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Abstract
We introduce a new distribution with two parameters called the odd Frèchet inverse exponential (OFIE) distribution. The

OFIE model can be more flexible. The cumulative density function (cdf) and the probability density function (pdf) are investi-
gated. Some of its statistical properties are studied. The maximum likelihood (ML) estimation is employed for OFIE parameters.
The importance of the OFIE model is assessed using one real data set.
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1. Introduction

The one parameter exponential (E) distribution describes the time between events in a Poisson process.
Its discrete analogue is the geometric distribution. Apart from its usage in Poisson processes, it has been
used extensively in the literature for life testing. The E distribution is memoryless and has a constant fail-
ure rate; this latter property makes the distribution unsuitable for real life problems with bathtub failure
rates (see Singh et al. [16] for details) and inverted bathtub failure rates, hence the need to generalize the
E distribution in order to increase its flexibility and capability to model some other real life problems.

Keller and Kamath [6] studied the inverse exponential (IE) distribution. It has an inverted bathtub
failure rate and it is an important competitive model for the E distribution. It has been identified and
discussed by Lin et al. [10] as a lifetime model. If X is a non-negative E random variable, then the
distribution of a random variable Y = 1/X follows an IE distribution. Hence, if X denotes a random
variable, the cdf and pdf of the IE distribution with a scale parameter α are respectively given by

g (x:α)=
α

x2 e
−α
x , x,α > 0, (1.1)

and

G (x:α)=e−
α
x , x,α > 0. (1.2)
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In the last years, in the literature some statisticians attempts to increase the modeling capacity of the
IE distribution. Beta IE distribution is studied by Singh and Goel [15], Kumaraswamy IE is studied by
Oguntunde et al. [11], Oguntunde et al. [12] proposed transmuted IE distribution, Oguntunde et al. [13]
introduced exponentiated generalized IE distribution, and Weibull-inverted exponential distribution is
studied by Oguntunde et al. [14].

Recently, odd Frèchet generated family of distributions (OF-G) has been proposed by Haq and Elgarhy [7].
The cdf and pdf of OF-G are

F (x: θ, ξ)=
∫ [ G(x;ξ)

1−G(x;ξ)

]
0

θ

xθ+1 e
−x−θdx=e

−
[

1−G(x;ξ)
G(x;ξ)

]θ
, x ∈ R, θ > 0 (1.3)

and

f (x : θ, ξ) =
θg (x; ξ) [1 −G (x; ξ)]θ−1

G (x; ξ)θ+1 e
−
[

1−G(x;ξ)
G(x;ξ)

]θ
, (1.4)

where g (x : ξ) considers a pdf of baseline distribution. Hereafter, a random variable X with density
function (1.4) is denoted by X ∼ OF−G (θ, ξ) .

In this article, we introduce a new lifetime model called the OFIE distribution. This paper is arranged
as follows. In Section 2, we study the OFIE distribution. Statistical properties are calculated in Section 3.
In Section 4, The ML method is applied to calculate the estimates of the model parameters. Simulation
results are carried out to estimate the model parameters of OFIE distribution in Section 5. The analyses
of one real data set is employed in Section 6. Finally, conclusions are appeared in Section 7.

2. The OFIE model

The cdf of OFIE distribution with set of parameters ϕ = (α, θ) is obtained by substituting (1.2) in (1.3)
as follows

F (x; θ, α) = e−[e
α
x −1]

θ

, x, α, θ > 0. (2.1)

By inserting (1.1) and (1.2) in (1.4) we get the corresponding pdf to (2.1) which is given by

f (x; θ, α) =
θα

x2 e
α
x

[
e
α
x − 1

]θ−1
e−[e

α
x −1]

θ

, x,α, θ > 0. (2.2)

Also, the survival function (sf), hrf, reversed hrf, and cumulative hrf of X are given, respectively, as
follows:

R (x; θ, α) = 1 − e−[e
α
x −1]

θ

, h (x; θ, α) =
θα
x2 e

α
x

[
e
α
x − 1

]θ−1
e−[e

α
x −1]

θ

1−e−[e
α
x −1]

θ ,

τ (x; θ, α) =
θα

x2 e
α
x

[
e
α
x − 1

]θ−1
, H (x; θ, α) = − ln (1−e−[e

α
x −1]

θ

).

Figure 1 shows some descriptive pdf and hrf plots of X ∼ OFIE (ϕ) are illustrated below for specific
parameter choices of ϕ.

From Figure 1, we conclude that pdf of OFIE distribution can be uni-model, decreasing and right
skewed. Also, the hrf of OFIE distribution can be J-shaped, decreasing and increasing as seen from Figure
1.
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Figure 1: Plots of the pdf and hrf of the (OFIE) distribution for different values of parameters.

3. Some fundamental properties

Some fundamental properties of the OFIE distribution are obtained in this section.

3.1. Important representation
In this subsection important representations of the pdf and cdf for OFIE distribution are studied.
Haq and Elgarhy [7] expressed the equation (1.4) as

f (x) =

∞∑
k=0

ηkg (x, ξ)G (x, ξ)k, (3.1)

where

ηk =

∞∑
i,j=0

θ(−1)i+k

i!

(
θ (i+ 1) + j

j

)(
θ (i+ 1) + j− 1

k

)
.

By inserting equations (2.1) and (2.2) in equation (3.1) we can rewrite the OFIE as a linear combination of
IE distribution as

f (x) =

∞∑
k=0

wk
x2 e

−
α(k+1)
x , (3.2)

where wk = αηk.

3.2. Moments
If X has the pdf (3.2), then its rth moment can be calculated from the following equation

µ
′
r = E(X

r) =

∫∞
−∞ xrf(x;ϕ)dx. (3.3)

Substituting (3.2) into (3.3) yields

µ
′
r = E(X

r) =

∞∑
k=0

wk

∫∞
0
xr−2e−α(k+1)x−1

dx.

Let y = x−1, then

µ
′
r =

∞∑
k=0

wk

∫∞
0
y−re−α(k+1)ydx.
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Then, µ
′
r becomes

µ
′
r =

∞∑
k=0

wkΓ(1 − r)

[α(k+ 1)]1−r
, r < 1.

The moment generating function of OFIE distribution can be calculated from the following equation

MX(t) =

∞∑
r=0

tr

r!
E(Xr) =

∞∑
r,k=0

tr

r!
wkΓ(1 − r)

[α(k+ 1)]1−r
, r < 1.

The incomplete moments, say ϕs(t), is

ϕs(t) =

∫t
0
xsf(x;ϕ)dx.

Using (3.2), then ϕs(t) can be written as follows

ϕs(t) =

∞∑
k=0

wk

∫t
0
xs−2e−α(k+1)x−1

dx,

then,

ϕs(t) =

∞∑
k=0

wk
ν
(
1 − s,α(k+ 1)t−1

)
(α(k+ 1))1−s , s < 1,

where ν (s, t) =
∫t

0 x
s−1e−xdx is the lower incomplete gamma function.

Further, the conditional moments, say τs(t), is given by

τs(t) =

∫∞
t

xsf(x;ϕ)dx.

Hence, by using pdf (3.2), we can write

τs(t) =

∞∑
k=0

wk

∫∞
t

xs−2e−α(k+1)x−1
dx,

then,

τs(t) =

∞∑
k=0

wk
Γ
(
1 − s,α(k+ 1)t−1

)
(α(k+ 1))1−s , s < 1,

where Γ (s, t) =
∫∞
t x

s−1e−xdx is the upper incomplete gamma function.

3.3. Quantile function
The quantile function, say Q(u) = F−1(u) of X is given by

Q (u) =
α

ln
(

1 +
[
ln
( 1
u

) ] 1
θ

) , (3.4)

where, u is considered as a uniform random variable on the unit interval (0, 1).
The median (M) can be calculated by setting u = 0.5 in (3.4). The M is given by

M =
α

ln
(

1 + [ln (2) ]
1
θ

) .
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4. ML estimation

Let X1, . . . ,Xn be observed values from the OFIE distribution with set of parameters ϕ = (α, θ)T . The
total log-likelihood function for the vector of parameters ϕ can be expressed as

lnL(ϕ) = n ln θ+n lnα− 2
n∑
i=1

ln xi +α
n∑
i=1

1
xi

+ (θ− 1)
n∑
i=1

ln
(
e
α
xi − 1

)
−

n∑
i=1

(
e
α
xi − 1

)θ
.

The elements of the score function U(ϕ) = (Uα, Uθ) are given by

Uα =
n

α
+

n∑
i=1

1
xi

+ (θ− 1)
n∑
i=1

1
xi
e
α
xi

e
α
xi − 1

− θ

n∑
i=1

1
xi
e
α
xi

(
e
α
xi − 1

)θ−1
,

and

Uθ =
n

θ
+

n∑
i=1

ln
(
e
α
xi − 1

)
−

n∑
i=1

(
e
α
xi − 1

)θ
ln
(
e
α
xi − 1

)
.

Then the ML estimators of the parameters α and θ are obtained by setting Uα and Uθ to be zero and
solving them. Clearly, it is difficult to solve them, therefore we apply the Newton-Raphson’s iteration
method and use the computer packages such as Maple or R or other software.

5. Simulations

A simulation result is assessed to evaluate and compare the behavior of the estimators with respect
to their mean square errors (MSEs). We generate 10000 random samples X1, . . .,Xn of sizes n = (30, 50, 100)
from OFIE distribution. Six selected sets of parameters are considered as: set 1:(0.5, 0.5), set 2:(0.5, 0.75),
set 3:(0.5, 1.25), set 4:(0.75, 0.5), set 5:(0.75, 0.75), and set 6:(0.75, 1.25) .

The ML estimates of α and θ are calculated. Then, the MSEs of the estimates of the unknown parame-
ters are calculated. Simulated outcomes are listed in Table 1 and the following observations are detected.
The MSEs decrease as sample sizes increase for all estimates.

Table 1: The parameter estimation from OFIE model using MLE.

N Par
set 1:(0.5, 0.5) set 2:(0.5, 0.75) set 3:(0.5, 1.25)
MLE MSE MLE MSE MLE MSE

30
A 0.5172 0.0093 0.5266 0.0169 0.5898 0.0905
Θ 0.5292 0.0197 0.8003 0.0482 1.3444 0.1244

50
A 0.5118 0.0059 0.5202 0.0096 0.5496 0.0338
Θ 0.5173 0.0102 0.7812 0.0249 1.3026 0.0691

100
A 0.5068 0.0030 0.5081 0.0047 0.5186 0.0113
Θ 0.5105 0.0050 0.7635 0.0108 1.2742 0.0306

n Par
set 4:(0.75, 0.5) set 5:(0.75, 0.75) set 6:(0.75, 1.25)
MLE MSE MLE MSE MLE MSE

30
A 0.7812 0.0201 0.7947 0.0394 0.8675 0.3122
Θ 0.5313 0.0195 0.7986 0.0447 1.3251 0.1215

50
A 0.7646 0.0135 0.7751 0.0218 0.8214 0.0758
Θ 0.5181 0.0106 0.7803 0.0243 1.3027 0.0663

100
A 0.7580 0.0064 0.7669 0.0111 0.7804 0.0276
Θ 0.5103 0.0052 0.7658 0.0109 1.2715 0.0294
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6. Application

In this section, we give an application to a real data set to evaluate the flexibility of the OFIE model.
In order to compare the OFIE model with other fitted distributions, we compare the fits of the OFIE
distribution with the beta generalized inverse Weibull geometric distribution (BGIWGc) (Elbatal et al.,
[5]), McDonald log-logistic (McLL) (Tahir et al., [17]), McDonald Weibull (McW) (Cordeiro et al., [4]),
new modified Weibull (NMW) (Almalki and Yuan, [3]), transmuted complementary Weibull-geometric
(TCWG) (Afify et al., [1]), beta Weibull (BW) (Lee et al., [9]), and exponentiated transmuted generalized
Rayleigh (ETGR) (Afify et al., [2]) distributions.

The data set is taken from (Gross and Clark, [6]) on the relief times of twenty patients receiving an
analgesic.

The ML estimates along with their standard error (SE) of the model parameters are provided in Tables
2 and 3. In the same tables, the analytical measures including Anderson Darling statistic (A∗), Cramér-von
Mises statistic (W∗), Akaike Information Criterion (AIC), corrected Akaike information criterion (CAIC),
Bayesian information criterion (BIC), and Hannan-Quinn information criterion (HQIC) are presented.

Table 2 lists the MLEs of the model parameters and their corresponding standard whereas errors the
values of −2 logL, AIC, CAIC, HQIC, A∗, and W∗ are given in Table 3.

Table 2: MLEs and their standard errors (in parentheses) for the relief times data.
Model MLE and SE

OFIE (α, θ)
1.073 2.929

- - - -
(0.0618) (0.518)

BGIWGc (α, γ, θ, p, a, b)
19.1874 20.5968 1.4346 9.8485 39.2308×10−5 5.8015
(33.3) (43.241) (0.837) (2.001) (63.252) (4.346)

McLL (α, β, a, b, c)
0.8811 2.0703 19.2254 32.0332 1.9263

-
(0.109) (3.693) (22.341) (43.077) (5.165)

McW (α, β, a, b, c)
2.7738 0.3802 79.108 17.8976 3.0063

-
(6.38) (0.188) (119.131) (39.511) (13.968)

NMW (α, β, γ, δ, θ)
0.1215 2.7837 8.227×10−5 0.0003 2.7871

-
(0.056) (20.37) (1.512×10−5) (0.025) (0.428)

TCWG (α, β, γ, λ)
43.6627 5.1271 0.2823 -0.2713

- -
(45.459) (0.814) (0.042) (0.656)

BW (α, β, a, b)
0.8314 0.6126 29.9468 11.6319

- -
(0.954) (0.34) (40.413) (21.9)

ETGR (α, β, λ, δ)
0.1033 0.6917 -0.342 23.5392

- -
(0.436) (0.086) (1.971) (105.371)

Table 3: Measures of goodness-of-fit statistics for the relief times data.
Model AIC CAIC BIC HQIC A∗ W∗

OFIE 35.078 35.784 33.68 35.467 0.19209 0.0334
BGIWGc 43.662 50.124 39.468 44.828 0.24665 0.0434
McLL 43.854 48.14 40.359 44.826 0.46199 0.07904
McW 43.907 48.193 40.412 44.879 0.46927 0.08021
NMW 51.173 55.459 47.678 52.145 1.0678 0.17585
TCWG 41.607 44.274 38.811 42.385 0.43603 0.07252
BW 42.396 45.063 39.6 43.174 0.51316 0.0873
ETGR 44.856 47.523 42.06 45.634 0.79291 0.13629

Table 3 compares the fits of the OFIE distribution with the other known distributions. Table 3 shows
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that the OFIE model has the lowest values for AIC, CAIC, HQIC, A∗, and W∗ among all fitted distribu-
tions. So, the OFIE is the best model. The fitted pdf and pp plot for the OFIE model are displayed in
Figure 2. Figure 3 shows the estimated cdf and sf for the OFIE model. From these plots it is evident that
the OFIE model provides close fit to the data.

Figure 2: The empirical pdf and pp plot of the OFIE model.

Figure 3: The empirical cdf and sf of the OFIE model.

7. Conclusions

In this article, we study a new two-parameter distribution named the odd Frèchet inverse exponential
(OFIE) distribution. We derive explicit expressions for some of its statistical properties. We derive ML es-
timation. Simulation results are carried to evaluate the accuracy and performance of different estimators.
The OFIE model provides better fits than some other competitive models using a real data set.
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[7] M. Haq, M. Elgarhy, The odd Fréchet-G family of probability distributions, J. Stat. Appl. Probab., 7 (2018), 185–201. 1,

3.1
[8] A. Z. Keller, A. R. R. Kamath, U. D. Perera, Reliability analysis of CNC Machine Tools, Reliab. Eng., 3 (1982), 449–473.
[9] C. Lee, F. Famoye, O. Olumolade, Beta-Weibull distribution: Some properties and applications to censored data, J.

Modern Appl. Stat. Methods, 6 (2007), 173–186. 6
[10] C. T. Lin, B. S. Duran, T. O. Lewis, Inverted Gamma as a life distribution, Microelectronics Reliab., 29 (1989), 619–626.

1
[11] P. E. Oguntunde, A. O. Adejumo, E. A. Owoloko, Application of Kumaraswamy inverse exponential distribution to real

lifetime data, Int. J. Appl. Math. Stat., 56 (2017), 34–47. 1
[12] P. E. Oguntunde, A. O. Adejumo, E. A. Owoloko, On the flexibility of the transmuted inverse exponential distribution,

Proceeding of the World Congress on Engineering (London, UK), 2017 (2017), 123–126. 1
[13] P. E. Oguntunde, A. O. Adejumo, E. A. Owoloko, On the exponentiated generalized inverse exponential distribution,

Proceeding of the World Congress on Engineering (London, UK), 2017 (2017), 80–83. 1
[14] P. E. Oguntunde, A. O. Adejumo, E. A. Owoloko, The Weibull-inverted exponential distribution: A generalization of

the inverse exponential distribution, Proceeding of the World Congress on Engineering (London, UK), 2017 (2017),
16–19. 1

[15] B. Singh, R. Goel, The beta inverted exponential distribution: Properties and applications, Int. J. Applied Sci. Math., 2
(2015), 132–141. 1

[16] S. K. Singh, U. Singh, M. Kumar, Estimation of Parameters of Generalized Inverted Exponential Distribution for Progres-
sive Type-II Censored Sample with Binomial Removals, J. Probab. Stat., 2013 (2013), 12 pages. 1

[17] M. H. Tahir, M. Mansoor, M. Zubair, G. Hamedani, McDonald loglogistic distribution with an application to breast
cancer data, J. Stat. Theory Appl., 13 (2014), 65–82. 6

https://doi.org/10.1016/j.ress.2012.10.018
https://doi.org/10.1080/02331888.2012.748769
http://dx.doi.org/10.18187/pjsor.v13i1.1791
http://dx.doi.org/10.18187/pjsor.v13i1.1791
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Survival+distributions%3A+Reliability+applications+in+the+biomedical+sciences&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Survival+distributions%3A+Reliability+applications+in+the+biomedical+sciences&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+odd+Frechet-G+family+of+probability+distributions&btnG=
https://doi.org/10.1016/0143-8174(82)90036-1
http://doi.org/10.22237/jmasm/1177992960
http://doi.org/10.22237/jmasm/1177992960
https://doi.org/10.1016/0026-2714(89)90352-1
http://www.ceser.in/ceserp/index.php/ijamas
http://www.ceser.in/ceserp/index.php/ijamas
http://eprints.covenantuniversity.edu.ng/8564/1/_WCE2017_pp123-126.pdf
http://eprints.covenantuniversity.edu.ng/8564/1/_WCE2017_pp123-126.pdf
http://eprints.covenantuniversity.edu.ng/id/eprint/8647
http://eprints.covenantuniversity.edu.ng/id/eprint/8647
http://eprints.covenantuniversity.edu.ng/id/eprint/8644
http://eprints.covenantuniversity.edu.ng/id/eprint/8644
http://eprints.covenantuniversity.edu.ng/id/eprint/8644
https://www.ijasm.org/administrator/components/com_jresearch/files/publications/IJASM_70_Final.pdf
https://www.ijasm.org/administrator/components/com_jresearch/files/publications/IJASM_70_Final.pdf
http://dx.doi.org/10.1155/2013/183652
http://dx.doi.org/10.1155/2013/183652
https://doi.org/10.2991/jsta.2014.13.1.6
https://doi.org/10.2991/jsta.2014.13.1.6

	Introduction
	The OFIE model
	Some fundamental properties
	Important representation 
	Moments
	Quantile function

	ML estimation
	Simulations
	Application 
	Conclusions

