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Abstract
There are many systems that can handle a mix of series-parallel or parallel-series systems. Here, a new three-parameter

distribution motivated mainly by dealing with series-parallel or parallel-series systems is introduced. Moments, conditional mo-
ments, mean deviations, moment generating function, quantile, Lorenz, and Bonferroni curves of the new distribution including
are presented. Entropy measures are given and estimation of its parameters is studied. Two real data applications are described
to show its superior performance versus some known lifetime models.
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1. Introduction

This research aims at introducing a new three-parameter lifetime distribution with physical motiva-
tions. As explained below, the proposed distribution gives preferred fits over a large number of the known
lifetime distributions, including those with four parameters.

Our second motivation is based on a practical situation, where a factory has two parallel production
lines. The two lines are assembled together before going to the market. However, the production manager
is interested in analyzing the characteristics of each production line separately. The problem here is
that one line consists of machines in sequence (connected in series) with a replicated of each individual
machine, while the other line is a collection of machines connected in tandem as subsystems and the
subsystems are connected in parallel.

In this paper we provide a new general distribution for handle with series parallel system, and we use
the method introduced by Nadarajah et al. [8] to analyze parallel series system.

The proposed distributions that can handle with series-parallel or parallel-series configuration, i.e.,
Mini Max Xi or Max Mini Xi, where Xi denote the failure time of the ith system. Then, the cumulative
distribution function of X, say G(x), can be derived as follows.
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1.1. Mini Max Distribution

Nadarajah et al. [8] introduced a two-parameter distribution which represent a general model by
taking the probability density function of the cumulative distribution function of failure times to be given
by f(.) and F(.), respectively. Its cdf is given by

G (x) =
exp (−λ+ λF(x)) − e−λ

1 − e−λ − π+ π exp (−λ+ λF(x))
, (1.1)

for x > 0, λ > 0 and 0 < π < 1. The corresponding probability density function is,

g (x) =
λ(1 − π)(1 − e−λ)f(x) exp (−λ+ λF(x))

{1 − e−λ − π+ π exp (−λ+ λF(x))}
2 . (1.2)

Many studies that are interested for analyzing lifetime data have used Lindely to analyze lifetime
data. So, we took failure times to follow the Lindley distribution. A random variable X is said to have a
Lindley distribution with parameter θ if its probability density is defined as,

f (x) =
θ2

θ+ 1
(1 + x) e−θx, x > 0, θ > 0. (1.3)

The corresponding cumulative distribution function (cdf) is:

F (x) = 1 −
θ+ 1 + θx

θ+ 1
e−θx, x > 0, θ > 0. (1.4)

Assume that the failure times of the units for the ith system, say Zi,1,Zi,2, . . . ,Zi,M, are independent
and identical Lindley random variables with the scale Parameter θ. Let Yi denote the failure time of
the ith system. Let X denote the time to failure of the first of the N functioning systems. We can write
X = min(Y1, Y2, . . . ,Yn). By using (1.1), (1.2), and (1.3), the conditional cumulative distribution function of
X given N is,

G (x) =
exp

(
−λ
(
θ+1+θx

1+θ

)
e−θx

)
− e−λ

1 − e−λ − π
[
1 − exp

(
−λ
(
θ+1+θx

1+θ

)
e−θx

)] , (1.5)

for x > 0, θ > 0, λ > 0, and 0 < π < 1. The corresponding probability density function is,

g (x) =
λθ2(1 − π)(1 − e−λ)(1 + x) exp

(
−θx− λ

(
θ+1+θx

1+θ

)
e−θx

)
(1 + θ)

{
1 − e−λ − π

[
1 − exp

(
−λ
(
θ+1+θx

1+θ

)
e−θx

)]}2 , (1.6)

for x > 0, θ > 0, λ > 0, and 0 < π < 1. We shall refer to the distribution given by (1.7) and (1.8) as
the geometric Lindley Poisson (GLP). The parameters, λ and π, control the shape. The parameter, θ,
controls the scale. The particular case of (1.6) for λ →0 is the Lindley geometric (LG) distribution due to
Zakerzadeh and Mahmoudi [14]. The particular case for π → 0 is the Lindley Poisson (LP) distribution
due to Gui [4].

1.2. Max Mini Distribution

Suppose the machine is made of M series units, so that the machine will fail if one of the units fail.
Assume that M is a truncated Poisson random variable independent of N. In addition, the failure times
of the units for the ith system, say Zi,1,Zi,2, . . . ,Zi,M, are independent and identical Lindley random
variables with the scale Parameter θ. Let Yi denote the failure time of the ith system. Let X denote the
time to failure of the last of the N functioning systems. We can write X = max(Y1, Y2, . . . ,Yn). Then, the
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cumulative distribution function of X, say G(x), can be derived as follows. The conditional cumulative
distribution function of X given N is,

G (x) =
(1 − π)Pr(Y 6 x)
1 − πPr(Y 6 x)

, (1.7)

and

Pr (Y 6 x) = Pr [(Zi,1,Zi,2, . . . ,Zi,M) 6 x] =
exp

(
λ− λ

(
θ+1+θx

1+θ

)
e−θx

)
eλ − 1

,

so

G (x) =
(1 − π)

[
1 − exp

(
−λ+ λ

(
θ+1+θx

1+θ

)
e−θx

)]
1 − e−λ − π

[
1 − exp

(
−λ+ λ

(
θ+1+θx

1+θ

)
e−θx

)] , (1.8)

for x > 0, θ > 0, λ > 0, and 0 < π < 1. The corresponding probability density function is,

g (x) =
λθ2(1 − π)(1 − e−λ)(1 + x) exp

(
−θx− λ+ λ

(
θ+1+θx

1+θ

)
e−θx

)
(1 + θ)

{
1 − e−λ − π

[
1 − exp

(
−λ+ λ

(
θ+1+θx

1+θ

)
e−θx

)]}2 . (1.9)

We shall refer to the distribution given by (1.8) and (1.9) as the geometric Lindley Poisson (GLP1). The
parameters λ and π control the shape. The parameter θ controls the scale.

Sankaran [10] introduced the discrete Poisson Lindley distribution by compounding Poission and
Lindley distributions. Ghitany et al. [3] investigated the properties of the zero-truncated Poisson-Lindley
distribution. Bakouch et al. [1] extended. Lindley distribution by exponentiation. Zakerzadeh and Dolati
[13] introduced and analyzed a three-parameter generalization of the Lindley distribution, which was
used by Mahmoudi and Zakerzadeh [5] to derive an extended version of the compound Poisson distri-
bution. Shanker et al. [11] introduced a two-parameter Lindley distribution in which the one-parameter
is a particular case, for modeling waiting and survival time data. Ghitany et al. [3] introduced a two-
parameter power Lindley distribution (PL) and discussed its properties. Nadarajah et al. [7] proposed a
generalized Lindley distribution (GL) and provided a comprehensive account of its mathematical proper-
ties.

The failure rate function associated with (1.6) is given by

h (x) =
λθ2(1 − e−λ)(1 + x) exp

(
−θx− λ

(
θ+1+θx

1+θ

)
e−θx

)
(1 + θ)

{
1 − e−λ − π

[
1 − exp

(
−λ
(
θ+1+θx

1+θ

)
e−θx

)]} 1(
1 − exp

(
−λ
(
θ+1+θx

1+θ

)
e−θx

)) .

Also, the reversed failure rate function

rh (x) =
λθ2(1 − π)(1 − e−λ)(1 + x) exp

(
−θx− λ

(
θ+1+θx

1+θ

)
e−θx

)
(1 + θ)

[
exp

(
−λ
(
θ+1+θx

1+θ

)
e−θx

)
− e−λ

]{
1 − e−λ − π

[
1 − exp

(
−λe−(βx)α

)]} .

Figure 1 ((a) and (b)) provides some plots of the GLP density curves for different values of the param-
eters λ, θ, and π.

Figure 2 does the same for the associated hazard rate function, showing that it is quite flexible for
modelling survival data.

Note that h (x) → θ as x → ∞, and h (x) → λθ2e−λ/(1 − e−λ)(1 + θ)(1 + π) as x → 0. So, both the
initial and ultimate hazard rates are constant.

The rest of the paper is organized as follows. In Section 2, we derive an expansion to the pdf and
the cdf functions. Section 3, gives the quantile function for the new model. In Section 4, some properties
of the new distribution are given. Bonferroni and Lorenz Curves and mean deviations are discussed
in Section 5. In Section 6, we introduce the method of likelihood estimation as point estimation of the
unknown parameters. Section 7 contains measures of uncertainty. In Section 8, we fit the distribution
to two real data sets to examine it and to suitability it with nested and non-nested models. Section 9,
describes a generalization of the proposed model.
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Figure 1: Plots of the GLP density function for some parameter values.

Figure 2: Plots of the GLP hazard rate function for some parameter values.

2. Expansion for the pdf and the cdf functions

In this section we give another expression for the pdf and the cdf functions using the Maclaurin and
Binomial expansions for simplifying the pdf and the cdf forms.

2.1. Expansion for the pdf function
We can rewrite (1.6) as,

g (x) =
λθ2(1 − π)(1 − e−λ)(1 + x) exp

(
−θx− λ

(
θ+1+θx

1+θ

)
e−θx

)
(1 + θ) (1 − e−λ − π)

2
[

1 +
π exp(−λ(θ+1+θx

1+θ )e−θx)
1−e−λ−π

]2 . (2.1)

Using the expansions

(1−z)−b=
8∑
i=0

(
−b
i

)
(−z)i, |z|< 1, (2.2)

and

e−x=
∞∑
i=0

(−x)i

i!
. (2.3)

Using (2.1), we can write (2.2) as

g (x)=
λθ2(1−π)(1−e−λ)(1+x)exp (−θx)

(1+θ) (1−e−λ−π)2

×
∞∑
k=0

(
−2
k

)[
π

1−e−λ−π

]k
exp

(
−λ (k+1)

(
θ+1+θx

1+θ

)
e−θx

)
.

(2.4)
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Applying (2.3) to (2.4) for the term exp
(
−λ (k+ 1)

(
θ+1+θx

1+θ

)
e−θx

)
, (2.4) can be written as:

g (x)=
λθ2(1−π)(1−e−λ)(1+x)exp (−θx)

(1+θ) (1−e−λ−π)2

×
∞∑
k,j=0

(
−2
k

)
(−1)j

j!

[
π

1−e−λ−π

]k
λj(k+1)j

(
1+

θx

1+θ

)j
e−θjx.

(2.5)

Applying (2.2) to (2.5) for the term
(
1 + θx

1+θ

)j
, (2.5) can be written as:

g (x)=
λθ2(1−π)(1−e−λ)

(1+θ) (1−e−λ−π)2

∞∑
k,j=0

j∑
i=0

(
j

i

)(
−2
k

)
(−1)jθi

j!(1+θ)i

[
π

1−e−λ−π

]k
λj(k+1)j(1+x)xie−(j+1)θx.

The pdf of GLP distribution can then be represented as:

g (x)=

∞∑
k,j=0

j∑
i=0

Ak:i(1+x)xie−(j+1)θx, (2.6)

where Ak:i is a constant term given by

Ak:i=

(
−2
k

)(
j

i

)
θ2+i(1−π)(1−e−λ)(−1)jπk λj+1(k+1)j

(1+θ)i+1(1−e−λ−π)k+2
j!

.

2.2. Expansion for the cdf function

We can rewrite (1.5) as,

G (x) =
exp

(
−λ
(
θ+1+θx

1+θ

)
e−θx

)
− e−λ

(1 − e−λ − π)

[
1 +

π exp(−λ(θ+1+θx
1+θ )e−θx)

1−e−λ−π

] .

And applying the expansion in (2.2), the cdf function of the GLP distribution can be written as:

G (x)=

∞∑
k=0

(
−1
k

)
πk
[
exp

(
−(k+1)λ

(
θ+1+θx

1+θ

)
e−θx

)
−exp

(
−λ−kλ

(
θ+1+θx

1+θ

)
e−θx

)]
(1−e−λ−π)k+1 .

3. Quantile function

The quantile function is obtained by inverting the cumulative distribution (1.5), where the pth quantile
xp of the GLP model is the real solution of the following equation:

ln (θ+1+θxp)−θxp−ln
[
−(1+θ)
λ

ln
(
p (1−π)+(1−p)e−λ

1−πp

) ]
= 0.

An expansion for the median M follows by taking p = 0.5.

4. Statistical properties

In this section, moments, conditional moments, moment generating function of the GLP distribution
are presented.
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4.1. Moments
The rth non-central moments or (moments about the origin) of the GLP under using equation (2.6) is

given by:

µ
′
r= E (X

r)=

∫∞
0
Xrg (x)dx, µ

′
r=

∫∞
0
Xr

 ∞∑
k,j=0

j∑
i=0

Ak:i(1 + x)xie−(j+1)θx

dx,

then,

µ
′
r=

∞∑
k,j=0

j∑
i=0

Ak:i
1

(θ (j+1))r+i+2 [θ (j+1) Γ (r+i+1)+Γ (r+i+2)] . (4.1)

Thus

µ
′
1= E(x) =

∞∑
k,j=0

j∑
i=0

Ak:i
1

(θ (j+ 1))i+3 [θ (j+ 1) Γ (i+ 2) + Γ (i+ 3)] .

4.2. Conditional moments
For lifetime models, it is useful to know the conditional moments defined as E (xr | x > t),

E (xr | x > t) =
1

[1 −G (t)]

∫∞
t

xrg (x)dx,

using equation (2.6) the conditional moments is,

E (xr | x > t) =
1

[1 −G (t)]

∞∑
k,j=0

j∑
i=0

Ak:i
1

(θ (j+ 1))r+i+2 [θ (j+ 1) Γt (r+ i+ 1) + Γt (r+ i+ 2)] ,

where Γt (a) =
∫∞
t x

a−1e−xdx is the upper incomplete gamma function.

4.3. The moment generating function
The moment generating function, Mx(t), can be easily obtained as:

Mx (t)=
∫∞

0
etxg (x)dx, Mx (t)=

∫∞
0

etx
∞∑
k,j=0

j∑
i=0

Ak:i(1 + x)xie−(j+1)θxdx,

then, the moment generating function of the GLP distribution is given by,

Mx (t)=

∞∑
k,j=0

j∑
i=0

Ak:i

[θ (j+1)−t]i+2 {(θ(j+1)−t) Γ (i+1)+Γ (i+2)} .

5. Lorenz curves, Bonferroni, and mean deviations

In this section, we present Lorenz curves, Bonferroni, and the mean deviation about the mean, and
the mean deviation about the median. Bonferroni and Lorenz curves are income inequality measures that
are also useful and applicable in other areas including reliability, demography, medicine, and insurance.

5.1. Lorenz curves and Bonferroni
The Lorenz curves L (G) and Bonferroni B (G) are defined by

L (G) =
1
µ

∫x
0
t g (t)dt, L (G) =

∞∑
k,j=0

j∑
i=0

Ak:i
1

µ(θ (j+ 1))i+3 [θ (j+ 1) Γ [(i+ 2) , x] + Γ [(i+ 3) , x]] ,
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where Γ (a, x) =
∫x

0 t
a−1e−tdt, is the lower incomplete gamma function. And

B (G) =
1

µG(x)

∫x
0
t g (t)dt,

B (G) =

∞∑
k,j=0

j∑
i=0

Ak:i
1

µG(x) (θ (j+ 1))i+3 [θ (j+ 1) Γ [(i+ 2) , x] + Γ [(i+ 3) , x]] .

5.2. The mean deviation
In statistics, mean deviation about the mean and mean deviation about the median measure the

amount of scatter in a population. For random variable X with pdf g (t), distribution function G(x),
mean µ, and M =Median (X), the mean deviation about the mean and mean deviation about the median,
are defined by,

δ1(x) =

∫∞
0

|x− µ|g(x)dx= 2µG(µ) − 2
∫µ

0
xg(x)dx, and δ2(x) =

∫∞
0

|x−M|g(x)dx= µ− 2
∫M

0
xg(x)dx,

respectively, if X is GLP random variable then

δ1 (x) = 2µG (x) − 2
∞∑
k,j=0

j∑
i=0

Ak:i
1

((j+ 1) θ)i+3 [(j+ 1) θΓ [(i+ 2) ,µ] + Γ [(i+ 3) ,µ]] ,

and

δ2 (x) = µ− 2
∞∑
k,j=0

j∑
i=0

Ak:i
1

((j+ 1) θ)i+3 [(j+ 1) θΓ [(i+ 2) ,M] + Γ [(i+ 3) ,M]] .

6. Measures of uncertainty

In this section, we present Shannon entropy [12], as well as Re’nyi entropy (1961) for the GLP distri-
bution. The concept of entropy plays a vital role in information theory. The entropy of a random variable
is defined in terms of its probability distribution and is a good measure of randomness or uncertainty.

6.1. Shannon entropy
Shannon entropy [12], is defined by H [g (x)] = E [−ln [g (x)] ] . Thus, using (2.1) we have

H [g (x)]= −ln

[
λθ2(1−π)(1−e−λ)

(1+θ) (1−e−λ−π)2

]
−Eln (1+x)+θE (x)+λE

[(
θ+1+θx

1+θ

)
exp(−θx)

]

+2Eln

[
1+
π exp

(
−λ
(
θ+1+θx

1+θ

)
e−θx

)
(1−e−λ−π)

]
.

Note that,

Eln (1+xa)= −

∞∑
q=1

(−1)q

q
E (xqa) . (6.1)

Using (6.1),

Eln

[
1+
π exp

(
−λ
(
θ+1+θx

1+θ

)
e−θx

)
(1−e−λ−π)

]
= −

∞∑
q=1

(−π)qE(exp
(
−λq

(
θ+1+θx

1+θ

)
e−θx

)
)

q(1−e−λ−π)q
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= −

∞∑
q=1

∞∑
s=0

s∑
r=1

(
s

r

)
(−1)q+sπqλsθrE(xr

(
e−θsx

)
)

s!q1−s(1−e−λ−π)q(1+θ)r
,

then,

H [g (x)]= −ln

[
λθ2(1−π)(1−e−λ)

(1+θ) (1−e−λ−π)2

]
+

∞∑
l=1

(−1)r

r
E(xr)+θE (x)+λE

(
e−θx

)
+

λθ

1+θ
E
(
xe−θx

)
−2

∞∑
q=1

∞∑
s=0

s∑
r=1

(
s

r

)
(−1)q+sπqλsθrE(xr

(
e−θsx

)
)

s!q1−s(1−e−λ−π)q(1+θ)r
,

Now, we obtain Shannon entropy for the GLP distribution as follows:

H [g (x)]= −ln

[
λθ2(1−π)(1−e−λ)

(1+θ) (1−e−λ−π)2

]
+

∞∑
l=1

(−1)r

r

∞∑
k,j=0

j∑
i=0

Ak:i

[(j+1) θ]r+i+2 {((j+1)θ) Γ (r+i+1)+Γ (r+i+2)}

+θ

∞∑
k,j=0

j∑
i=0

Ak:i

[(j+1) θ]i+3 {((j+1)θ) Γ (i+2)+Γ (i+3)}

+λ

∞∑
k,j=0

j∑
i=0

Ak:i

[(j+2) θ]i+2 {((j+2)θ) Γ (i+1)+Γ (i+2)}

+
λθ

1+θ

∞∑
k,j=0

j∑
i=0

Ak:i

[(j+2) θ]i+3 {((j+2)θ) Γ (i+2)+Γ (i+3)}

−2
∞∑
q=1

∞∑
s=0

s∑
r=1

(
s

r

)
(−1)q+sπqλsθr

s!q1−s(1−e−λ−π)q(1+θ)r

×

 ∞∑
k,j=0

j∑
i=0

Ak:i

[(j+s+1) θ]r+i+2 {((j+s+1)θ) Γ (r+i+1)+Γ (r+i+2)}

 .

6.2. Re’nyi entropy
Re’nyi entropy [9] is an extension of Shannon entropy. Re’nyi entropy is defined to be

IR (r)=
1

1−r
ln
[∫∞

0
gr(x)dx

]
, r> 0, r6=1, (6.2)

where

gr (x)=

[
λθ2(1−π)(1−e−λ)

(1+θ) (1−e−λ−π)2

]r
(1+x)rexp

(
−θrx−λr

(
θ+1+θx

1+θ

)
e−θx

)

×

[
1+

exp
(
−λ
(
θ+1+θx

1+θ

)
e−θx

)
(1−e−λ−π)

]−2r

,

(6.3)

we can write (6.3) as:

gr (x)=

[
λθ2(1−π)(1−e−λ)

(1+θ) (1−e−λ−π)2

]r ∞∑
k,j=0

j,r∑
i,l=0

(
−2r
k

)(
j

i

)(
r

l

)
πk

(1−e−λ−π)k

× (−1)jλj(r+k)jθi

(1+θ)i
xi+le−(j+r)θx.
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The gr (x) of GLP1 distribution can then be represented as:

gr (x)=

∞∑
k,j=0

j,r∑
i,l=0

Bk:lx
i+le−(j+r)θx,

where Bk:l is a constant term given by

Bk:l =
[
λ(1 − π)(1 − e−λ)

]r( −2r
k

)(
j

i

)(
r

l

)
πk(−1)jλj(r+ k)jθ2r+i

(1 − e−λ − π)
2r+k

(1 + θ)r+i
.

Then ∫∞
0
gr(x)dx=

∞∑
k,j=0

j,r∑
i,l=0

Bk:l

∫∞
0
xi+le−(j+r)θxdx,=

∞∑
k,j=0

j,r∑
i,l=0

Bk:l
Γ (i+l+1)

[(j+r) θ]i+l+1 , (6.4)

by substituting (6.4) in (6.2),

IR (r)=
1

1−r
ln

 ∞∑
k,j=0

j,r∑
i,l=0

Bk:l
Γ (i+l+1)

[(j+r) θ]i+l+1

 , r> 0, r6=1. (6.5)

6.3. s-entropy
The s-entropy for the GLP distribution is defined by

Is (r) =
1

s− 1

[
1 −

∫∞
0
gs(x)dx

]
, s > 0, s 6= 1.

Now, using the same procedure that was used to derive equation (6.5), we have

Is (r) =
1

s− 1

1 −

∞∑
k,j=0

j,s∑
i,l=0

Dk:l
Γ (i+ l+ 1)

[(j+ s) θ]i+l+1

 , s > 0, s 6= 1,

where Dk:l is a constant term given by

Dk:l =
[
λ(1 − π)(1 − e−λ)

]s( −2s
k

)(
j

i

)(
s

l

)
πk(−1)jλj(s+ k)jθ2s+i

(1 − e−λ − π)
2s+k

(1 + θ)s+i
.

7. Parameter estimation

In this section, the maximum likelihood estimation is used to estimate the unknown parameters. Let
X1,X2, . . . ,Xn be a sample of size n from a GLP distribution. Then the likelihood function (`) is given by

` =
λnθ2n(1−π)n(1−e−λ)n

∏n
i=1 (1+xi)exp

(
−θ
∑n
i=1 xi−λ

∑n
i=1

(
θ+1+θxi

1+θ

)
e−θxi

)
(1+θ)n

∏n
i=1

{
1−e−λ−π

[
1−exp

(
−λ
(
θ+1+θxi

1+θ

)
e−θxi

)]}2 . (7.1)

Hence, the log-likelihood function, L, becomes:

L=nlnλ+2nlnθ+nln (1−π)+nln(1−e−λ)

−nln (1+θ)+
n∑
i=1

(1+xi)−θ
n∑
i=1

xi−λ

n∑
i=1

(
θ+1+θxi

1+θ

)
e−θxi

−2
n∑
i=1

ln
[

1−e−λ−π
[

1−exp
(
−λ

(
θ+1+θxi

1+θ

)
e−θxi

)]]
.

(7.2)
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Therefore, the MLEs of λ, θ, and π must satisfy the following equations:

∂L

∂λ
=
n

λ
+

n

e−λ−1
−

n∑
i=1

(
θ+1+θxi

1+θ

)
e−θxi

−2
n∑
i=1

e−λ−π
(
θ+1+θxi

1+θ

)
exp

(
−θxi−λ

(
θ+1+θxi

1+θ

)
e−θxi

)
[
1−e−λ−π

[
1−exp

(
−λ
(
θ+1+θxi

1+θ

)
e−θxi

)]] ,

(7.3)

∂L

∂θ
=

2n
θ
−
n

1+θ
−

n∑
i=1

xi+
λθ

(1+θ)2

n∑
i=1

[
(2+θ) xi+(1+θ)xi2

]
e−θxi

−

n∑
i=1

2λθπ exp
(
−θxi−λ

(
θ+1+θxi

1+θ

)
e−θxi

) [
(2+θ) xi+(1+θ)xi2

]
(1+θ)2

[
1−e−λ−π

[
1−exp

(
−λ
(
θ+1+θxi

1+θ

)
e−θxi

)]] ,

(7.4)

and

∂L

∂π
=

−n

(1−π)
+2

n∑
i=1

1−exp
(
−λ
(
θ+1+θxi

1+θ

)
e−θxi

)
1−e−λ−π

[
1−exp

(
−λ
(
θ+1+θxi

1+θ

)
e−θxi

)] . (7.5)

The maximum likelihood estimator ϑ̂ =
(
λ̂, θ̂, π̂

)
of ϑ = (λ, θ,π) is obtained by solving the nonlinear

system of equations (7.3)-(7.5). It is usually more convenient to use nonlinear optimization algorithms
such as quasi-Newton algorithm to numerically maximize the log-likelihood function.

8. Application

In this section, we use two real data sets to show that the geometric Lindley Poisson (GLP) distribution
can be a better model than nested and non-nested models.

8.1. Data Set 1

The data set represents an uncensored data set corresponding to remission times (in months) of a
random sample of 128 bladder cancer patients reported in Merovci [6]. Some summary statistics for the
data are as follows:

Min 1st Qu Median Mean 3rd Qu Max.
0.080 3.348 6.395 9.366 11.840 79.05

In order to compare the two distribution models, we consider criteria like KS (Kolmogorov Smirnov),
−2L, AIC (Akaike information criterion), BIC and AICC (corrected Akaike information criterion) for the
data set. The better distribution corresponds to smaller KS,−2L, AIC, and AICC values:

AIC = −2L+ 2k, AICC= −2L+

(
2kn

n − k − 1

)
,

and BIC = −2L+ klog (n), where L denotes the log-likelihood function evaluated at the maximum likeli-
hood estimates, k is the number of parameters, and n is the sample size.

Also, for calculating the values of KS we use the sample estimates of λ, θ, and π. Table 1 shows the
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parameter estimation based on the maximum likelihood, and gives the values of the criteria AIC, AICC
and KS test. The values in Table 1 indicate that the GLP distribution is a strong competitor to other
distributions used here for fitting data.

Table 1: MLEs the measures AIC, AICC, BIC, and KS test to data for the models.
Model Parameter Estimates Standard Error −2L AIC AICC BIC KS

GLP
λ=3.05690 1.2104

409.3017 824.603 824.796 833.15 0.02797θ=0.05405 0.0229
π=0.99023 0.01019

GEP
λ= 0.06366 0.02249

410.2873 826.574 826.768 835.13 0.03847θ=4.94519 1.1226
η=0.9679 0.0380

Transmuted Lindley λ=0.61687 0.1688 415.155 834.3101 834.4061 840.01 0.226523
θ=0.1557 0.0150

Exponentiated Lindley α=0.1648 0.01664 416.285 836.5719 836.6679 842.27 0.092791
θ=0.733 0.0912

Lindley θ=0.1960 0.01234 419.529 841.0598 841.0916 843.91 0.116398

Power Lindley θ=0.29432 0.03706 413.353 830.707 830.803 836.41 0.06822
β=0.83020 0.04722

EPL
λ=0.81907 0.31513

410.4335 835.42θ=0.56634 0.10279
α=2.76834 1.30424

Weighted Lindley α=0.15945 0.0172 416.442 836.8845 836.9805 842.58 0.092567
θ=0.6827 0.1115

Modified Weibull
θ=6.2675 3.16122

413.969 833.9393 834.1329 837.64 0.073875δ=6.3551 3.1869
α=1.001 0.0017

Exponential θ=0.10677 0.00944 414.3419 830.683 830.715 833.53

Figure 3: (a) Estimated densities of the GLP, GEP, PLD, TLD, ELD, LD, WL, MW and Exponential distributions for the data set
1. (b) Estimated cdf function from the fitted the GLP, GEP, PLD, TLD, ELD, LD, WL, MW and Exponential distributions and the
empirical cdf for the data set 1.
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Figure 4: Probability plots for the fits GLP, GEP, PLD, TLD, ELD, LD, WL, MW and Exponential distributions of data set 1.

8.2. Data Set 2
The following data represent the survival times (in days) of 72 guinea pigs infected with virulent

tubercle bacilli, observed and reported by Bjerkedal [2]. Some summary statistics for the failure time data
are as follows:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.10 1.080 1.495 1.768 2.240 5.550

Figure 5: (a) Estimated densities of the GLP, NTL, PLD, ELD, LD, WL and Exponential distributions for the data set 2. (b)
Estimated cdf function from the fitted the GLP, NTL, PLD, TLD, ELD, LD, WL, MW and Exponential distributions and the
empirical cdf for the data set 2.
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Table 2: MLEs the measures AIC, AICC, BIC, and KS test to data for the models.
Model Parameter Estimates Standard Error −2L AIC AICC BIC KS

GLP
λ=6.6408 1.20213

92.572 191.145 191.498 197.97 0.0715θ=1.2046 0.3100
π=0.8256 0.20720

NTL

λ=0.41674 0.33052

93.650 195.301 195.898 200.13 0.0752α=1.2004 1.3854
η=2.8376 0.2683
θ=6.4982

Transmuted Lindley λ=0.0868 0.0219 95.343 194.686 194.860 199.23 0.3875
θ=1.2268 0.08735

Exponentiated Lindley α=1.4117 0.14379 93.972 191.945 192.119 196.49 0.0740
θ=2.9647 0.6042

Lindley θ=0.86826 0.0766 106.928 215.856 215.914 218.13 0.2327

Power Lindley θ=0.59970 0.07594 96.050 196.101 196.275 200.65 0.0904
β=1.5343 0.12142

EPL
λ=1.3714 0.5029

93.969 193.938 194.291 200.76 0.0735θ=1.0194 0.2368
α=2.8367 1.6123

Weighted Lindley α=1.9048 0.3006 94.212 192.424 192.598 196.97 0.0753
θ=2.7751 0.4818

Modified Weibull
θ=0.1127 0.1622

95.380 196.761 197.114 199.31 0.0959δ=0.4049 0.2011
α=1.6347 0.2787

Exponential θ=0.5655 0.06666 113.037 228.074 228.131 230.35 0.2806

Figure 6: Probability plots for the fits GLP, NTL, PLD, TLD, ELD, LD, WL, MW and Exponential distributions of data set 2.

As we can see from Tables 1 and 2, our model with smallest values of AIC, AICC, BIC and K-S test
statistic best fits the data. Figures 3 and 5 shows the empirical distribution compared to the rival models
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and 8 compares the fitted densities against the data, Figures 4 and 6 show the probability-probability
plots, all confirm our findings of Tables 1 and 2.

9. Generalizations

In this section, we present generalizations of the GLP1 distribution.
In this section, we provide a general treatment by taking the probability density function of the cu-

mulative distribution function of failure times to be given by f(x) and F(x), respectively. In this case, (1.8)
generalizes to

G (x)=
(1−π) [1−exp (−λF(x))]

1−e−λ−π [1−exp (−λF(x))]
, (9.1)

for x > 0, λ > 0, and 0 < π < 1. The corresponding probability density function, hazard rate function and
reversed failure rate function are

g (x)=
λ
(
1−e−λ

)
(1−π)f(x) [exp (−λF(x))]

[1−e−λ−π [1−exp (−λF(x))]]
2 , (9.2)

h (x)=
g (x)

G (x)
=

λ
(
1−e−λ

)
(1−π)f(x) [exp (−λF(x))]

[exp (−λF(x))−exp (−λ)] [1−e−λ−π [1−exp (−λF(x))]]
, (9.3)

and

rh (x) =
g (x)

G (x)
=

λ
(
1 − e−λ

)
f(x) [exp (−λF(x))]

[1 − exp (−λF(x))] [1 − e−λ − π [1 − exp (−λF(x))]]
.

The shapes of (9.2) and (9.3) can be studied by taking their derivatives. Note that

∂ logg (x)
∂x

=
f̀(x)

f(x)
− λf (x) +

2λπf (x) [exp (−λF (x))]

1 − e−λ − π [1 − exp (−λF (x))]
,

and
∂ logh (x)

∂x
=
∂ logg (x)

∂x
+

λf(x) [exp (−λF(x))]

exp (−λF(x)) − exp (−λ)
−

λπf (x) [exp (−λF (x))]

1 − e−λ − π [1 − exp (−λF (x))]
.

The quantile function corresponding to (9.1) is

G−1 (u) = F−1

[
−1
λ

log

{
1 −

u
(
1 − e−λ

)
1 − π+ uπ

}]
.

Using the series expansion, we can express (9.1) and (9.2) as mixtures, we can rewrite G (x) as

G (x) =
(1 − π)

(1 − e−λ − π)

∞∑
k=0

(
−1
k

)[
π

1 − e−λ − π

]k
[exp (−kλF(x)) − exp (−(k+ 1)λF(x))],

and

g (x) =
λ
(
1 − e−λ

)
(1 − π)

(1 − e−λ − π)
2

∞∑
k=0

(
−1
k

)[
π

1 − e−λ − π

]k
f(x) exp (−(k+ 1)λF(x)).

10. Concluding remarks

There has been a great interest among statisticians and applied researchers in constructing flexible life-
time models to facilitate better modelling of survival data. Consequently, a significant progress has been
made towards the generalization of some well-known lifetime models and their successful application to
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problems in several areas. In this paper, we introduce a new three-parameter distribution. We refer to
the new model as the GLP distribution and study some of its mathematical and statistical properties. We
provide the pdf, the cdf and the hazard rate function of the new model, explicit expressions for the mo-
ments. The model parameters are estimated by maximum likelihood. The new model is compared with
nested and non-nested models and provides consistently better fit than other classical lifetime models.
We hope that the proposed distribution will serve as an alternative model to other models available in the
literature for modelling positive real data in many areas such as engineering, survival analysis, hydrology,
and economics.
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