Q× [0, 3])∪
(
Q′× [7, 9]

)
.

Then Range (F) = {0, 1} ⊂ Range (R) = [0, 3] ∪ [7, 9]. For x ∈ Q, y ∈ Q′ or either y ∈ Q, x ∈ Q′, we have
d(Fx, Fy) 6= 0 implies

D(Fx, Fy)) 6 kD(R{x},R{y})),

with k = 1
2 . Thus all conditions of the above theorem are satisfied and 1 is the coincidence point of F and

R.
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From Theorem 2.1, we deduce the following result immediately.

Theorem 2.3. Let X be a nonempty set and (Y,D) be an F–metric space. Let F,R : X → Y be two mappings such
that Range(F) ⊆ Range(R) and Range(F) or Range(R) is F–complete. If there exists a constant k ∈ (0, 1) such
that

D(Fx, Fy) 6 kD(Rx,Ry),

for all x,y ∈ X, then F and R have a coincidence point in X. Moreover, if either F or R is injective, then R and F
have a unique coincidence point in X.

Proof. By Theorem 2.1, we obtain that there exists w ∈ X such that Fw = Rw, where

Rw = lim
n→∞Rxn = lim

n→∞Fxn−1, x0 ∈ X.

For uniqueness, assume that w1,w2 ∈ X, w1 6= w2, Fw1 = Rw1 and Fw2 = Rw2. Then

D(Fw1, Fw2)) 6 kD(Rw1,Rw2),

for any k ∈ (0, 1). If R or F is injective, then

D (Rw1,Rw2)) = D(Fw1, Fw2) 6 kD(Rw1,Rw2) < D(Rw1,Rw2),

a contradiction. Thus proved.

Corollary 2.4 ([4]). Let (X,D) be an F–metric space and F : X→ X be a self mapping. Suppose that the following
conditions are satisfied:

(i) (X,D) is F–complete;

(ii) there exists a constant k ∈ (0, 1) such that,

D(Fx, Fy)) 6 kD(x,y),

for all x,y ∈ X.

Then F has a unique fixed point.

Proof. Choosing X = Y and R = I (the identity mapping on X).

By Remark 1.4, we can deduces several well-known fixed point theorems of the existing literature from
our main results as special cases.

(1) Theorem 1.1 of Azam [1] from Theorem 2.1.

(2) Theorem 1.2 of Azam [1] from Theorem 2.3.

(3) The classical Banach contraction principle [2] from Corollary 2.4.

3. Conclusion

In this paper, we obtained some coincidence and fixed point theorems of hybrid contractions involv-
ing left total relations and single-valued mappings in the context of F–metric spaces. In this way, we
generalize several results of literature including the main result of Jleli et al. [5]. We also provided an
example to verify the effectiveness and applicability of our main results.
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(1922), 133–181. 1, 2

[3] A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point
results, Trans. A. Razmadze Math. Inst., 172 (2018), 481–490. 1.8

[4] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), 8 pages. 2.4
[5] M. Jleli, B. Samet, On a new generalization of Metric Spaces, J. Fixed Point Theory Appl., 20 (2018), 20 pages. 1, 1.3,

1.5, 1.6, 1.7, 3

https://doi.org/10.1186/1687-1812-2012-50
https://doi.org/10.1186/1687-1812-2012-50
http://matwbn.icm.edu.pl/ksiazki/fm/fm3/fm3120.pdf
http://matwbn.icm.edu.pl/ksiazki/fm/fm3/fm3120.pdf
https://doi.org/10.1016/j.trmi.2018.08.006
https://doi.org/10.1016/j.trmi.2018.08.006
https://doi.org/10.1186/1029-242X-2014-38
https://doi.org/10.1007/s11784-018-0606-6

	Introduction and preliminaries
	Main results
	Conclusion

