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Abstract
In this paper, first, we study the Green function of the Diamond Klein Gordon Bessel operator iterated k times. We give a

sense of Distribution theory considering the properties of the convolution of the Green function. Finally, we solve the following
equation (

♦B + d2
)k
u(x) =

m∑
r=0

cr

(
♦B + d2

)k
δ.

It was found that the type of above equation depend on the relationship between the value k and m.
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1. Introduction

The operator ♦k has been first by Kananthai [3] and is named as the Diamond operator iterated k
times and defined by

♦k =

( p∑
i=1

∂2

∂x2
i

)2

−

 p+q∑
j=p+1

∂2

∂x2
j

2

k

, p+ q = n, (1.1)

where n is the dimension of the space Rn, for x = (x1, x2, · · · , xn) ∈ Rn and k is a nonnegative integer.
The operator ♦k can be expressed in the form

♦k = 4k�k = �k4k, (1.2)

where 4k is the Laplacian operator iterated k-times is defined by

4k =

(
∂2

∂x2
1
+
∂2

∂x2
2
+ · · ·+ ∂2

∂x2
n

)k
,

and �k is the Ultrahyperbolic operator iterated k-times defined by
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�k =

(
∂2

∂x2
1
+
∂2

∂x2
2
+ · · ·+ ∂2

∂x2
p

−
∂2

∂x2
p+1

−
∂2

∂x2
p+2

− · · ·− ∂2

∂x2
p+q

)k
.

Kananthai [3] has shown that the solution of the convolution form

u(x) = (−1)kRe2k(x) ∗ RH2k(x),

is a unique elementary solution of the operator ♦k, where Re2k(x) and RH2k(x) are defined by (2.4) and (2.2)
with α = 2k respectively, that is

♦k
(
(−1)kRe2k(x) ∗ RH2k(x)

)
= δ.

In 2004, Yildirim, Sarikaya and Sermin [7, 8] first introduced the Bessel diamond operator ♦kB iterated
k times, and defined by

♦kB =

( p∑
i=1

Bxi

)2

−

 p+q∑
j=p+1

Bxj

2

k

,

where Bxi = ∂2

∂x2
i

+ 2υi
xi

∂
∂xi

, 2υi = 2αi + 1, αi > −1
2 , xi > 0. The operator ♦kB can be expressed by

♦kB = 4kB�kB = �kB4kB, where

4kB =

(
p∑
i=1

Bxi

)k
and �kB =

 p∑
i=1

Bxi −

p+q∑
j=p+1

Bxj

k .

Yildirim, Sarikaya and Sermin [7, 8] have shown the convolution form u(x) = (−1)kS2k(x) ∗ R2k(x) is
a unique elementary solution of ♦kB that is

♦kB((−1)kS2k(x) ∗ R2k(x)) = δ,

where S2k(x) and R2k(x) are defined by (2.5) and (2.6) with α = γ = 2k, respectively. Next, Bunpog
and Kananthai [1] have first introduced the operator

(
♦B +m4

)k named Diamond Klien-Gordon Bessel
operator iterated k times and can be written in the following form(

♦B +m4)k =
((
4B +m2) (�B +m2)−m2 (4B +�B)

)k
, (1.3)

where�B+m2 is the Bessel Klien-Gordon operator and4B+m2 is the Bessel Helmholtz operator defined
by

�B +m2 =

p∑
i=1

Bxi −

p+q∑
j=p+1

Bxj +m
2,

and

4B +m2 =

n∑
i=1

Bxi +m
2.

The purpose of this work, first, we study the elementary solution or Green function of the
(
♦B + d2

)k ,
that is (

♦B + d2)kG(x) = δ,
where G(x) is the Green function, δ is the Dirac delta distribution, k is a nonnegative integer and x =
(x1, x2, · · · , xn) ∈ Rn. We also consider the convolution of Green function.
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Finally, we are finding the solution of the equation

(
♦B + d2)k u(x) = m∑

r=0

cr
(
♦B + d2)k δ. (1.4)

We use the B-convolution for the generalized function. It was found that the type of the solution (1.4) that
depend on the relationship between the values of k and m are as the following cases:

(1) If m < k and m = 0, then the solution of (1.4) is

u(x) = c0W2k(x),

which is an elementary solution of the operator
(
♦B + d2

)k in Theorem 3.1, is the ordinary function
for 2k > n+ 2|υ|, and is a tempered distribution for 2k < n+ 2|υ|.

(2) If 0 < m < k, then the solution of (1.4) is

u(x) =

m∑
r=1

crW2(k−r)(x),

which is an ordinary function for 2k − 2r > n + 2|υ| and is tempered distribution for 2k − 2r <
n+ 2|υ|.

(3) If m > k and suppose k 6 m 6M, then (1.4) has the solution

u(x) =

M∑
m=k

cm
(
♦B + d2)m−k

δ,

which is only the singular distribution.

Before proceeding that point, the following definitions and some important concepts are needed.

2. Preliminaries

Definition 2.1. Let x = (x1, x2, · · · , xn) be a point of the n-dimensional Euclidean space Rn and write

υ = x2
1 + x

2
2 + · · ·+ x2

p − x
2
p+1 − x

2
p+2 − · · ·− x2

p+q, (2.1)

where p+ q = n is the dimension of the space Rn. Let Γ+ = {x ∈ Rn : x1 > 0 and u > 0} is the interior of
forward cone and Γ+ denotes it closure. For any complex number α, define the function

RHα (υ) =

{
υ
α−n

2
Kn(α)

, for x ∈ Γ+,

0, for x 6∈ Γ+,
(2.2)

where the constant Kn(α) is given by the formula

Kn(α) =
π
n−1

2 Γ( 2+α−n
2 )Γ( 1−α

2 )Γ(α)

Γ( 2+α−p
2 )Γ(p−α2 )

. (2.3)

The function RHα (υ) is called the Ultra-hyperbolic kernel of Marcel Riesz and was introduced by Nozaki
[5].
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It is well known that RHα (υ) is an ordinary function if Re(α) > n and is a distribution of α if Re(α) < n.
Let supp RHα (υ) denote the support of RHα (υ) and suppose supp RHα (υ) ⊂ Γ̄+, that is supp RHα (υ) is compact.

From Trione [6], RH2k(υ) is an elementary solution of the operator �k, that is

�kRH2k(υ) = δ(x).

Definition 2.2. Let x = (x1, x2, · · · , xn) be a point of Rn and |x| =
(
x2

1 + x
2
2 + · · ·+ x2

n

) 1
2 the function Reα(x)

denoted the elliptic kernel of Marcel Riesz and is defined by

Reα(x) =
|x|α−n

Wn(α)
, (2.4)

where

Wn(α) =
π
n
2 2αΓ

(
α
2

)
Γ
(
n−α

2

) ,

α is a complex parameter and n is the dimension of Rn.

Definition 2.3. Let x = (x1, x2, · · · , xn), ν = (ν1,ν2, · · · ,νn) ∈ R+
n . For any complex number α, we define

the distribution family Sα(x) by

Sα(x) =
|x|α−n−2|ν|

wn(α)
, (2.5)

where |x| = x2
1 + x

2
2 + · · ·+ x2

n, |ν| = ν1 + ν2 + · · ·+ νn and

wn(α) =

∏n
i=1 2νi−

1
2 Γ(νi +

1
2)

2n+2|ν|−2αΓ(
n+2|ν|−α

2 )
.

Definition 2.4. Let x = (x1, x2, · · · , xn), ν = (ν1,ν2, · · · ,νn) ∈ R+
n , and denote by

V = x2
1 + x

2
2 + · · ·+ x2

p − x
2
p+1 − x

2
p+2 − · · ·− x2

p+q,

the nondegenerated quadratic form. Denote the interior of the forward cone by

Γ+ = {x ∈ R+
n : x1 > 0, x2 > 0, · · · , xn > 0, V > 0},

and Γ+ denotes its closure. For any complex number γ the distribution family Rγ(x) is defined by

Rγ(x) =

V
γ−n−2|ν|

2
Kn(γ)

, for x ∈ Γ+,

0, for x 6∈ Γ+,
(2.6)

where

Kn(γ) =
π
n+2|ν|−1

2 Γ
(

2+γ−n−2|ν|
2

)
Γ
(

1−γ
2

)
Γ(γ)

Γ
(

2+γ−p−2|ν|
2

)
Γ
(
p−γ

2

) ,

where γ is a complex number.

Definition 2.5. Let x = (x1, x2, · · · , xn) be a point of R+
n , we define the function

Wα(x) =

∞∑
r=0

(−1)rΓ
(
η
2 + r

)
r!Γ
(
η
2

) (m2)r(−1)
α
2 +rSα+2r(x) ∗ Rα+2r(x), (2.7)

where the function Sα+2r and Rα+2r are defined by Definition 2.3 and Definition 2.4, respectively.
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Lemma 2.6. Let α and β be complex numbers and Sα(x) be the function defined by (2.1). Then the following
properties are valid

S0(x) = δ(x),

S−2k(x) = (−1)k4kBδ,
4kB{Sα(x)} = (−1)kSα−2k(x),

Sα(x) ∗ Sβ(x) = Sα+β(x),

where 4kB is the Laplace Bessel operator iterated k times and defined by (1.2).

Proof. [4].

Lemma 2.7. Let α and β be complex numbers and Rγ(x) be the function defined by (2.2). Then the following
properties are valid

R0(x) = δ(x),

R−2k(x) = �
k
Bδ,

�kB{Sγ(x)} = Sγ−2k(x),
Rα(x) ∗ Rβ(x) = Rα+β(x),

where �kB is the Ultrahyperbolic Bessel operator iterated k times and defined by (1.2).

Proof. [4].

Lemma 2.8. The functions Sα(x) and Rα(x) defined by (2.1) and (2.2) respectively are homogeneous distribution
of order α−n− 2|υ| and also tempered distribution.

Proof. Since Rα(x) and Sα(x) satisfy the Euler equation, that is

(α−n− 2|υ|)Rα(x) =
n∑
i=1

xi
∂

∂xi
Rα(x),

and

(α−n− 2|υ|)Sα(x) =
n∑
i=1

xi
∂

∂xi
Sα(x).

We have Rα(x) and Sα(x) as homogeneous distributions of order α − n − 2|υ| and Donoghue [2] has
proved that every homogeneous distribution is a tempered distribution. That completes the proof.

Lemma 2.9 (The convolution of tempered distribution). The convolution Rα(x)∗Sα(x) exists and is a tempered
distribution.

Proof. Choosing supp Rα(x) = K ⊂ Γ+ where K is a compact set, the function Rα(x) is a tempered distribu-
tion with compact support and by Donoghue [2] Rα(x) ∗ Sα(x) exists and is a tempered distribution.

Lemma 2.10. Given the equation ♦kBu(x) = δ(x) for x ∈ R+
n , where ♦kB defined by (1.1), and

u(x) = (−1)kS2k(x) ∗ R2k(x),

where S2k(x) and R2k(x) are defined by (2.1) and (2.3) with α = 2k,γ = 2k, respectively. We obtain (−1)kS2k(x) ∗
R2k(x) is an elementary solution of the operator ♦kB. That is,

♦kB
(
(−1)kS2k(x) ∗ R2k(x)

)
= δ(x).

Proof. [7, 8].
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Lemma 2.11. Let α and β be complex numbers. The following formulas are valid

W0(x) = δ(x),
Wα ∗Wβ =Wα+β,

Wα ∗W−2k =Wα−2k.

Proof. By Definition 2.3, we obtain
W0(x) = δ(x).

By Definition 2.3 again, we have

Wα(x) ∗Wβ(x) =
∞∑
r=0

(
−α2
r

)
(m2)r(−1)

α
2 +rSα+2r(x) ∗ Rα+2r(x).

∗
∞∑
s=0

(
−β2
s

)
(m2)s(−1)

β
2 +sSβ+2s(x) ∗ Rβ+2s(x)

=

∞∑
r=0

∞∑
s=0

(
−α2
r

)(
−β2
s

)
(m2)r+s(−1)

α+β
2 +r+s

× (Sα+2r(x) ∗ Rα+2r(x)) ∗
(
Sβ+2s(x) ∗ Rβ+2s(x)

)
=

∞∑
r=0

∞∑
s=0

(
−α2
r

)(
−β2
s

)
(m2)r+s(−1)

α+β
2 +r+s

(
Sα+β+2(r+s)(x) ∗ Rα+β+2(r+s)(x)

)
=

∞∑
k=0

(m2)k

[
k∑
r=0

(
−α2
r

)(
−β2
k− r

)]
(−1)

α+β
2 +k

(
Sα+β+2k(x) ∗ Rα+β+2k(x)

)
.

(2.8)

By properties
k∑
r=0

(
−α2
r

)(
−β2
k− r

)
=

(
−α+β2
k

)
.

The Equation (2.8) becomes

Wα(x) ∗Wβ(x) =
∞∑
r=0

(
−α+β2
r

)
(m2)r(−1)

α+β
2 +kSα+β+2k(x) ∗ Rα+β+2k(x)

=Wα+β(x).

Thus,
Wα(x) ∗Wβ(x) =Wα+β(x). (2.9)

Putting β = −2k in (2.9), we obtain

Wα(x) ∗W−2k(x) =Wα−2k(x).

That completes the proof.

3. Main results

Theorem 3.1. Given the equation (
♦B + d2)k u(x) = δ(x),

for x ∈ R+
n and

(
♦B + d2

)k is the Diamond Klein Gordon operator iterated k times defined by (1.3), we obtain

u(x) =W2k(x), (3.1)
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is an elementary solution or Green function of the operator
(
♦B + d2

)k andW2k(x) is defined by (2.7) with α = 2k.
The function W2k(x) has the following properties

W0(x) = δ(x),

and (
♦B + d2)k {Wα(x)} =Wα−2k(x).

Proof. In fact, (
♦B + d2)−α

2 =
{
♦B
(
1 + d2♦−1

B

)}−α
2 = ♦−α

2
B

(
1 + d2♦−1

B

)−α
2 ,

and

(
1 + d2♦−1

B

)−α
2 δ =

∞∑
r=0

(
−α2
r

)(
d2♦−1

B

)r
δ

=

∞∑
r=0

(
−α2
r

)
d2r♦−r

B δ.

Thus,

♦−α
2

B

(
1 + d2♦−1

B

)−α
2 = ♦−α

2

∞∑
r=0

(
−α2
r

)(
d2♦−1

B

)r
δ

=

∞∑
r=0

(
−α2
r

)
d2r♦−α

2 −r

B δ.

From the above equation, we get

(
♦B + d2

B

)−α
2 δ =

∞∑
r=0

(
−α2
r

)
d2r♦−α

2 −r

B δ.

=

∞∑
r=0

(
−α2
r

)
d2r4−α

2 −r

B �
−α

2 −r

B δ.

=

∞∑
r=0

(
−α2
r

)
d2r(−1)

α
2 +rS2(α2 +r)

(x) ∗ R2(α2 +r)
(υ)

=

∞∑
r=0

(
−α2
r

)
d2r(−1)

α
2 +rSα+2r(x) ∗ Rα+2r(x)

=Wα(x).

If we put α = −2k, we obtain (
♦B + d2)k δ =W−2k(x). (3.2)

Putting k = 0 in (3.2), we obtain
W0(x) = δ(x).

By Lemma 2.6, we have
Wα(x) ∗Wβ(x) =Wα+β(x).

Putting β = −2k, we obtain
Wα(x) ∗W−2k(x) =Wα−2k(x),

Wα(x) ∗
(
♦+ d2)k δ =Wα−2k(x),
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(
♦B + d2)kWα(x) ∗ δ =Wα−2k(x). (3.3)

If we put α = 2k in (3.3), we obtain(
♦+ d2)k δ ∗W2k(x) =W0(x) = δ(x).

It follows that W2k(x) is an elementary solution or Green function of the operator
(
♦+ d2

)k . That com-
pletes the proof.

Theorem 3.2. For 0 < r < k (
♦B + d2)rW2k(x) =W2(k−r)(x),

and for k 6 m (
♦B + d2)m =

(
♦B + d2)m−k

δ,

where
(
♦B + d2

)k is the Diamond Bessel Klein Gordon operator iterated k times defined by (1.3), δ is the Dirac
delta distribution and the function W2k(x) defined by (2.7) with α = 2k.

Proof. For 0 < r < k, from Theorem 3.1, (
♦B + d2)kW2k(x)) = δ.

We can write the above equation in the following form(
♦B + d2)k−r (♦B + d2)rW2k(x) = δ,

or (
♦B + d2)k−r δ ∗ (♦B + d2)rW2k(x) = δ.

We have used the convolution of both sides by W2(k−r)(x), we obtain

W2(k−r) ∗
(
♦B + d2)k−r δ ∗ (♦B + d2)rW2k(x) =W2(k−r)(x) ∗ δ.

By property of convolution, we have(
♦B + d2)k−rW2(k−r) ∗

(
♦B + d2)rW2(k)(x) =W2(k−r)(x).

By Lemma 2.7, we obtain
δ ∗
(
♦B + d2)rW2k(x) =W2(k−r)(x),

or (
♦B + d2)rW2k(x) =W2(k−r)(x),

as required. For k 6 m (
♦B + d2)mW2k(x)) =

(
♦B + d2)m−k (♦B + d2)kW2k(x))

=
(
♦B + d2)m−k

δ.

It follows that (
♦B + d2)mW2k(x)) =

(
♦B + d2)m−k

δ.

That completes the proof.
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Theorem 3.3. Given the linear differential equation

(
♦B + d2)k u(x) = m∑

r=0

cr
(
♦B + d2)k δ. (3.4)

Then the type of solution (3.4) that depend on the relationship between the values of k and m are as the following
cases:

(1) if m < k and m = 0, then the solution of (3.4) is

u(x) = c0W2k(x)),

which is an elementary solution of the
(
♦B + d2

)m operator in Theorem 3.1;

(2) if 0 < m < k, then the solution of (3.4) is

u(x) =

m∑
r=1

crW2(k−r)(x),

which is an ordinary function for 2k− 2r > n+ 2|υ| and is tempered distribution for 2k− 2r < n+ 2|υ|;

(3) if m > k and suppose k 6 m 6M, then (3.4) has the solution

u(x) =

M∑
r=k

cr
(
♦B + d2)r−k δ,

which is only the singular distribution.

Proof.

(1) For m = 0, we have
(
♦B + d2

)k
u(x) = c0δ, and by Theorem 3.1 we obtain

u(x) =W2k(x).

Now, W2k(x) analytic function for 2k > n+ 2|υ| and also W2k(x) exists and is an analytic function by
(3.1). It follows that W2k(x) is an ordinary function for 2k > n+ 2|υ| and is a tempered distribution with
2k < n+ 2|υ|.

(2) For the case 0 < m < k, we have

(
♦B + d2)k u(x) = m∑

r=1

cr
(
♦B + d2)r δ,

= c1
(
♦B + d2) δ+ c2

(
♦B + d2)2

δ+ · · ·+ cm
(
♦B + d2)k δ.

Convolving both sides of the above equation by W2k(x), we obtain

W2k(x) ∗
(
♦B + d2)k u(x) = c1W2k(x)

(
♦B + d2) δ+ c2W2k(x)

(
♦B + d2)2

δ

+ · · ·+ cmW2k(x)
(
♦B + d2)k δ,

u(x) ∗
(
♦B + d2)kW2k(x) = c1

(
♦B + d2)W2k(x) + c2

(
♦B + d2)2

W2k(x)

+ · · ·+ cm
(
♦B + d2)mW2k(x),
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u(x) = c1
(
♦B + d2)W2k(x) + c2

(
♦B + d2)2

W2k(x)

+ · · ·+ cm
(
♦B + d2)mW2k(x).

By Theorem 3.1 and Theorem 3.2, we obtain

u(x) = c1W2(k−1)(x) + c2W2(k−2)(x) + · · ·+ cmW2(k−m)(x), (3.5)

or

u(x) =

m∑
r=1

crW2(k−r)(x). (3.6)

Similarly, as in the case (1), u(x) is an ordinary function for 2k− 2r > n+ 2|υ| and is a tempered distribu-
tion for 2k− 2r < n+ 2|υ|.

(3) For the case m > k and suppose k 6 m 6M, we have(
♦B + d4)u(x) = ck (♦B + d4)k δ+ ck+1

(
♦B + d2)k+1

δ+ · · ·+ cM
(
♦B + d2)M

B
δ. (3.7)

We convolved both sides of the above equation by W2k(x), we obtain

W2k(x) ∗
(
♦B + d2)k u(x) = c1W2k(x)

(
♦B + d2) δ+ c2W2k(x)

(
♦B + d2)2

δ

+ · · ·+ cmW2k(x)
(
♦B + d2)k δ.

By Theorem 3.1 and Theorem 3.2 again, we obtain

u(x) = ckδ+ ck+1
(
♦B + d2) δ+ ck+2

(
♦B + d2)2

δ+ · · ·+ cM
(
♦B + d2)M−k

δ

=

M∑
m=k

cm
(
♦B + d2)m−k

δ.

Since
(
♦B + d2

)m−k
δ is a singular distribution, hence u(x) is only the singular distribution. That com-

pletes the proofs.
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