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Abstract
This paper studies the contact CR-warped product submanifolds of a generalized Sasakian space form admitting a nearly

Sasakian structure. Some Characterization of the existence of these warped product submanifolds are also obtained. We illustrate
that the warping function is a harmonic function under certain conditions. Moreover, a sharp estimate for the squared norm
of the second fundamental form is investigated, and the equality case is also discussed. The results obtained in this paper
generalize the results that have appeared in [I. Hasegawa, I. Mihai, Geom. Dedicata, 102 (2003), 143–150], [I. Mihai, Geom.
Dedicata, 109 (2004), 165–173], and [M. Atçeken, Hacet. J. Math. Stat., 44 (2015), 23–32].

Keywords: Warped products, CR-submanifolds, nearly Sasakian manifolds.

2010 MSC: 53C25, 53C40, 53C42, 53D15.

c©2019 All rights reserved.

1. Introduction

It is well known that warped products of manifolds play an important role in differential geometry,
the theory of relativity and mathematical physics. One of the most important examples of a warped
product manifold is the excellent setting to the model space time near black holes or bodies with high
gravitational fields [16]. For a recent survey of warped products on Riemannian manifolds, one can
consult the reference [14].

The notion of the CR-warped product submanifolds was first introduced by Chen in [12]. Basically,
Chen considered the warped product submanifolds of the types N⊥ ×ψ NT and NT ×ψ N⊥, where NT
and N⊥ are the holomorphic and totally real submanifolds of a Kaehler manifold and showed that the
first type of warped product does not exist. Chen obtained some basic results for the second type of
warped product submanifolds. He also proved a sharp estimate for the squared norm of the second fun-
damental form in terms of the warping function. Hasegawa and Mihai [15] extended the results of Chen
[12] in the setting of the Sasakian space forms and obtained a sharp inequality for the squared norm of the
second fundamental form in terms of the warping function. A step forward was made by Mihai [21] who
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improved the same inequality for the contact CR-warped product submanifolds in the Sasakian space
forms. In [22], Munteanu carried out a thorough study on the warped product contact CR-submanifolds
of Sasakian space forms and obtained the various estimates for the squared norm of the second funda-
mental form. Moreover, Atceken in [4–6] studied the contact CR-warped product submanifolds of the
cosymplectic, Kenmotsu, and Sasakian space forms. He also obtained the characterizing inequalities for
the existence of these warped product submanifolds. In this line of research, many papers have appeared
in the setting of the almost contact metric manifolds ([2, 3, 18, 19]). After reviewing the literature, the
author of the present paper observed that the study of the contact CR-warped product submanifolds in
the setting of the generalized Sasakian space forms admitting a nearly Sasakian structure is an interest-
ing research problem which can be generalized by many existing results in this direction. Therefore, the
author tries to fill this gap and investigate the contact CR-warped product submanifolds in the setting of
the generalized Sasakian space forms.

The paper is organized so that Section 2 is introductory and contains a brief introduction to the almost
contact metric manifolds and in particular for the nearly Sasakian manifolds. Moreover, in this section,
the definition of a generalized Sasakian space form is given. In Section 3, the warped product of the
Riemannian manifolds is discussed and some useful results are collected for later use. Furthermore, a
characterizing inequality for the contact CR-warped product submanifolds of the generalized Sasakian
space forms admitting a nearly Sasakian structure and some special cases are also discussed. In the last
section, we prove a sharp estimate for the squared norm of the second fundamental form in terms of
warping function, and the equality case is also discussed.

2. Preliminaries

A (2n+ 1)-dimensional C∞-manifold M̄ is said to have an almost contact structure if there exist on M̄
a tensor field φ of the type (1, 1), a vector field ξ and a 1-form η satisfying

φ2 = −I+ η⊕ ξ, φξ = 0, η ◦φ = 0, η(ξ) = 1. (2.1)

There always exists a Riemannian metric g on an almost contact metric manifold M̄ satisfying the follow-
ing conditions

η(U) = g(U, ξ), g(φU,φV) = g(U,V) − η(U)η(V)

for all U,V ∈ TM̄.
An almost contact structure (φ, ξ,η) is said to be normal if the almost complex structure J on the

product manifold M̄× R is given by

J(U, f
d

dt
) = (φU− fξ,η(U)

d

dt
),

where f is a C∞-function on M̄× R has no torsion that is J is integrable and the condition for normality
in terms of φ, ξ and η is [φ,φ] + 2dη⊗ ξ = 0 on M̄, where [φ,φ] is the Nijenhuis tensor of φ. Finally, the
fundamental 2-form Φ is defined by Φ(U,V) = g(U,φV).

An almost contact metric manifold (M̄,φ, ξ,η,g) is said to be a Sasakian manifold [10], if the following
condition holds

(∇̄Uφ)V = −g(U,V)ξ+ η(V)U,

from the above equation one can conclude that

∇̄Uξ = φU

for all U,V ∈ TM̄.
An almost contact metric manifold is said to be nearly Sasakian manifold [10], if

(∇̄Uφ)V + (∇̄Vφ)U = −2g(U,V)ξ+ η(V)U+ η(U)V (2.2)
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for all U,V ∈ TM̄. The equation (2.2) is equivalent to the following equation

(∇̄Uφ)U = −g(U,U)ξ+ η(U)U (2.3)

for each U ∈ TM̄.
In [1], Blair et al. introduced the notion of generalized Sasakian space form as that an almost contact

metric manifold (M̄,φ, ξ,η,g) whose curvature tensor R̄ satisfies

R̄(U,V)W = f1{g(V ,W)U− g(U,W)V}+ f2{g(U,φW)φV − g(V ,φW)φU+ 2g(U,φV)φW}

+ f3{η(U)η(W)V − η(V)η(W)U+ g(U,W)η(V)ξ− g(V ,W)η(U)ξ}
(2.4)

for all vector fields U,V ,W and certain differentiable functions f1, f2, f3 on M̄. A generalized Sasakian
space form with functions f1, f2, f3 is denoted by M̄(f1, f2, f3). If f1 = c+3

4 , f2 = f3 = c−1
4 , then M̄(f1, f2, f3)

is a Sasakian space form M̄(c) [8]. If f1 = c−3
4 , f2 = f3 = c+1

4 , then M̄(f1, f2, f3) is a Kenmotsu space form
M̄(c) [17] and if f1 = f2 = f3 = c

4 , then M̄(f1, f2, f3) is a cosymplectic space form M̄(c) [1].
Let M be a submanifold of an almost contact metric manifold M̄ with induced metric g and if ∇

and ∇⊥ are the induced connections on the tangent bundle TM and the normal bundle T⊥M of M,
respectively, then the Gauss and Weingarten formulae are given by the following equations

∇̄UV = ∇UV + h(U,V), (2.5)

∇̄UN = −ANU+∇⊥UN (2.6)

for each U,V ∈ TM and N ∈ T⊥M, where h and AN are the second fundamental form and the shape
operator respectively, for the immersion of M in M̄, they are associated as

g(h(U,V),N) = g(ANU,V), (2.7)

where g denotes the Riemannian metric on M̄ as well as on M.
The mean curvature vector H of M is given by

H =
1
n

n∑
i=1

h(ei, ei),

where n is the dimension of M and {e1, e2, . . . , en} is a local orthonormal frame of the vector fields on M.
The squared norm of the second fundamental form is defined as

‖h‖2 =

n∑
i,j=1

g(h(ei, ej),h(ei, ej)).

A submanifold M of an almost contact metric manifold M̄ is said to be a totally geodesic submanifold,
if h(U,V) = 0, for each U,V ∈ TM and totally umbilical submanifold, if h(U,V) = g(U,V)H.

For any U ∈ TM, we write
φU = PU+ FU, (2.8)

where PU and FU are the tangential and normal components of φU, respectively.
Similarly, for N ∈ T⊥M, we can write

φN = tN+ fN, (2.9)

where tN and fN are the tangential and normal components of φN, respectively.
The covariant differentiation of the tensors φ, P, and F are defined as

(∇̄Uφ)V = ∇̄UφV −φ∇̄UV , (2.10)
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(∇̄UP)V = ∇UPV − P∇UV , (2.11)

(∇̄UF)V = ∇⊥UFV − F∇UV , (2.12)

respectively. Furthermore, for any U,V ∈ TM, the tangential and normal parts of (∇̄Uφ)V are denoted
by PUV and QUV , i.e.,

(∇̄Uφ)V = PUV +QUV . (2.13)

By using the equations (2.5)-(2.13), we may obtain that

PUV = (∇̄UP)V −AFVU− th(U,V), (2.14)
QUV = (∇̄UF)V + h(U, TV) − fh(U,V).

On a submanifold M of a nearly Sasakian manifold by (2.2) and (2.13)

(a) PUV +PVU = −2g(U,V)ξ+ η(U)V + η(V)U, (b) QUV +QVU = 0 (2.15)

for any U,V ∈ TM.
An m-dimensional Riemannian submanifold M of an almost contact metric manifold M̄, where ξ is

tangent to M, is called a contact CR-submanifold, if it admits an invariant distribution D whose orthogonal
complementary distribution D⊥ is anti invariant, the tangent bundle of the submanifold M can be written
as

TM = D⊕D⊥ ⊕ 〈ξ〉,

where φD ⊆ D and φD⊥ ⊆ T⊥M. 〈ξ〉 denotes the 1-dimensional distribution which is spanned by the
structure vector field ξ.

If µ is the invariant subspace of the normal bundle T⊥M, then in the case of contact CR-submanifold,
the normal bundle T⊥M can be decomposed as follows:

T⊥M = µ⊕φD⊥. (2.16)

A contact CR-submanifold M is called contact CR-product, if the distribution D and D⊥ are parallel
on M.

As a generalization of the product manifolds and in particular of the contact CR-product submani-
folds, one can consider the warped product of manifolds which is defined as follows.

Let (B,gB) and (F,gF) be the two Riemannian manifolds with the Riemannian metrics gB and gF
respectively and ψ be a positive differentiable function on B and π : B× F → B, η : B × F → F. The
projection maps given by π(p,q) = p and η(p,q) = q for every (p,q) ∈ B × F. The warped product
M = B×ψ F is the manifold B× F ([7]), equipped with the Riemannian structure such that

g(U,U2) = gB(π∗U,π∗U2) + (ψ ◦ π)2gF(π∗U,π∗U2)

for all U,U2 ∈ TM, where ∗ denotes the tangent map. The function ψ is called the warping function of
the warped product manifold. If the warping function is constant then the warped product manifold M
is said to be trivial.

Let U be a vector field on B and let V be a vector field on F. Then from [7, Lemma 7.3], we have

∇UV = ∇VU = (
Uψ

ψ
)V , (2.17)

where ∇ is the Levi-Civita connection on M. From (2.17) for the warped product M = B×ψ F, it is easy
to conclude that

∇UV = ∇VU = (U lnψ)V (2.18)
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for any U ∈ TB and V ∈ TF. ∇ψ is the gradient of ψ and is defined as

g(∇ψ,U) = Uψ (2.19)

for all U ∈ TM.
Let M be a m-dimensional Riemannian manifold with the Riemannian metric g and let {e1, . . . , em} be

an orthogonal basis of TM. As a consequence of (2.18), we have

‖∇ψ‖2 =

m∑
i=1

(ei(ψ))
2.

The Laplacian of ψ is defined by

∆ψ =

m∑
i=1

{(∇eiei)ψ− eieiψ}. (2.20)

Now, we state the Hopf’s Lemma.

Lemma 2.1 (Hopf’s Lemma [13]). Let M be a n-dimensional compact Riemannian manifold. If ψ is differentiable
function on M such that ∆ψ > 0 everywhere on M (or ∆ψ 6 0 everywhere on M), then ψ is a constant function.

3. Results and discussion

In this section, we consider the contact CR-warped product submanifolds of the type NT ×ψ N⊥ of
the nearly Sasakian manifolds M̄, where NT and N⊥ are the invariant and anti-invariant submanifolds
respectively of M̄, Throughout, this section, we consider ξ tangent to NT .

Now we obtain the following results, which will be used to prove the main results.

Lemma 3.1. Let M = NT ×ψN⊥ be a contact CR-warped product submanifold of a nearly Sasakian manifold M̄.
Then

(i) ξ lnψ = 0;
(ii) g(h(U,W),φW) = (−φU lnψ+ η(U))‖W‖2;

(iii) g(h(φU,W),φW) = U lnψ‖W‖2

for any U ∈ TNT and W ∈ TN⊥.

Proof. The equations (2.15) (a), (2.5), and (2.18) give ξ lnψ = 0. Hence, part (i) is proved.
By the Gauss formula,

g(h(U,W),φW) = g(∇̄WU,φW) = −g(∇̄WφW,U).

The above equation alongwith (2.10), (2.3), and (2.14) takes the following form

g(h(U,W),φW) = (η(U) −φU lnψ)‖W‖2.

The above equation is the required result. Now replacing U by φU and using (2.1) and the part (i), we get
the part (iii).

Lemma 3.2. Let M = NT ×ψN⊥ be a contact CR-warped product submanifold of a nearly Sasakian manifold M̄.
Then

g(h(φU,W),φh(U,W)) = ‖hµ(U,W)‖2 − g(φh(U,W),QUW)

for any U ∈ TNT and W ∈ TN⊥.
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Proof. By (2.5) and (2.10), we have

h(φU,W) = (∇̄Wφ)U+φ∇WU+φh(U,W) −∇WφU.

In the view of (2.13) and (2.16), the above equation reduces to

h(φU,W) = PWU+QWU+U lnψφW +φh(U,W) −φU lnψW.

On comparing the normal parts, we get

h(φU,W) = QWU+U lnψφW +φhµ(U,W),

or
g(h(φU,W),φh(U,W)) = g(QWU,φh(U,W)) + ‖hµ(U,W)‖2.

By using (2.15) (b), we obtain

g(h(φU,W),φh(U,W)) = ‖hµ(U,W)‖2 − g(φh(U,W),QUW).

3.1. The existence theorem
Now, we prove the following characterization for existence of the contact CR-warped product sub-

manifolds.

Theorem 3.3. Let M = NT ×ψN⊥ be a contact CR-warped product submanifold of a generalized Sasakian space
form M̄(f1, f2, f3) admitting a nearly Sasakian structure such that NT is compact. Then M is a contact CR-product
submanifold, if either one of the following inequality holds

(i)
2p∑
i=1

q∑
j=1
‖hµ(ei, ej)‖2 > 2.p.q.f2 +

2p∑
i=1

q∑
j=1
‖Qeiej‖2;

(ii)
2p∑
i=1

q∑
j=1
‖hµ(ei, ej)‖2 6 2.p.q.f2,

where hµ denotes the component of h in µ, 2p+ 1 and q are the dimensions of NT and N⊥, respectively.

Proof. For any unit vector fields U ∈ TNT − 〈ξ〉 and W ∈ TN⊥. Then from (2.4) we have

R(U,φU,W,φW) = −2.f2.g(U,U) g(W,W). (3.1)

On the other hand by Codazzi equation

R̄(U,φU,W,φW) = g(∇⊥Uh(φU,W),φW) − g(h(∇UφU,W),φW)

− g(h(φU,∇UW),φW) − g(∇⊥φUh(U,W),φW)

+ g(h(∇φUU,W),φW) + g(h(U,∇φUW),φW).

(3.2)

By using the part (iii) of Lemma 3.1, (2.10), (2.5), and (2.13), we get

g(∇⊥Uh(φU,V),φW) = Ug(h(φU,W),φW) − g(h(φU,W), ∇̄UφW)

= U(U lnψg(W,W)) − g(h(φU,W), (∇̄Uφ)W +φ∇̄UW).

On further simplification the above equation yields

g(∇⊥Uh(φU,W),φW) = U2 lnψg(W,W) + 2(U lnψ)2g(W,W) − g(h(φU,W),QUW)

− g(h(φU,W),φh(U,W)) −U lnψg(h(φU,W),φW).
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By using the 3.2, we have

g(∇⊥Uh(φU,W),φW) = U2 lnψg(W,W) + (U lnψ)2g(W,W) − ‖hµ(U,W)‖2

− g(φh(U,W) − h(φU,W),QUW).

Further, using (2.5), (2.13), (2.15) (b), and (2.18) in the last term of the above equation, we get

g(∇⊥Uh(φU,W),φW) = U2 lnψg(W,W) + (U lnψ)2g(W,W) − ‖hµ(U,W)‖2 + ‖QUW‖2. (3.3)

Similarly, we can calculate

− g(∇⊥φUh(U,W),φW) = (φU)2 lnψg(W,W) + (φU lnψ)2g(W,W) − ‖hµ(φU,W)‖2 + ‖QφUW‖2. (3.4)

From the part (iii) of the 3.1, we have

g(AφWW,φU) = U lnψ,

replacing U by ∇UU
g(AφWW,φ∇UU) = ∇UU lnψ.

By using the Gauss formula in the last equation, we get

g(AφWW,φ(∇̄UU− h(U,U)) = ∇UU lnψ. (3.5)

By use of (2.5), (2.10), (2.3), and (2.18), it is easy to see that h(U,U) ∈ µ, applying this fact in (3.5), then
we get

g(AφWW, ∇̄UφU− (∇̄Uφ)U) = ∇UU lnψ.

In view of (2.3) and (2.5) the above equation reduces to

g(AφWW,∇UφU) + g(U,U)g(AφWW, ξ) = ∇UU lnψ.

In view of (2.7) and (2.15) (b), the second term of the last equation becomes zero and we have

g(h(∇UφU,W),φW) = ∇UU lnψg(W,W). (3.6)

Similarly,
g(h(∇φUU,W),φW) = ∇φUφU lnψg(W,W). (3.7)

By use of (2.18) and the part (iii) of the 3.1, it is easy to see the following

g(h(φU,∇UW),φW) = (U lnψ)2g(W,W) (3.8)

and
g(h(U,∇φUW),φW) = −(φU lnψ)2g(W,W). (3.9)

Substituting (3.3), (3.4), (3.6), (3.7), (3.8), and (3.9) in (3.2), we find

R(U,φU,W,φW) = U2 lnψg(W,W) + (φU)2 lnψg(W,W) −∇UU lnψg(W,W)

−∇φUφUg(W,W) − ‖hµ(U,W)‖2 − ‖hµ(φU,W)‖2 + ‖QUW‖2 + ‖QφUW‖2.
(3.10)

Let {e0 = ξ, e1, e2, . . . , ep, ep+1 = φe1, ep+2 = φe2, . . . , e2p = φep,e1, e2, . . . , eq} be an orthonormal
frame of TM such that the set {e1, e2, . . . , ep,φe1,φe2, . . . ,φep} is tangent to TNT and {e1, e2, . . . , eq} is
tangent to TN⊥. Using (3.1) and (2.20) in (3.10) and summing over i = 1, 2, . . . ,p and j = 1, 2, . . . ,q, we get

q∆ lnψ = 2.p.q.f2 −

2p∑
i=1

q∑
j=1

‖hµ(ei, ej)‖2 +

2p∑
i=1

q∑
j=1

‖Qeie
j‖2. (3.11)
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From the Hopf’s Lemma and (3.11), if

2p∑
i=1

q∑
j=1

‖hµ(ei, ej)‖2 > 2.p.q.f2 +

2p∑
i=1

‖Qeie
j‖2,

or
2p∑
i=1

q∑
j=1

‖hµ(ei, ej)‖2 6 2.p.q.f2,

then the warping function ψ is constant on M, i.e., M is simply a contact CR-product submanifold, which
proves the theorem completely.

Under a certain condition, the equation (3.11) becomes the Laplace equation on the Riemannian man-
ifold, then we can see the nature of the warping function ψ in the following proposition.

Proposition 3.4. Let M = NT ×ψ N⊥ be a contact CR-warped product submanifold of a generalized Sasakian
space form M̄(f1, f2, f3) admitting a nearly Sasakian structure such that NT is compact. Then the function lnψ is
a Harmonic function, if and only if

2p∑
i=1

q∑
j=1

‖hµ(ei, ej)‖2 = 2.p.q.f2 +

2p∑
i=1

q∑
j=1

‖Qeie
j‖2.

Moreover, if the ambient manifold M̄ is a Sasakian space form, then from the equation (3.7) of [21]
and the Hopf’s Lemma we derive the following.

Theorem 3.5. Let M = NT ×ψN⊥ be a contact CR-warped product submanifold of a Sasakian space form M̄(c),
such that NT is compact. Then M is a contact CR-product submanifold, if either the inequality

2p∑
i=1

q∑
j=1

‖hµ(ei, ej)‖2 >
c+ 3

2
p.q,

or
2p∑
i=1

q∑
j=1

‖hµ(ei, ej)‖2 6
c+ 3

2
p.q

holds, where hµ is the component of h in µ, and 2p+ 1 and q are the dimensions of NT and N⊥.

Corollary 3.6. Let M = NT ×ψ N⊥ be a compact contact CR-warped product submanifolds of a Sasakian space
form M̄(c). Then M is a contact CR-product submanifold, if and only if

2p∑
i=1

q∑
j=1

‖hµ(ei, ej)‖2 =
c+ 3

2
p.q.

3.2. Another inequality

In the present subsection, we generalize the inequality proved in the 3.3 of the reference [21].

Theorem 3.7. Let M̄(f1, f2, f3) be a (2n + 1)-dimensional generalized Sasakian space form admitting a nearly
Sasakian structure and M = NT ×ψ N⊥ be an m-dimensional contact CR-warped product submanifold, such
that NT is a (2p+ 1)-dimensional invariant submanifold tangent to ξ and N⊥ be a q-dimensional anti-invariant
submanifold of M̄(f1, f2, f3). Then
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(i) the squared norm of the second fundamental form h satisfies

‖h‖2 > q[‖∇ lnψ‖2 −∆ lnψ+ 1] + 2.p.q.f2 + ‖QDD⊥‖2, (3.12)

where ∆ denotes the Laplace operator on NT ;
(ii) the equality sign of (3.12) holds identically, if and only if we have

(a) NT is a totally geodesic invariant submanifold of M̄(f1, f2, f3), hence NT is a generalized Sasakian space
form admitting a nearly Sasakian structure;

(b) N⊥ is a totally umbilical anti-invariant submanifold of M̄(f1, f2, f3).

Proof. For any U ∈ TNT and W ∈ TN⊥, from (2.8) and the part (ii) of the 3.1, we have

g(h(ξ,W),φW) = 1

and
g(h(φU,W),φW) = U lnψ‖W‖2.

From the above two equations one can get

2p∑
i=0

q∑
j=1

‖hφD⊥(ei, ej)‖2 = q[‖∇ lnψ‖2 + 1]. (3.13)

Again from the equation (3.11), we have

2p∑
i=1

q∑
j=1

‖hµ(ei, ej)‖2 = 2.p.q.f2 − q∆ lnψ+

2p∑
i=1

q∑
j=1

‖Qejei‖2. (3.14)

We use the following notation
2p∑
i=1

q∑
j=1

‖Qeie
j‖2 = ‖QDD⊥‖2.

Substituting above notation in (3.14) and combining it with (3.13), we obtain the inequality (3.12).
Let h ′′ be the second fundamental form of N⊥ in M. Then, we have

g(h ′′(W,W ′),U) = g(∇WW ′,U) = −U lnψg(W,W ′).

By using (2.19), we get
h ′′(W,W ′) = −g(W,W ′)∇ lnψ. (3.15)

If the equality sign of (3.12) holds identically, then we obtain

h(D,D) = 0, h(D⊥,D⊥) = 0. (3.16)

The first condition of (3.16) implies that NT is totally geodesic in M. On the other hand, one has

g(h(U,φV),φW) = g(∇̄UφV ,φW) = −g(φV , (∇̄Uφ)W). (3.17)

By use of (2.10) and (2.5) we get the following equation

g(φV , (∇̄Wφ)U) = g(φV ,∇WφU) − g(V ,∇WU),

in view of (2.18), the above equation reduced to

g(φV , (∇̄Wφ)U) = 0. (3.18)

From (3.17), (3.18), and (2.15) (a) we have

g(h(U,φV),φW) = −g(φV , (∇̄Uφ)W + (∇̄Wφ)U) = 0. (3.19)

From (3.19), it is evident that NT is totally geodesic in M̄(f1, f2, f3) and hence is a generalized Sasakian
space form admitting a nearly Sasakian structure.

The second condition of (3.16) and (3.15) imply that N⊥ is totally umbilical in M̄(f1, f2, f3).
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In the last, we have the following corollary which can be deduced from inequality (3.12).

Corollary 3.8. Let M = NT ×ψN⊥ be a contact CR-warped product submanifold of a Sasakian space form M̄(c),
such that the dimensions of NT and N⊥ are 2p + 1 and q, respectively, then the squared norm of the second
fundamental form satisfies

‖h‖2 > q[‖∇ lnψ‖2 −∆ lnψ+ 1] +
c− 1

2
p.q,

where ∆ is the Laplace operator on NT .

4. Conclusion

In this paper, by using Hopf’s Lemma, we have obtained the characterizing inequalities for the exis-
tence of the contact CR-warped product submanifolds in the setting of a generalized Sasakian space form,
and simultaneously, some special cases are also discussed. The methodology and the techniques used in
this paper are new and not available in the literature yet. Moreover, we also worked out an inequality for
the squared norm of the second fundamental form in terms of the warping function and the slant angle.
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