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Abstract
We discuss the existence, uniqueness and continuous dependence of solution for a non-autonomous semilinear Hilfer

fractional differential equation with nonlocal conditions in the space of weighted continuous functions. By means of the Kras-
noselskii’s fixed point theorem and the generalized Gronwall’s inequality, we establish the desired results.
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1. Introduction

The fractional differential equations with Hilfer (generalized Riemann-Liouville) fractional derivative
have recently attracted the attention of some authors interested in fractional calculus (see [1, 2, 9, 16, 20,
21, 25, 26]). On the other hand, autonomous and non-autonomous systems of Hilfer fractional differential
inclusions and equations play a considerable role that can not be over looked in the recent published
researches. In [12], Gu and Trujillo discussed existence of mild solution of evolution equation with Hilfer
fractional derivative. In [10], Gou and Li discussed the existence of mild solutions for nonlinear fractional
non-autonomous evolution equations of Sobolev type with delay, one can refer to papers [4, 19, 27, 28].
The continuous dependence on the initial data has been considered by many authors. Ye et al. [29]
investigated a generalized Gronwall’s inequality with singularity and used it for studying the dependence
of the solution on the order and the initial condition of the Riemann-Liouville fractional differential
equation {

Dαy(t) = f(t,y(t)), 0 < α < 1, 0 6 t < T < +∞,
Dα−1y(t)|t=0+ = η.

Recently, Dhaigude et al. [5] discussed the existence, uniqueness and continuous dependence results of
more general Hilfer fractional differential equation of the form{

D
α,β
a+ y(x) = f(x,y), n− 1 < α < n, 0 6 β 6 1, a 6 x < b,

I
n−γ
a+ y(a) = bk, k = 1, 2, . . . ,n, n = −[−α], γ = α+β(n−α).
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Motivated by the above aforementioned papers, we consider the following non-autonomous semilinear
Hilfer fractional differential equation{

D
α,β
0+ u(t) = A(t)u(t) + f(t,u(t)), t ∈ J := [0, T ],

I
1−γ
0+ u(t)|t=0+ = u0 + g(u), α 6 γ = α+β−αβ < 1,

(1.1)

in a Banach space X, where Dα,β
0+ is the Hilfer (generalized Riemann-Liouville) fractional derivative of

order α ∈ (0, 1) and type β ∈ [0, 1] introduced by Hilfer (see, [13–15]), I1−γ0+ is the left-sided Riemann-
Liouville fractional integral of order 1 − γ and u0 ∈ X. {A(t), t ∈ J} is a closed linear operator defined on
a dense domain D(A) in X into X such that D(A) is independent of t and A(t) generates an evolution
operator U(t, s), 0 6 s 6 t 6 T in the Banach space X and the functions f : J×X→ X , g : C1−γ(J,X)→ X

satisfy some assumptions that will be specified later.
It would be useful to emphasize that to the best of our knowledge, the results we obtained are more

general than previous results, since the antecedent authors did not work on the operator A(t) as well as
the concept of mild solution in terms of the evolution operator U(t, s) in the treatment of Hilfer fractional
differential equations.

The rest of the paper is organized as follows. In Section 2, some preliminary results and notations are
provided. The existence and uniqueness results are proved in Section 3. The dependence of solutions on
order and initial conditions is studied in the last section.

2. Preliminaries

In this section we present some definitions and lemmas which will be used in our results later. At
first, we review some fundamental definitions of the Riemann-Liouville fractional integral and derivative
which will be made up to the Hilfer fractional derivative (see [9, 17]).

Definition 2.1. The left-sided Riemann-Liouville fractional integral of order α > 0 of a function y :
[0,+∞)→ R is defined as

Iα0+y(t) =
1
Γ(α)

∫t
0
(t− s)α−1y(s) ds, t > 0,

where Γ(·) is the Gamma function.

Definition 2.2. The left-sided Riemann-Liouville fractional derivative of order α ∈ [n− 1,n), n ∈ Z+ of
a function y : [0,+∞)→ R is defined as

Dα0+y(t) =
1

Γ(n−α)

(
d

dt

)n ∫t
0
(t− s)n−α−1y(s) ds, t > 0.

Definition 2.3 (Hilfer fractional derivative). The right-sided Hilfer fractional derivative operator of order
0 < α < 1 and type 0 6 β 6 1 is defined by

D
α,β
0+ y(t) =

(
I
β(1−α)
0+ D

(
I
(1−β)(1−α)
0+ y

))
(t), (2.1)

where D := d
dt .

This generalization (2.1) yields the classical Riemann-Liouville fractional derivative operator when
β = 0. Moreover, for β = 1, it gives the Caputo fractional derivative operator.

In view of the Laplace transform of the Hilfer derivative ([24], formula (1.6))

L[Dα,β
0+ y](s) = sαL[y](s) − sβ(α−1)(I

(1−α)(1−β)
0+ y)(0+),
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it is clear that the initial conditions that must be considered are of the form (I
(1−α)(1−β)
0+ y)(0+), i.e., on

the initial value of the fractional integral of order 1 − γ = (1 −α)(1 −β).
Some properties and applications of the generalized Riemann-Liouville fractional derivative are given

in [13].
Let C(J,X) be the Banach space of all X-valued continuous functions from J into X equipped by the

norm ‖x‖C = supt∈J |x(t)|, ∀x ∈ C(J,X). For 0 6 γ < 1, we define the weighted space C1−γ(J,X) of all
X-valued continuous functions h as

C1−γ(J,X) = {h : J→ X : t1−γh(t) ∈ C(J,X)},

with the norm
‖h‖C1−γ = ‖t1−γh(t)‖C.

Evidently, C1−γ(J,X) is a Banach space.
In order to solve our problem, the following weighted spaces are presented

C
α,β
1−γ(J,X) = {h ∈ C1−γ(J,X), D

α,β
0+ h(t) ∈ C1−γ(J,X)}

and
C
γ
1−γ(J,X) = {h ∈ C1−γ(J,X), D

γ
0+h(t) ∈ C1−γ(J,X)}.

It is clear that Cγ1−γ(J,X) ⊂ C
α,β
1−γ(J,X).

Definition 2.4 ([6–8, 23]). The family {A(t), t ∈ J} generates a unique linear evolution operator U(t, s), 0 6
s 6 t 6 T satisfying the following properties:

(a) U(t, s) ∈ L(X), the space of all linear transformations on X, whenever 0 6 s 6 t 6 T and for each
x ∈ X, the mapping (t, s)→ U(t, s)x is continuous;

(b) U(t, s)U(s, τ) = U(s, τ) for 0 6 τ 6 s 6 t 6 T ;
(c) U(t, t) = I (identity);
(d) U(t, s) is a compact operator whenever t− s > 0;
(e) ∂U

∂t (t, s)x = −A(t)U(t, s) for s < t;
(f) there is a constant M1 > 1 such that ‖U(t, s)‖ 6M1, 0 6 s 6 t 6 T ;
(g) if 0 < h < 1, t− s > h, and 0 < ν < 1, then

‖U(t+ h, s) −U(t, s)‖ 6 M2h
ν

|t− s|ν
,

for some M2 > 0;
(h) if f(t) is continuous on [0, T ], then the function t →

∫t
0 U(t, s)f(s)ds is Hölder continuous with any

exponent 0 < ν < 1.

In order to define the concept of mild solution for the non-autonomous Hilfer fractional differential
equation (1.1), by comparison with the previous results in the case of Caputo derivative ([3, 18, 22]) and
those in the case of Hilfer derivative [9], we obtain the following definition immediately.

Definition 2.5. A function u ∈ C1−γ(J,X) is said to be a mild solution of problem (1.1) if I1−γ0+ u(t)|t=0+ =
u0 + g(u), then u satisfies the integral equation

u(t) = U(t, 0)
(u0 + g(u))

Γ(γ)
tγ−1 +

1
Γ(α)

∫t
0
(t− s)α−1U(t, s)f(s,u(s)) ds.

Theorem 2.6 ([11, Krasnoselskii’s fixed point theorem]). Let Ω be a closed convex and non-empty subset of a
Banach space (X, ‖ · ‖). Suppose that A and B maps Ω into X, such that the following hypotheses are fulfilled:

(i) Ax+By ∈ Ω for all x,y ∈ Ω;
(ii) A is a contraction mapping;

(iii) B is compact and continuous.

Then there exists a z ∈ Ω such that z = Az+Bz.
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3. Existence and uniqueness results

In this section we prove the existence and uniqueness of solution for the problem (1.1). At beginning,
we give the following assumptions.

(H1) For each t ∈ J , the function f(t, ·) : X→ X is continuous and for each x ∈ X, the function f(·, x) : J→
X is strongly measurable.

(H2) There exist two constants L1,L2 > 0 such that

|f(t,u) − f(t, v)| 6 L1|u− v| for each t ∈ J, u, v ∈ X,

and
L2 = sup

t∈J
|f(t, 0)|.

(H3) g : C1−γ(J,X)→ X is a continuous function and there exist two constants L3,L4 > 0 such that

|g(u1) − g(u2)| 6 L3‖u1 − u2‖C1−γ for all u1,u2 ∈ C1−γ(J,X), L4 = |g(0)|.

The following uniqueness result is based on the Banach contraction principle.

Theorem 3.1. Assume that assumptions (H1)-(H3) hold. Then the problem (1.1) has a unique solution u ∈
C1−γ(J,X) if

M1

(
L3

Γ(γ)
+
L1T

1−γ+α

Γ(α+ 1)

)
< 1. (3.1)

Proof. Define the operator F : C1−γ(J,X)→ C1−γ(J,X) by

(Fu)(t) =
(u0 + g(u))t

γ−1

Γ(γ)
U(t, 0) +

1
Γ(α)

∫t
0
(t− s)α−1U(t, s)f(s,u(s)) ds.

From Definition 2.5, it is easy to verify that the mild solution of the problem (1.1) is equivalent to the fixed
point of the operator F. For any u, v ∈ C1−γ(J,X) and for each t ∈ J, we get

|t1−γ(Fu)(t) − t1−γ(Fv)(t)| =

∣∣∣∣(g(u) − g(v))Γ(γ)
U(t, 0) +

t1−γ

Γ(α)

∫t
0
(t− s)α−1U(t, s)(f(s,u(s)) − f(s, v(s)) ds

∣∣∣∣
6

|g(u) − g(v)|

Γ(γ)
|U(t, 0)|+

t1−γ

Γ(α)

∫t
0
(t− s)α−1|U(t, s)||f(s,u(s)) − f(s, v(s))| ds

6
M1L3

Γ(γ)
‖u− v‖C1−γ +

M1L1t
1−γ

Γ(α)

∫t
0
(t− s)α−1|u(s) − v(s)| ds

6M1

(
L3

Γ(γ)
+
L1T

1−γ+α

Γ(α+ 1)

)
‖u− v‖C1−γ .

Thus

‖Fu−Fv‖C1−γ 6M1

(
L3

Γ(γ)
+
L1T

1−γ+α

Γ(α+ 1)

)
‖u− v‖C1−γ ,

which by (3.1) implies that F is a contraction mapping. It follows that F has a unique fixed point, which
is a solution of the problem (1.1).

Our next result is based on the Krasnoselskii’s the fixed point theorem.

Theorem 3.2. Under the assumptions (H1)-(H3), the problem (1.1) has at least one solution on J if M1L3
Γ(γ) < 1.
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Proof. Let Br = {x ∈ C1−γ(J,X) : ‖x‖C1−γ 6 r} with

r >
M1

(
|u0|+L4
Γ(γ) + L2T

1−γ+α

Γ(α+1)

)
1 −M1

(
L3
Γ(γ) +

L1T 1−γ+α

Γ(α+1)

) .

Then Br is a closed, bounded and convex subset of C1−γ(J,X). We define the operators A and B as follows

(Au)(t) =
(u0 + g(u))t

γ−1

Γ(γ)
U(t, 0),

and

(Bu)(t) =
1
Γ(α)

∫t
0
(t− s)α−1U(t, s)f(s,u(s)) ds.

We show that A+B has a fixed point in Br. The proof is divided into three steps.

Step1. We show that Au+Bv ∈ Br. For every u, v ∈ Br and each t ∈ J, we get

|t1−γ(Au)(t) + t1−γ(Bv)(t)| =

∣∣∣∣(u0 + g(u))

Γ(γ)
U(t, 0) +

t1−γ

Γ(α)

∫t
0
(t− s)α−1U(t, s)f(s, v(s)) ds

∣∣∣∣
6

(|u0|+ |g(u) − g(0)|+ |g(0)|)
Γ(γ)

|U(t, 0)|

+
t1−γ

Γ(α)

∫t
0
(t− s)α−1|U(t, s)|(|f(s, v(s)) − f(s, 0)|+ |f(s, 0)|) ds

6
M1(|u0|+ L3r+ L4)

Γ(γ)
+
M1t

1−γ

Γ(α)
(L1r+ L2)

∫t
0
(t− s)α−1 ds

6M1

(
|u0|+ L4

Γ(γ)
+
L2T

1−γ+α

Γ(α+ 1)

)
+M1

(
L3

Γ(γ)
+
L1T

1−γ+α

Γ(α+ 1)

)
r 6 r.

Therefore,
‖Au+Bv‖C1−γ 6 r,

which implies that Au+Bv ∈ Br for every u, v ∈ Br.

Step2. The operator A is contraction on Br. For each u, v ∈ Br and each t ∈ J, we get

|t1−γ(Au)(t) − t1−γ(Av)(t)| 6
|g(u) − g(v)

Γ(γ)|
|U(t, 0)| 6

M1L3

Γ(γ)
‖u− v‖C1−γ .

Then

‖Au−Av‖C1−γ 6
M1L3

Γ(γ)
‖u− v‖C1−γ ,

with M1L3
Γ(γ) < 1. This shows that A is contraction on Br.

Step3. The operator B is compact and continuous. We know that

|t1−γ(Bx)(t)| 6
t1−γ

Γ(α)

∫t
0
(t− s)α−1|U(t, s)|(|f(s, v(s)) − f(s, 0)|+ |f(s, 0)|) ds 6

M1T
1−γ+α

Γ(α+ 1)
(L1r+ L2).

Thus ‖Bu‖C1−γ 6 M1T
1−γ+α

Γ(α+1) (L1r+ L2), this shows that B is uniformly bounded on Br.
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It remains to prove the compactness of operator B. For t1, t2 ∈ J, t1 < t2, we have

|t
1−γ
2 (Bu)(t2) − t

1−γ
1 (Bu)(t1)|

=

∣∣∣∣∣t1−γ
2
Γ(α)

∫t2

0
(t2 − s)

α−1U(t2, s)f(s,u(s)) ds−
t

1−γ
1
Γ(α)

∫t1

0
(t1 − s)

α−1U(t1, s)f(s,u(s)) ds

∣∣∣∣∣
6

∣∣∣∣ 1
Γ(α)

∫t2

t1

t
1−γ
2 (t2 − s)

α−1U(t2, s)f(s,u(s)) ds
∣∣∣∣

+

∣∣∣∣ 1
Γ(α)

∫t1

0

(
t

1−γ
2 (t2 − s)

α−1 − t1−γ
1 (t1 − s)

α−1
)
U(t2, s)f(s,u(s)) ds

∣∣∣∣
+

∣∣∣∣ 1
Γ(α)

∫t1

0
t

1−γ
1 (t1 − s)

α−1 (U(t2, s) −U(t1, s)) f(s,u(s)) ds
∣∣∣∣

= I1 + I2 + I3,

(3.2)

where

I1 =

∣∣∣∣ 1
Γ(α)

∫t2

t1

t
1−γ
2 (t2 − s)

α−1U(t2, s)f(s,u(s)) ds
∣∣∣∣ ,

I2 =

∣∣∣∣ 1
Γ(α)

∫t1

0

(
t

1−γ
2 (t2 − s)

α−1 − t1−γ
1 (t1 − s)

α−1
)
U(t2, s)f(s,u(s)) ds

∣∣∣∣ ,
I3 =

∣∣∣∣ 1
Γ(α)

∫t1

0
t

1−γ
1 (t1 − s)

α−1 (U(t2, s) −U(t1, s)) f(s,u(s)) ds
∣∣∣∣ .

By assumptions (H1)-(H3) together with Definition 2.4, we get

I1 6
M1(L1r+ L2)

Γ(α+ 1)
t

1−γ
2 (t2 − t1)

α,

I2 6
M1(L1r+ L2)

Γ(α+ 1)

(
(t1−γ+α

2 − t1−γ+α
1 ) − t1−γ

2 (t2 − t1)
α
)

,

I3 6
M2(L1r+ L2)

(α− ν)Γ(α)
t

1−γ+α−ν
1 (t2 − t1)

ν.

By substitution in (3.2), we have

‖(Bu)(t2) − (Bu)(t1)‖C1−γ 6
M1(L1r+ L2)

Γ(α+ 1)
(t1−γ+α

2 − t1−γ+α
1 ) +

M2(L1r+ L2)

(α− ν)Γ(α)
t

1−γ+α−ν
1 (t2 − t1)

ν,

As t2 → t1, the right-hand side of the above inequality tends to zero. Thus, B is equicontinuous.
As a consequence of Steps 1-3 together with the Arzelà-Ascoli theorem, we deduce that the operator B

is compact and continuous. Finally, By the Krasnoskelskii’s fixed point theorem, we have the conclusion
of the theorem.

4. Continuous dependence of mild solution

In this section we study the continuous dependence of solution of the Hilfer fractional differential
equation (1.1) on the order and the initial condition using generalized Gronwall’s inequality [29].

Theorem 4.1. Let α > 0 and δ > 0 such that 0 < α− δ < α 6 1. Let f be a continuous function such that the
assumption (H2) is satisfied. For 0 6 t 6 b < T , assume that u and ũ are the solutions of the problem (1.1) and{

D
α−δ,β
0+ ũ(t) = A(t)ũ(t) + f(t, ũ(t)), t ∈ J = [0, T ],

I
1−γ−δ(β−1)
0+ ũ(t)|t=0+ = ũ0 + g(ũ), α 6 γ = α+β−αβ < 1,

(4.1)
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respectively. Then for 0 6 t 6 b < T the following inequality holds

|ũ(t) − u(t)| 6 Ω(t) +

∫t
0

(KΓ(α− δ))n

Γ(n(α− δ))
(t− s)n(α−δ)−1Ω(s) ds,

where

Ω(t) =M1

∣∣∣∣ (ũ0 + g(ũ))

Γ(γ+ δ(β− 1))
tγ+δ(β−1)−1 −

(u0 + g(u))

Γ(γ)
tγ−1

∣∣∣∣
+M1‖f‖

∣∣∣∣ tα−δ

Γ(α− δ+ 1)
−

tα−δ

(α− δ)Γ(α)

∣∣∣∣+M1‖f‖
∣∣∣∣ tα−δ

(α− δ)Γ(α)
−

tα

Γ(α+ 1)

∣∣∣∣ ,
K =

M1L1

Γ(α)
, and ‖f‖ = max

06t6b
|f(t,u(t))|.

Proof. The problems (1.1) and (4.1) are equivalent to the following integral equations

u(t) = U(t, 0)
(u0 + g(u))

Γ(γ)
tγ−1 +

1
Γ(α)

∫t
0
(t− s)α−1U(t, s)f(s,u(s)) ds,

and

ũ(t) = U(t, 0)
(ũ0 + g(ũ))

Γ(γ+ δ(β− 1))
tγ+δ(β−1)−1 +

1
Γ(α− δ)

∫t
0
(t− s)α−δ−1U(t, s)f(s, ũ(s)) ds,

respectively for each t ∈ J. Then we have

|ũ(t) − u(t)| 6

∣∣∣∣( (ũ0 + g(ũ))

Γ(γ+ δ(β− 1))
tγ+δ(β−1)−1 −

(u0 + g(u))

Γ(γ)
tγ−1

)
U(t, 0)

∣∣∣∣
+

∣∣∣∣∫t
0

(t− s)α−δ−1

Γ(α− δ)
U(t, s)f(s, ũ(s)) ds−

∫t
0

(t− s)α−1

Γ(α)
U(t, s)f(s,u(s)) ds

∣∣∣∣
6

∣∣∣∣( (ũ0 + g(ũ))

Γ(γ+ δ(β− 1))
tγ+δ(β−1)−1 −

(u0 + g(u))

Γ(γ)
tγ−1

)
U(t, 0)

∣∣∣∣
+

∣∣∣∣∫t
0

(
(t− s)α−δ−1

Γ(α− δ)
−

(t− s)α−δ−1

Γ(α)

)
U(t, s)f(s, ũ(s)) ds

∣∣∣∣
+

∣∣∣∣∫t
0

(
(t− s)α−δ−1

Γ(α)
−

(t− s)α−1

Γ(α)

)
U(t, s)f(s,u(s)) ds

∣∣∣∣
+

∣∣∣∣∫t
0

(t− s)α−δ−1

Γ(α)
U(t, s) (f(s, ũ(s)) − f(s,u(s))) ds

∣∣∣∣
6M1

∣∣∣∣ (ũ0 + g(ũ))

Γ(γ+ δ(β− 1))
tγ+δ(β−1)−1 −

(u0 + g(u))

Γ(γ)
tγ−1

∣∣∣∣
+M1‖f‖

∣∣∣∣ tα−δ

Γ(α− δ+ 1)
−

tα−δ

(α− δ)Γ(α)

∣∣∣∣+M1‖f‖
∣∣∣∣ tα−δ

(α− δ)Γ(α)
−

tα

Γ(α+ 1)

∣∣∣∣
+
M1L1

Γ(α)

∫t
0
(t− s)α−δ−1 |ũ(s) − u(s)| ds,

this implies that

|ũ(t) − u(t)| 6 Ω(t) +K

∫t
0
(t− s)α−δ−1 |ũ(s) − u(s)| ds.

Using the generalized Gronwall’s inequality ([29, Corollary 1]), we get

|ũ(t) − u(t)| 6 Ω(t) +

∫t
0

(KΓ(α− δ))n

Γ(n(α− δ))
(t− s)n(α−δ)−1Ω(s) ds.
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Next, we consider the Hilfer fractional differential equation{
D
α,β
0+ û(t) = A(t)û(t) + f(t, û(t)), t ∈ J := [0, T ],

I
1−γ
0+ û(t)|t=0+ = û0 + g(û), α 6 γ = α+β−αβ < 1.

(4.2)

Theorem 4.2. Suppose that the assumptions of Theorems 3.1 and 3.2 hold. If u(t) is a solution of the problem (1.1)
and û(t) is a solution of the problem (4.2). Then the following relation is satisfied

‖û− u‖C1−γ 6

M1
Γ(γ)

1 −M1

(
L3
Γ(γ) +

L1T 1−γ+α

Γ(α+1)

) |û0 − u0|.

Proof. For each t ∈ J, we have

|t1−γû(t) − t1−γu(t)| 6

∣∣∣∣ 1
Γ(γ)

((û0 − u0) + (g(û) − g(u)))U(t, 0)
∣∣∣∣

+

∣∣∣∣t1−γ

Γ(α)

∫t
0
(t− s)α−1U(t, s) (f(s, û(s)) − f(s,u(s))) ds

∣∣∣∣
6
M1

Γ(γ)

(
|û0 − u0|+ L3‖û− u‖C1−γ

)
+
M1L1

Γ(α)

∫t
0
(t− s)α−1 |û(s) − u(s)|ds

6
M1

Γ(γ)

(
|û0 − u0|+ L3‖û− u‖C1−γ

)
+
M1L1t

1−γ

Γ(α)

∫t
0
(t− s)α−1 |û(s) − u(s)|ds

6
M1

Γ(γ)

(
|û0 − u0|+ L3‖û− u‖C1−γ

)
+
M1L1T

1−γ+α

Γ(α+ 1)
‖û− u‖C1−γ ,

which implies that

‖û− u‖C1−γ 6

M1
Γ(γ)

1 −M1

(
L3
Γ(γ) +

L1T 1−γ+α

Γ(α+1)

) |û0 − u0|.

Hence, by the inequality (3.1) we conclude that the solution u of the problem (1.1) is continuously depen-
dent on the initial data u0. This completes the proof.
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