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Abstract
Let E be a reflexive smooth and strictly convex real Banach space. Let F : E → 2E

∗
and K : E∗ → E be bounded maximal

monotone mappings such that D(F) = E and R(F) = D(K) = E∗. Suppose that the Hammerstein inclusion 0 ∈ u+ KFu has a
solution in E. We present in this paper a new algorithm for approximating solutions of the inclusion 0 ∈ u+ KFu. Then we
prove strong convergence theorems. Our theorems improve and unify most of the results that have been proved in this direction
for this important class of nonlinear mappings. Furthermore, our technique of proof is of independent interest.
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1. Introduction

Let X and Y be a normed linear spaces. For a multivalued map A : E → 2F, the domain of A, D(A),
the image of a subset S of E, A(S), the range of A, R(A) and the graph of A, G(A) are defined as follows:

D(A) := {x ∈ E : Ax 6= ∅}, A(S) := ∪{Ax : x ∈ S},
R(A) := A(E), G(A) := {[x,u] : x ∈ D(A), u ∈ Ax}.

Let E be a normed linear space with dual E∗. A Hammerstein inclusion is any functional inclusion of the
form:

0 ∈ u+KFu, (1.1)

where F : E→ 2E
∗

and K : E∗ → E are maps such that D(K) = R(F) = E∗. This class of inclusions includes
nonlinear integral equations of Hammerstein type:

u(x) +

∫
Ω

κ(x,y)f(y,u(y))dy = 0,
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where dy is a σ-finite measure on the measure space Ω; the real kernel κ is defined on Ω×Ω, f is a
real-valued function defined on Ω×R. The mappings K and F are given by

Kv(x) =

∫
Ω

κ(x,y)v(y)dy, a.e. x ∈ Ω, Fu(y) = f(y,u(y)) a.e. y ∈ Ω.

There exist various motivations for studying inclusions of type (1.1). For illustration, let us mention two
of them.

The study of Hammerstein inclusions is related to nonsmooth calculus of variations (see e.g., the mono-
graph [34]). Suppose that we are interested in minimizing the energy functional

J(u) =

∫
Ω

(
h(u(t)) − f(s,u(t))

)
ds,

where h denotes the kinetic energy of the system, and f is a potential energy generating a superposition
operator. Assume further that the functional J is not differentiable in the usual sense, but admits a
generalized gradient or subgradient in the sense, for instance, of Clarkes generalized gradient, Aubins
contingent cone, Ioffes fan, etc. (see e.g. [8, 9]). Consequently, the problem of minimizing the energy
functional J leads to the study of boundary value problems for the Euler Lagrange inclusion:

Lu ∈ ∂Nfu, (1.2)

where, L is a linear operator on an appropriate function space and Nfu(t) = f(t,u(t)), and where ∂Nf is
one of the generalized gradients or subgradients mentioned above. The problem (1.2) in turn is in various
function spaces equivalent to the Hammerstein inclusion of type (1.1).

For a second motivation, let Ω be a smooth bounded open subset of RN and consider the following
boundary value problem :

−∆u = f(x,u(x)) in Ω, u = 0 on ∂Ω. (1.3)

Let K be the operator defined by Kg = u, where u is the unique solution of the corresponding linear
boundary value problem

−∆u = g in Ω, u = 0 on ∂Ω, (1.4)

and F the Nemistski operator associated to f. Then, there results from (1.3) and (1.4) the operator equation

u = −KFu,

which coincides with the Hammerstein equation (1.1).
Inclusions of the Hammerstein type have been studied by many authors and have been one of the

most important domains of application of the ideas and methods of nonlinear functional analysis and in
particular of the theory of nonlinear operators of monotone type. We refer to the works of Browder [17],
Brezis and Browder[14], Amann [6], Ahmed [1], O’Regan [50] and the references therein. Various applied
problems arising in mathematical physics, mechanics and control theory lead to multivalued analogs of
the Hammerstein integral equations, the so-called Hammerstein integral inclusions. In this direction we
have the works of Lyapin [45], Coffman [35], Glashoff and Sperkels [40], Appell et al. [7], and O’Regan
[51].

Let H be a real Hilbert space with inner product 〈·, ·〉H and norm ‖ · ‖H. A multivalued operator
A : H→ 2H with domain D(A) is called monotone if the following inequality holds:

〈x− y,u− v〉H > 0, ∀ x,y ∈ D(A), u ∈ Ax, v ∈ Ay,

and it is called strongly monotone if there exists k ∈ (0, 1) such that

〈x− y,u− v〉H > k‖x− y‖2
H, ∀ x,y ∈ D(A), u ∈ Ax, v ∈ Ay.
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Such operators have been studied extensively (see, e.g., Bruck Jr [20], Chidume [21], Martinet [47], Reich
[54], Rockafellar [55]) because of their role in convex analysis, in certain partial differential equations, in
nonlinear analysis and in optimization theory.

The extension of the monotonicity definition to operators from a Banach space into its dual has been
the starting point for the development of nonlinear functional analysis. The monotone maps constitute the
most manageable class because of the very simple structure of the monotonicity condition. They appear
in a rather wide variety of contexts since they can be found in many functional equations. Many of them
appear also in calculus of variations as subdifferential of convex functions (see, e.g., Pascali and Sburian
[52], p. 101, and Rockafellar [55]).

The first extension involves mapping A from E to 2E
∗
. Here and in the sequel, 〈·, ·〉 stands for the

duality pairing between (a possible normed linear space) E and its dual E∗. A mapping A : E→ 2E
∗

with
domain D(A) is called monotone if the following inequality holds:

〈x− y,u− v〉 > 0, ∀ x,y ∈ D(A), u ∈ Ax, v ∈ Ay,

and A is called strongly monotone if there exists k ∈ (0, 1) such that

〈x− y,u− v〉 > k‖x− y‖2, ∀ x,y ∈ D(A), u ∈ Ax, v ∈ Ay.

The second extension of the notion of monotonicity involves mapping A from E to 2E
∗
. Let E be a real

normed space, E∗ its dual space. The map J : E→ 2E
∗

defined by:

Jx :=
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖.‖x∗‖, ‖x∗‖ = ‖x‖

}
is called the normalized duality map on E. A mapping A : E → 2E with domain D(A) is called accretive if
for each x,y ∈ D(A), there exists j(x− y) ∈ J(x− y) such that

〈u− v, j(x− y)〉 > 0,∀u ∈ Ax, v ∈ Ay.

Finally, A is called strongly accretive if there exists k ∈ (0, 1) such that for each x,y ∈ D(A), there exists
j(x− y) ∈ J(x− y) such that

〈u− v, j(x− y)〉 > k‖x− y‖2,∀u ∈ Ax, v ∈ Ay.

In a Hilbert space, the normalized duality map is the identity map. Hence, in Hilbert spaces, monotonic-
ity and accretivity coincide.

Several existence and uniqueness results have been established for equations of Hammerstein type
(see, e.g., Coffman [35], Appell et al. [7] and O’Regan [51]). In general, these equations are nonlin-
ear and there is no known method to find closed form solutions for them. Consequently, methods of
approximating solutions of such equations are of interest.

In the special case in which the operator F is angle bounded (defined below) and weakly compact,
Brézis and Browder [13, 15] proved the strong convergence of a suitably defined Galerkin approximation to
a solution of (1.1). Before we state their results, we need the following definitions.

Let H be a real Hilbert space. A nonlinear operator A : H → H is said to be angle-bounded with angle
β > 0, if

〈Ax−Az, z− y〉 6 β〈Ax−Ay, x− y〉 (1.5)

for any triple of elements x,y, z ∈ H. For y = z, inequality (1.5) implies the monotonicity of A.
A monotone linear operator A : H→ H is said to be angle-bounded with angle α > 0, if

|〈Ax,y〉− 〈Ay, x〉| 6 2α〈Ax, x〉
1
2 〈Ay,y〉

1
2

for all x,y ∈ H. It is known (see, e.g., Pascali and Sburlan, [52], Ch. IV, p.189) that for linear operators,
the two definitions of angle boundedness are equivalent.

We now state the theorem of Brézis and Browder referred to above.
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Theorem 1.1 ([15]). Let H be a separable real Hilbert space and C be a closed subspace of H. Let K : H → C be a
bounded continuous monotone operator and F : C → H be an angle-bounded and weakly compact mapping. For a
given f ∈ C, consider the Hammerstein equation

(I+KF)u = f (1.6)

and its n-th Galerkin approximation given by

(I+KnFn)un = P∗f, (1.7)

where Kn = P∗nKPn : H → Cn and Fn = PnFP
∗
n : Cn → H, where the symbols have their usual meanings

(see, [52]). Then, for each n ∈ N, the Galerkin approximation (1.7) admits a unique solution un in Cn and {un}

converges strongly in H to the unique solution u ∈ C of the equation (1.6).

It is obvious that if an iterative algorithm can be developed for the approximation of solutions of
equations of Hammerstein type (1.1), this will certainly be preferred.

We first note that for the iterative approximation of zeros of accretive type operators, the mono-
tonicity/accretivity of operators is crucial. The Mann type iteration scheme (see, e.g., Mann [46]) has
successfully been employed (see, e.g., the recent monographs of Berinde [12] and Chidume [21] for re-
sults obtained within the past 40 years, or so). One drawback of the Mann iterative scheme, however, is
that in general, it only yields weak convergence (see, e.g., Matouskova and Reich [11]). All attempts to use
the Mann type iteration scheme directly to approximate solutions of equations of Hammertsein type (1.1)
did not yield satisfactory results (see Chidume and Osilike [29]). The recurrence formulas used in early
attempts involved K−1 which is also required to be strongly monotone, and this, apart from limiting the
class of mappings to which such iterative schemes are applicable, is also not convenient in application.
Part of the difficulty is the fact that the composition of two monotone operators need not be monotone.

The first satisfactory results on iterative methods for approximating solutions of Hammerstein equa-
tions, as far as we know, were obtained by Chidume and Zegeye [31–33] under the setting of a real Hilbert
space H. The method of proof used by Chidume and Zegeye provided the clue to the establishment of the
following coupled explicit algorithm for computing a solution of the equation u+KFu = 0 in the original
space X. With initial vectors u0, v0 ∈ X, sequences {un} and {vn} in X are defined iteratively as follows:

un+1 = un −αn(Fun − vn),n > 0, (*)
vn+1 = vn −αn(Kvn + un),n > 0, (**)

where {αn} is a sequence in (0, 1) satisfying appropriate conditions. The recursion formulas (*) and (**)
have been used successfully to approximate solutions of Hammerstein equations involving nonlinear
accretive-type operators. Following this, Chidume and Djitte studied this explicit coupled iterative algo-
rithms and proved several strong convergence theorems (see, Chidume and Djitte [23, 24] ). For recent
results using these recursion formulas or their modifications, the reader may consult any of the following
references Chidume and Djitte [25–27], Djitte and Sene [37, 38], Chidume and Ofeodu [28], Chidume and
Shehu [30] and also Chapter 13 of [21].

For Hammerstein equations involving monotone mappings from E to E∗, very little has been achieved.
Interestingly enough, almost all the existence theorems proved for Hammerstein equations involve mono-
tone mappings (see, e.g., Brézis and Browder [13–15], Browder [16], Browder et al. [18], and Browder
and Gupta [19]). We note that it has been remarked that in dealing with the Nemistkyi operator, which
is intimately connected with the Hammertsein integral equation, its properties are distinguished, in ap-
plications, according to two important cases: Lp(Ω) spaces, 1 < p < ∞, and L1(Ω), (see Pascali and
Sburlan [52], Chapter IV, pp. 165, 172). Thus, developing iterative methods for approximating solutions
of nonlinear Hammerstein integral equations in these cases is of paramount importance.

Motivated by approximating solutions of integral equations of Hammerstein type, in [48], Ofoedu and
Onyi proposed an iterative scheme and they obtained strong convergence results in the setting of Hilbert
spaces. In fact, they proved the following theorem.
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Theorem 1.2 ([48]). Let H be a real Hilbert space. Let F,K : H → H be Lipschitz monotone mappings. Let the
sequence {(un, vn)}n>1 in H×H be generated iteratively by (u1, v1) ∈ H×H,{

un+1 = (1 − σn)un + σn(un − Fun + vn) − σnξnαnun,
vn+1 = (1 − σn)vn + σn(vn −Kvn − un) − σnξnαnvn,

where {σn}n>1, {ξn}n>1 and {αn}n>1 are decreasing sequences in (0, 1) such that

(i) limn→∞ ξn = 0;
(ii) limn→∞ αn = 0;

(iii) limn→∞ σn
αnξn

= 0;

(iv) limn→∞ αn−1−αn
σnξnα2

n
= 0;

(v) limn→∞ ξn−1−ξn
σnξ2

nα
2
n

= 0.

Then the sequence {(un, vn)}n>1 is bounded. Moreover, if the Hammerstein equation u + KFu = 0 has some
solutions in H, then {un}n>1 converges strongly to a solution u∗ of u+KFu = 0.

Recently, Chidume and Bello [22] constructed a new iterative algorithm for approximating solutions
of Hammerstein equations in Lp-spaces, and where the operators K and F are assumed to be bounded
and strongly monotone. They obtained the following theorem.

Theorem 1.3. Let E = Lp, 1 < p 6 2 with dual E∗ and F : E → E∗, K : E∗ → E be strongly monotone and
bounded mappings with D(K) = R(F) = E∗. For given u1 ∈ E and v1 ∈ E∗, let {un} and {vn} be generated
iteratively by:

un+1 = J−1(Jun − λ(Fun − vn)), n > 1, vn+1 = J(J−1vn − λ(kvn + un)), n > 1,

where J is the normalized duality mapping from E into E∗ and {αn} ⊂ (0, 1) satisfies the following conditions:

(i)
∞∑
n=1

αn =∞;

(ii)
∞∑
n=0

α2
n <∞;

(iii)
∞∑
n=0

α
q
q−1
n <∞, where q is the conjugate of p.

Suppose that the equation u+KFu = 0 has a unique solution u∗. Then, there exists γ0 > 0 such that if αn < γ0 for
all n > 1, the sequence {un} converges strongly to u∗, the sequence {vn} converges strongly to v∗, with v∗ = Fu∗.

Using the same scheme, still in [22], they also proved a similar result in Lp, for 2 6 p <∞.
Let E be a normed linear space. A monotone multivalued mapping A : E→ 2E

∗
, with domain D(A) is

said to be maximal if its graph G(A) = {(x,y) ∈ E× E∗ : x ∈ D(A), y ∈ Ax} is not properly contained in
the graph of any other monotone mapping. It is known that if A is maximal monotone, then the zero of
A, A−1(0) := {x ∈ E : 0 ∈ Ax}, is closed and convex.

Motivated by the discussion above, it is our purpose in this paper to construct a new algorithm for
approximation solutions of inclusions of Hammerstein type, 0 ∈ u+KFu. The operators F and K, defined
in 2-uniformly convex and q-uniformly smooth (q > 1) or s-uniformly convex (s > 1) and 2-uniformly
smooth real Banach spaces are assumed to be bounded and maximal monotone. Our results extend and
unify most of the results that have been proved in this direction for this important class of nonlinear
mappings.
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2. Preliminaries

Let E be a normed linear space. Then, E is said to be strictly convex if the following holds. For all
x,y ∈ E such that ‖x‖ = ‖y‖ = 1 and x 6= y,

∥∥∥x+y2

∥∥∥ < 1 holds. The modulus of convexity of E is the
function δE : (0, 2]→ [0, 1] defined by

δE(ε) := inf
{

1 −
1
2
‖x+ y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ > ε

}
.

E is uniformly convex if and only if δE(ε) > 0 for every ε ∈ (0, 2]. For a real number p > 1, E is said to be
p-uniformly convex if there exists a constant c > 0 such that δE(ε) > cεp for all ε ∈ (0, 2].

Let E be a real normed space and let S := {x ∈ E : ‖x‖ = 1}. E is said to be smooth if the limit

lim
t→0+

‖x+ ty‖− ‖x‖
t

(2.1)

exists for each x,y ∈ S. E is said to be Fréchet differentiable if it is smooth and the limit in (2.1) is
attained uniformly for y ∈ SE. Finally E is uniformly smooth if it is smooth and the limit in (2.1) is
attained uniformly for each x,y ∈ SE. If E is a normed linear space of dimension > 2, then, the modulus of
smoothness of E , ρE, is defined by

ρE(τ) := sup
{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
; τ > 0.

A normed linear space E is called uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.

If there exists a constant c > 0 and a real number q > 1 such that ρE(τ) 6 cτq, then E is said to be
q-uniformly smooth.

Typical examples of such spaces are the Lp, `p and Wm
p spaces for 1 < p <∞ where

Lp (or lp) or Wm
p is

{
2-uniformly smooth and p-uniformly convex if 2 6 p <∞,
2-uniformly convex and p-uniformly smooth if 1 < p < 2.

Let Jq denote the generalized duality mapping from E to 2E
∗

defined by

Jq(x) :=
{
f ∈ E∗ : 〈x, f〉 = ‖x‖q and ‖f‖ = ‖x‖q−1} .

J2 is called the normalized duality mapping and is denoted simply by J.
It is well-known that E is smooth if and only if J is single-valued. Moreover, if E is a reflexive, smooth

and strictly convex real Banach space, then J−1 is single-valued, one-to-one, surjective and it is the duality
mapping from E∗ into E.

Let E be a normed linear space. A monotone mapping A : E → 2E
∗
, with domain D(A) is said to

be maximal if its graph G(A) = {(x,y) ∈ E× E∗ : x ∈ D(A), y ∈ Ax} is not properly contained in the
graph of any other monotone mapping. It is known that if A is maximal monotone, then the zero of A,
A−1(0) := {x ∈ E : 0 ∈ Ax}, is closed and convex.
Remark 2.1. The maximality of A is equivalent to: if (x,u) ∈ E×E∗ is such that 〈u− v, x− y〉 > 0 for every
y ∈ D(A), v ∈ Ay, then x ∈ D(A) and u = Ax.

Let E be a reflexive, smooth and strictly convex real Banach space, and let A : E → E∗ be a monotone
operator. Then A is maximal if and only if R(J+ rA) = E∗ for all r > 0 (see, e.g., Barbu [10]). If A : E→ E∗

is a maximal monotone operator, then for each r > 0 and x ∈ E, there exists a unique element xr ∈ D(A)
satisfying J(x) ∈ J(xr) + rAxr. We define the resolvent of A by JAr x = xr. In other words,

JAr = (J+ rA)−1J, ∀ r > 0.
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Definition 2.2. An operator A : E −→ 2E
∗

is called demiclosed if the conditions xn → x,yn ⇀ y or
xn ⇀ x,yn → y, where yn ∈ Axn, imply that y ∈ Ax.

Lemma 2.3 ([5]). Any maximal monotone operator A : E −→ 2E
∗

is demiclosed.

Lemma 2.4 ([5]). Let A : E −→ 2E
∗

be a monotone demiclosed operator such that D(A) = E and for each x ∈ E
Ax is a nonempty convex subset of E∗. Then A is maximal monotone.

In the sequel, we shall need the following results and definitions.

Lemma 2.5 ([5]). Let E be a uniformly smooth and strictly convex Banach space. Then there exists L > 0 such that
for any x,y ∈ E such that ‖x‖ 6 R and ‖y‖ 6 R the following inequality holds

〈Jx− Jy, x− y〉 > LδE∗(c−1
2 ‖Jx− Jy‖),

where c2 = 2 max{1,R}. Moreover the constant L is called Figiel constant and is such that 1 < L < 1.7.

Lemma 2.6 ([5]). Let p > 2, q > 1, and let E be a p-uniformly convex and q-uniformly smooth real Banach space.
Then, the duality mapping J : E→ E∗ is Lipschitz on the bounded sets; that is, for all R > 0, there exists a positive
constant m1 such that

‖Jx− Jy‖ 6 m1‖x− y‖

for all x,y ∈ E, with ‖x‖ 6 R, ‖y‖ 6 R.

Lemma 2.7. Let p > 2 and E be a 2-uniformly smooth and p-uniformly convex real Banach space. Then J−1 is
Lipschitz on the bounded sets; that is, for all R > 0, there exists a positive constant m2 such that

‖J−1x∗ − J−1y∗‖ 6 m2‖x∗ − y∗‖

for all x∗,y∗ ∈ E∗, with ‖x∗‖ 6 R, ‖y∗‖ 6 R.

Proof. Since E is 2-uniformly smooth and p-uniformly convex, then E∗ is 2-uniformly convex and q-
uniformly smooth where 1

p + 1
q = 1. Therefore, the proof follows from Lemma 2.6 and the fact that

J−1 = J∗ where J∗ is the normalized duality mapping of E∗.

We deduce the following useful result.

Lemma 2.8. For q > 1, let E be a 2-uniformly convex and q-uniformly smooth real Banach space. Then for every
R > 0 there exists a constant d1 > 0 such that for any x∗,y∗ ∈ E∗ such that ‖x∗‖ 6 R and ‖y∗‖ 6 R the following
inequality holds

〈J−1x∗ − J−1y∗, x∗ − y∗〉 > d1‖x∗ − y∗‖2.

Proof. Since E is 2-uniformly convex and q-uniformly smooth, then E∗ is 2-uniformly smooth and p-
uniformly convex with 1

p + 1
q = 1. Moreover E is reflexive. Hence from the fact that J−1 = J∗, using

successively Lemma 2.5, Lemma 2.6 and the 2-uniform convexity of E we have, for any x∗,y∗ ∈ E∗ such
that ‖x∗‖ 6 R and ‖y∗‖ 6 R, the following holds.

〈J−1x∗ − J−1y∗, x∗ − y∗〉 > LδE(c−1
2 ‖J

−1x∗ − J−1y∗‖) > Lc−2
2 ‖J

−1x∗ − J−1y∗‖2 > L(m1c2)
−2‖x∗ − y∗‖2.

Let d1 = L(m1c2)
−2, we obtain

〈J−1x∗ − J−1y∗, x∗ − y∗〉 > d1‖x∗ − y∗‖2.

As a corollary of Lemma 2.8 we have the next lemma.
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Lemma 2.9. Let E be a 2-uniformly convex and q-uniformly smooth real Banach space. Then J−1 is Lipschitz on
the bounded sets; that is, for all R > 0, there exists a positive constant m3 such that

‖J−1x∗ − J−1y∗‖ 6 m3‖x∗ − y∗‖

for all x∗,y∗ ∈ E∗, with ‖x∗‖ 6 R, ‖y∗‖ 6 R.

Proof. As in the proof of Lemma 2.8, for any x∗,y∗ ∈ E∗ such that ‖x∗‖ 6 R and ‖y∗‖ 6 R we have

〈J−1x∗ − J−1y∗, x∗ − y∗〉 > LδE(c−1
2 ‖J

−1x∗ − J−1y∗‖) > Lc−2
2 ‖J

−1x∗ − J−1y∗‖2.

Using Schwartz inequality and simplifying we obtain:

‖J−1x∗ − J−1y∗‖ 6 m3‖x∗ − y∗‖,

where m3 = L−1c2
2

Lemma 2.10 ([56]). Let p > 1 be a real number and E be a Banach space. Then the following assertions are
equivalent.

(i) E is p-uniformly convex.
(ii) There exists a constant d2 > 0 such that for all x,y ∈ E and fx ∈ Jp(x), fy ∈ Jp(y), one has:

〈x− y, fx − fy〉 > d2‖x− y‖p.

Let E be a smooth real Banach space with dual space E∗. The function φ : E× E→ R, defined by

φ(x,y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, x,y ∈ E, (2.2)

where J is the normalized duality mapping from E into E∗, introduced by Alber has been studied by Alber
[3], Alber and Guerre-Delabriere [4], Kamimura and Takahashi[42], Reich[53] and a host of other authors.
This functional φ will play a central role in what follows. If E = H, a real Hilbert space, then equation
(2.2) reduces to φ(x,y) = ‖x− y‖2 for x,y ∈ H. It is obvious from the definition of the function φ that

(‖x‖− ‖y‖)2 6 φ(x,y) 6 (‖x‖+ ‖y‖)2, ∀ x,y ∈ E. (2.3)

Let V : E× E∗ → R be the functional defined by:

V(x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2, ∀ x ∈ E, x∗ ∈ E∗.

Then, it is easy to see that
V(x, x∗) = φ(x, J−1x∗), ∀ x ∈ E, x∗ ∈ E∗.

Lemma 2.11 ([3]). Let X be a reflexive strictly convex and smooth real Banach space with X∗ as its dual. Then,

V(x, x∗) + 2〈J−1x∗ − x,y∗〉 6 V(x, x∗ + y∗)

for all x ∈ X and x∗,y∗ ∈ X∗.

Lemma 2.12 ([2]). Let E be a smooth real Banach space. Then

V(x,y) = V(x, z) + V(z,y) + 2〈x− z, Jz− Jy〉, ∀ x,y, z ∈ E.

From the definition of φ and inequality (2.3), we can observe that for all x,y ∈ E, φ(y, x) > 0 and

2〈x− y, Jx− Jy〉−φ(x,y) = φ(y, x).

This leads to the following.
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Lemma 2.13. Let E be a smooth real Banach space. Then, for all x,y ∈ E, the following holds

φ(x,y) 6 2〈Jy− Jx,y− x〉.

Lemma 2.14 ([42]). Let X be a smooth and uniformly convex real Banach space, and let {xn} and {yn} be two
sequences of X. If either {xn} or {yn} is bounded and φ(xn,yn)→ 0 as n→∞, then ‖xn − yn‖ → 0 as n→∞.

Similarly, if E is a reflexive smooth and strictly convex real Banach space, we introduce the functional
φ∗ : E

∗ × E∗ → R, defined by:

φ∗(x
∗,y∗) = ‖x∗‖2 − 2〈J−1y∗, x∗〉+ ‖y∗‖2, x∗,y∗ ∈ E∗,

and the functional V∗ : E∗ × E→ R defined from E∗ × E to R by:

V∗(x
∗, x) = ‖x∗‖2 − 2〈x, x∗〉+ ‖x‖2, x ∈ E, x∗ ∈ E∗.

It is easy to see that
V∗(x

∗, x) = φ∗(x∗, Jx), ∀ x ∈ E, x∗ ∈ E∗.

In what follows, the product space E× E∗ is equipped with the following norm:

‖w1 −w2‖ =
(
‖x− y‖2 + ‖x∗ − y∗‖2

) 1
2
, ∀w1 = (x, x∗) ∈ E× E∗, w2 = (y,y∗) ∈ E× E∗.

Finally, we introduce the functional ψ : (E× E∗)× (E× E∗)→ R defined by:

ψ(w1,w2) := φ(x,y) +φ∗(x∗,y∗), ∀ w1 = (x, x∗) ∈ E× E∗, w2 = (y,y∗) ∈ E× E∗.

Lemma 2.15 ([57]). Let {ρn} be a sequence of non-negative real numbers satisfying the following inequality

ρn+1 6 (1 −αn)ρn +αnσn + γn,

where {αn}, {σn}, and {γn} are real sequences satisfying:

(i) {αn} ⊂]0, 1[,
∑
αn =∞;

(ii) lim sup
n→∞ σn 6 0;

(iii) γn > 0,
∑
γn <∞.

Then, the sequence (ρn) converges to zero as n→∞.

3. Main results

We start by a presentation of our iterative algorithm. Let E be a smooth, strictly convex and reflexive
Banach space with norm ‖ · ‖ and dual space E∗. For F : E → 2E

∗
and K : E∗ → E mappings, let the

sequences {un} and {vn} be generated iteratively from (u1, v1) ∈ E× E∗ by:

un+1 = J−1
(
Jun − λn(pn − vn) − λnθn(Jun − Ju1)

)
, pn ∈ Fun,

vn+1 = J
(
J−1vn −αn(Kvn + un) − λnθn(J

−1vn − J−1v1)
)

, n > 1,
(3.1)

where J is the normalized duality mapping from E onto E∗ and {λn}, {θn} are real sequences in (0, 1)
satisfying, here and elsewhere, the following conditions:

(i) lim
n→∞ θn = 0;
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(ii)
∞∑
n=1

λnθn =∞, λn = o(θn);

(iii) lim sup
n→∞

(
θn−1
θn

− 1
)

λnθn
6 0,

∞∑
n=1

λ2
n <∞.

Remark 3.1. Real sequences that satisfy conditions (i)-(iii) are λn = (n+ 1)−a and θn = (n+ 1)−b, n > 1
with 0 < b < a, 1

2 < a < 1 and a+ b < 1.
In fact, (i), (ii), and the second part of (iii) are easy to check. For the first part of condition (iii), using

the fact that (1 + x)s 6 1 + sx, for x > −1 and 0 < s < 1, we have

0 6

(
θn−1
θn

− 1
)

λnθn
=
[(

1 +
1
n

)b
− 1
]
· (n+ 1)a+b

6 b · (n+ 1)a+b

n
= b · n+ 1

n
· 1
(n+ 1)1−(a+b)

→ 0 as n→∞.

Remark 3.2. Note also that a duality mapping exists in each Banach space. From [2], this mapping is
known precisely in `p,LP,Wm,p-spaces, 1 < p <∞ and is given by:

(i) `p : Jx = ‖x‖2−p
`p

y ∈ lq, x = (x1, x2, . . . , xn, . . .), y = (x1|x1|
p−2, x2|x2|

p−2, . . . , xn|xn|p−2, . . .);

(ii) Lp : Ju = ‖u‖2−p
Lp

|u|p−2u ∈ Lq, with 1/p+ 1/q = 1;

(iii) Wm,p : Ju = ‖u‖2−p
Wm,p

∑
|α6m|(−1)|α|Dα

(
|Dαu|p−2Dαu

)
∈W−m,q, with 1/p+ 1/q = 1.

Next, we introduce the auxiliary map we referred and the normalized duality mapping in the Cartesian
product space X := E× E∗ with the norm ‖w‖X = (‖u‖2 + ‖v‖2

∗)
1
2 for w = (u, v) ∈ X, where ‖ · ‖∗ denotes

the norm in E∗. For mappings F : E→ 2E
∗

and K : E∗ → E, observing that E is reflexive and so X∗ = E∗×E,
we define

JX : X→ X∗ by: JX(w) =
(
J(u), J−1(v)

)
∀w = (u, v) ∈ X,

and
Λ : X→ X∗ by: Λw = {(p− v,Kv+ u) : p ∈ Fu} ∀w = (u, v) ∈ X.

Remark 3.3. Note that the zeros of Λ give the solutions of the Hammerstein inclusion 0 ∈ u+KFu. More
precisely, for w = (u, v) ∈ E× E∗, 0 ∈ Λ(u, v) if and only if 0 ∈ u+KFu and v ∈ Fu.

The following results will be crucial in the sequel.

Lemma 3.4. Let E be a reflexive, smooth and strictly convex real Banach space. Then JX is the normalized duality
mapping of X.

Proof. For arbitrary w = (u1, v1) ∈ X and h = (v2,u2) ∈ X∗, the duality pairing 〈·, ·〉X is given by

〈w,h〉X = 〈u1, v2〉+ 〈u2, v1〉.

Now let w = (u1, v1) ∈ X. Set h = JX(w). Then, we have h = (J(u1), J−1(v1)). So, it follows that

〈w, JX(w)〉X = 〈w,h〉
= 〈u1, J(u1)〉+ 〈J−1(v1), v1〉
= ‖u1‖2 + ‖v1‖2

∗

=
(
‖u1‖2 + ‖v1‖2

∗

) 1
2
(
‖u1‖2 + ‖v1‖2

∗

) 1
2

=
(
‖u1‖2 + ‖v1‖2

∗

) 1
2
(
‖J(u1)‖2 + ‖J(v1)‖2

∗

) 1
2
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= ‖w‖X‖ · ‖h‖X∗ = ‖w‖2
X.

This proves that JX is the normalized duality mapping of X.

Lemma 3.5. Let E be a reflexive real Banach space. Let F : E → 2E
∗

and K : E∗ → E be two demiclosed operators
such that for each x ∈ D(F) = E, Fx is a nonempty convex subset of E∗. Then the map Λ is demiclosed and Λw is
convex for all w ∈ D(Λ).

Proof. Let wn → w and Γn ⇀ Γ with Γn = (Γ 1
n, Γ 2

n) ∈ Λwn. Let us show that Γ ∈ Λw. Let wn = (un,u∗n),
w = (u,u∗) and Γ = (Γ 1, Γ 2). Hence

Γn ∈ Λn ⇐⇒ Γn = (γ∗n − u∗n,Ku∗n + un) where γ∗n ∈ Fun.

On one hand we have un → u and γ∗n = u∗n + Γ 1
n ⇀ u∗ + Γ 1. Since F is demiclosed, this implies that

u∗ + Γ 1 ∈ Fu that is there exists γ∗ ∈ Fu such that Γ 1 = γ∗ − u∗. Similarly Γ 2 = Ku∗ + u. Therefore
(Γ 1, Γ 2) ∈ Λw. Similar arguments show that if wn ⇀ w and Γn → Γ with Γn ∈ Λwn then Γ ∈ Λw.
Hence Λ is demiclosed. Moreover since F is of nonempty convex-valued it ensues that Λ is of nonempty
convex-valued.

Lemma 3.6. Let E be a reflexive real Banach space. Let F : E → 2E
∗

and K : E∗ → E be two maximal monotone
operators such that for each x ∈ D(F) = E, Fx is a nonempty convex subset of E∗. Then the map Λ is maximal
monotone.

Proof. It suffices to show that Λ is monotone and demiclosed. For the monotonicity, let w1 = (u1, v1),w2 =
(u2, v2) ∈ X. Using the fact that K and F are monotone, we have, for τw1 = (p1 − v1,Kv1 + u1) ∈ Λw1 and
τw2 = (p2 − v2,Kv2 + u2) ∈ Λw2

〈w1 −w2, τw1 − τw2〉X = 〈(u1 − u2, v1 − v2), (p1 − p2 + v2 − v1,Kv1 −Kv2 + u1 − u2)〉X
= 〈u1 − u2,p1 − p2 + v2 − v1〉+ 〈Kv1 −Kv2 + u1 − u2, v1 − v2〉
= 〈u1 − u2,p1 − p2〉+ 〈Kv1 −Kv2, v1 − v2〉 > 0.

This implies that Λ is monotone. F and K being maximal monotone, Lemma 2.3 implies that they are
demiclosed. Therefore it follows from Lemma 3.5 that Λ is demiclosed and is of nonempty and convex-
valued in X∗. Hence by Lemma 2.4 Λ is maximal monotone.

3.1. Implicit scheme for integral inclusions
We recall the following result.

Lemma 3.7 ([44]). Let E be a uniformly convex real Banach space with Fréchet differentiable norm. Let A :
E∗ → 2E be a maximal monotone mapping with A−1(0) 6= ∅. Then for u ∈ E and λ > 0, limλ→∞(I +
λAJ)−1u exists and belongs to (AJ)−1(0), where J is the normalized duality mapping from E into E∗. Moreover, if
Ru := y∗ = limλ→∞(I+ λAJ)−1u, then R is a sunny generalized nonexpansive retraction of E into (AJ)−1(0).

The next theorem is a consequence of the above lemma.

Theorem 3.8. Let E be a uniformly convex and uniformly smooth real Banach space with dual E∗. Let F : E→ 2E
∗

and K : E∗ → E be two maximal monotone operators such that for each x ∈ D(F) = E, Fx is a nonempty convex
subset of E∗. Assume that 0 ∈ u+KFu has a solution in E. For given u1 ∈ E and v1 ∈ E∗, there exist a sequence
{zn} in E× E∗ with zn = (xn,yn) and a sequence {qn} in E∗ satisfying the following

θn(Jxn − Ju1) + qn − yn = 0, qn ∈ Fxn, ∀ n > 1, (3.2)

θn(J
−1yn − J−1v1) +Kyn + xn = 0, ∀ n > 1. (3.3)

And furthermore

xn → x∗ ,yn → y∗with 0 ∈ x∗ +KFx∗ and y∗ ∈ Fx∗.
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Proof. Let Λ as defined above. It follows from Lemma 3.6 that Λ is maximal monotone from X to X∗. Let
x∗ ∈ E such that 0 ∈ x∗ +KFx∗ with y∗ ∈ Fx∗ such that x∗ +Ky∗ = 0, we have 0 ∈ Λ(x∗,y∗). This implies
that Λ−1(0) 6= ∅. Given w1 = (u1, v1) ∈ X, if follows from Lemma 3.7 that

lim
n→∞

(
I∗ + θ−1

n ΛJ
−1
X

)−1
JXw1 exists and belongs to (ΛJ−1

X )−1(0), (3.4)

where I∗ : X∗ → X∗ is the identity. Let (an,bn) be a sequence in X∗ defined as follows

(an,bn) =
(
I∗ + θ−1

n ΛJ
−1
X

)−1
JXw1.

Equation (3.4) implies that
ΛJ−1
X (an,bn)→ 0.

Furthermore we have

(Ju1, J−1v1) ∈ (an,bn) + θ−1
n Λ(J

−1an, Jbn) ∈ (an,bn) + θ−1
n

(
FJ−1an − Jbn

)
× {KJbn + J−1an}.

This implies
FJ−1an − Jbn + θn(an − Ju1) 3 0 n > 1

and
KJbn + J−1an + θn(bn − J−1v1) = 0 n > 1.

Let (xn,yn) = J−1
X (an,bn) = (J−1an, Jbn), we have the following

0 ∈ Fxn − yn + θn(Jxn − Ju1) n > 1,

and
Kyn + xn + θn(J

−1yn − J−1v1) = 0 n > 1.

Therefore there exists {qn}n ⊂ E∗ such that

θn(Jxn − Ju1) + qn − yn = 0, qn ∈ Fxn, ∀ n > 1,

θn(J
−1yn − J−1v1) +Kyn + xn = 0, ∀ n > 1.

Moreover
Λ(xn,yn) = ΛJ−1

X (an,bn)→ 0.

This completes the proof.

3.2. Convergence in `p,Lp and Wm,p-spaces, 1 < p 6 2

Theorem 3.9. For q > 1, let E be a 2- uniformly convex and q-uniformly smooth real Banach space with dual
E∗. Let F : E → 2E

∗
and K : E∗ → E be bounded, maximal monotone mappings such that D(F) = E and

D(K) = R(F) = E∗ and for each x ∈ E, Fx is a nonempty convex subset of E∗. Suppose that the Hammerstein
inclusion 0 ∈ u+KFu has a solution. Then, there exists γ0 > 0 such that if λn < γ0θn for all n > 1, the sequence
{(un, vn)} given by (3.1) converges strongly to (u∗, v∗), where u∗ is a solution of the Hammerstein equation
0 ∈ u+KFu and v∗ ∈ Fu∗.

Proof.

Step 1: We prove that {un} and {vn} are bounded. Before starting the proof, let us mention that E is
2-uniformly convex and p-uniformly smooth. So it satisfies the conditions of the lemmas 2.6 and 2.9. Let
wn = (un, vn) ∈ X and w1 = (u1, v1) ∈ X, w∗ = (u∗, v∗) ∈ X with v∗ ∈ Fu∗ and u∗ +Kv∗ = 0. There exists
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r > 0 large enough such that

max
{√

ψ(w∗,w1), 24m‖w1 −w
∗‖, ‖w∗‖

}
<
√
r with m = m1 + max{m2,m3}. (3.5)

Since F and K are bounded we have:

M1 := sup
{
‖p− v+ θ(Ju− Ju1)‖∗ : p ∈ Fu,ψ(w∗, (u, v)) < r, 0 < θ < 1

}
<∞

and
M2 := sup

{
‖Ku+ v+ θ(J−1u− J−1v1)‖ : ψ(w∗, (u, v)) < r, 0 < θ < 1

}
<∞.

From the local Lipschitz property of J (Lemma 2.6) and J−1 (Lemma 2.9) on bounded sets there exist
m1 > 0 and m2 > 0 such that

‖J−1(Ju− λ(p− v) − λθ(Ju− Ju1)) − J
−1(Ju)‖ 6 λm1M1,

for all λ, θ ∈ (0, 1), p ∈ Fu (u, v) ∈ X : ψ(w∗, (u, v)) 6 r, and

‖J(J−1v− λ(Kv+ u) − λθ(J−1v− J−1v1)) − J(J
−1v)‖ 6 λm2M2

for all λ, θ ∈ (0, 1), (u, v) ∈ X : ψ(w∗, (u1, v1)) 6 r.
Set

M :=M2
1 +M

2
2, and m̄2 = m2

1 + max{m2
2,m2

3}.

Define the constant γ0 as follows
γ0 := min

{
1,

r

8mM2

}
.

Let n ∈N such that ψ(w∗,wn) < r. From the definition of un we have the following

φ(u∗,un+1) = φ(u
∗, J−1

(
Jun − λn(pn − vn) − λnθn(Jun − Ju1)

)
)

= V(u∗, Jun − λn(pn − vn) − λnθn(Jun − Ju1)).

Using Lemma 2.11 with y∗ = λn(pn − vn) + λnθn(Jun − Ju1) we have

φ(u∗,un+1) 6 V(u
∗, Jun)

− 2〈J−1(Jun − λn(pn − vn) − λnθn(Jun − Ju1) − u
∗, λn(pn − vn) + λnθn(Jun − Ju1)〉

6 φ(u∗,un) − 2λn〈un − u∗,pn − vn + θn(Jun − Ju1)〉
− 2λn〈J−1(Jun − λn(pn − vn) − λnθn(Jun − Ju1)) − un, (pn − vn) + θn(Jun − Ju1)〉

6 φ(u∗,un) − 2λn〈un − u∗,pn − vn + θn(Jun − Ju1)〉+ 2m1M
2
1λ

2
n.

Observe that

〈un − u∗,pn − vn + θn(Jun − Ju1)〉 = 〈un − u∗,pn − v∗〉+ 〈un − u∗, v∗ − vn + θn(Jun − Ju1)〉
= 〈un − u∗,pn − v∗〉+ 〈un − u∗, v∗ − vn〉
+ θn〈un − u∗, Jun − Ju∗〉+ θn〈un − u∗, Ju∗ − Ju1〉.

Therefore using Lemma 2.13 and the fact that F is monotone we get

φ(u∗,un+1) 6 φ(u
∗,un) + 2λn〈un − u∗, vn − v∗〉

− λnθnφ(u
∗,un) − 2λnθn〈un − u∗, Ju1 − Ju

∗〉+ 2m1M
2
1λ

2
n.

(3.6)
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The same arguments lead to the following

φ∗(v
∗, vn+1) 6 φ∗(v

∗, vn) − 2λn〈vn − v∗,un − u∗〉
− λnθnφ∗(v

∗, vn) − 2λnθn〈vn − v∗, J−1v1 − J
−1v∗〉+ 2m2M

2
2λ

2
n.

(3.7)

Since ‖un − u∗‖ 6 ‖wn −w∗‖ for all n > 1, Schwartz inequality together with Lemma 2.6 yields

|〈un − u∗, Ju1 − Ju
∗〉| 6 m1‖wn −w∗‖ · ‖w1 −w

∗‖.

Likewise Schwartz inequality together with Lemma 2.9 yields

|〈vn − v∗, J−1v1 − J
−1v∗〉| 6 m3‖wn −w∗‖ · ‖w1 −w

∗‖.

Adding (3.6) and (3.7) we obtain

ψ(w∗,wn+1) 6 (1 − λnθn)ψ(w
∗,wn) + 2mλnθn‖wn −w∗‖ · ‖w1 −w

∗‖+ 2mM2λ2
n.

From (2.3), the induction assumption and inequality (3.5) we have

‖wn −w∗‖ 6 3
√
r and 2m‖wn −w∗‖ · ‖w1 −w

∗‖ 6 r

4
.

This implies the following

ψ(w∗,wn+1) 6 (1 − λnθn)ψ(w
∗,wn) + λnθn

r

4
+ λnθn

r

4
6 (1 −

λnθn

2
)r.

Therefore ψ(w∗,wn+1) 6 r. So by induction, ψ(w∗,wn) 6 r for all n > 1. Hence wn is bounded.

Step 2: Let zn = (xn,yn) given in Theorem 3.8, let us show that ψ(wn, zn)→ 0 as n→∞. We have

φ(xn,un+1) = φ(xn, J−1
(
Jun − λn(pn − vn) − λnθn(Jun − Ju1)

)
)

= V(xn, Jun − λn(pn − vn) − λnθn(Jun − Ju1)).

Using Lemma 2.11 with y∗ = λn(pn − vn) + λnθn(Jun − Ju1) we obtain

φ(xn,un+1) 6 φ(xn,un)

− 2λn
〈
J−1
(
Jun − λn(pn − vn) − λnθn(Jun − Ju1)

)
− xn, (pn − vn) + θn(Jun − Ju1)

〉
= φ(xn,un) − 2λn〈un − xn, (pn − vn) + θn(Jun − Ju1)〉

− 2λn
〈
J−1
(
Jun − λn(pn − vn) − λnθn(Jun − Ju1)

)
− un, (pn − vn) + θn(Jun − Ju1)

〉
6 φ(xn,un) − 2λn〈un − xn,pn − qn〉
− 2λn〈un − xn,qn − vn + θn(Jun − Ju1)〉+ 2λ2

nm1M
2

6 φ(xn,un) − 2λn〈un − xn,yn − θn(Jxn − Ju1) − vn + θn(Jun − Ju1)〉+ 2λ2
nm1M

2

6 φ(xn,un) − 2λn〈un − xn,yn − vn + θn(Jun − Jxn)〉+ 2λ2
nm1M

2

6 φ(xn,un) − 2λn〈un − xn,yn − vn〉− 2λnθn〈un − xn, Jun − Jxn〉+ 2λ2
nm1M

2
1.

This implies the following

φ(xn,un+1) 6 (1 − λnθn)φ(xn,un) − 2λn〈un − xn,yn − vn〉+ 2λ2
nm1M

2.

Similar arguments give

φ∗(yn, vn+1) 6 (1 − λnθn)φ∗(yn, vn) − 2λn〈yn − vn, xn − un〉+ 2λ2
nm2M

2
2.
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Therefore by adding the two last inequalities we obtain

ψ(zn,wn+1) 6 (1 − λnθn)ψ(zn,wn) + 2λ2
nmM

2.

Observe that

ψ(zn,wn+1) = ψ(zn, zn+1) +ψ(zn+1,wn+1) + 2〈zn+1 − zn, JXwn+1 − JXzn+1〉.

Since ψ(zn, zn+1) > 0, using this in the above inequality we get

ψ(zn+1,wn+1) 6 (1 − λnθn)ψ(zn,wn) + 2〈zn − zn+1, JXwn+1 − JXzn+1〉+ 2λ2
nmM

2.

Using the fact that {wn} and {zn} are bounded we have

ψ(zn+1,wn+1) 6 (1 − λnθn)ψ(zn,wn) +C‖zn − zn+1‖X + 2λ2
nmM

2 (3.8)

for some constant C > 0.
Now from (3.2) and (3.3) in Theorem 3.8 we have respectively

Jxn − Jxn+1 +
1

θn+1
(qn − yn − qn+1 + yn+1) =

(θn+1 − θn
θn+1

)
(Jxn − Ju1) (3.9)

and

J−1yn − J−1yn+1 +
1

θn+1
(Kyn + xn −Kyn+1 − xn+1) =

(θn+1 − θn
θn+1

)
(J−1yn − J−1v1). (3.10)

Taking the duality pairing with xn − xn+1 and with yn − yn+1 respectively in (3.9) and (3.10) and using
the monotonicity of F and K we obtain the following estimates:

〈Jxn − Jxn+1, xn − xn+1〉+
1

θn+1
〈yn+1 − yn, xn − xn+1〉 6

(θn − θn+1

θn+1

)
〈Jxn − Jx1, xn − xn+1〉 (3.11)

and

〈J−1yn − J−1yn+1,yn − yn+1〉+
1

θn+1
〈xn − xn+1,yn − yn+1〉 6

(θn − θn+1

θn+1

)
〈J−1yn − J−1y1,yn − yn+1〉. (3.12)

Adding up (3.11) and (3.12), using Schwartz inequality, Lemmas 2.6, 2.8-2.10, and the boundedness of
{xn} and {yn} we have:

d2‖xn − xn+1‖2 + d1‖yn − yn+1‖2 6
(θn − θn+1

θn+1

)(
〈Jxn − Jx1, xn − xn+1〉+ 〈J−1yn − J−1y1,yn − yn+1〉

)
6
(θn − θn+1

θn+1

)(
m1‖xn − x1‖ ‖xn − xn+1‖

+ m2‖yn − y1‖∗‖yn − yn+1‖∗
)

6 C1

(θn − θn+1

θn+1

)(
‖xn − xn+1‖+ ‖yn − yn+1‖∗

)
6 2C1

(θn − θn+1

θn+1

)
‖zn − zn+1‖X

for some constant C1. So,

‖zn − zn+1‖X 6 K
(θn+1 − θn

θn+1

)
, (3.13)

where, K :=
2CC1

min{d1,d2}
.
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Therefore, combining inequalities (3.8) and (3.13), we obtain

ψ(zn+1,wn+1) 6 (1 − λnθn)ψ(zn,wn) +K
(θn − θn+1

θn+1

)
+ 2λ2

nmM
2.

Finally, we have
ψ(zn+1,wn+1) 6 (1 − λnθn)ψ(zn,wn) + λnθnσn + γn,

with σn := K
(θn − θn+1

θn+1

)
and γn = 2λ2

nmM
2. So, using Lemma 2.15, it follows that ψ(zn,wn) → 0, as

n → ∞. Therefore, from Lemma 2.14, we have that ‖wn − zn‖ → 0 as n → ∞. Hence, the conclusion
follows from Theorem 3.8.

Corollary 3.10. Let E be a Banach space either `p or Lp or Wm,p, 1 < p 6 2 with dual E∗. Let F : E → 2E
∗

and
K : E∗ → E be bounded, maximal monotone mappings such that D(F) = E and D(K) = R(F) = E∗ and for each
x ∈ E, Fx is a nonempty convex subset of E∗. Suppose that the Hammerstein inclusion 0 ∈ u+KFu has a solution.
Then, there exists γ0 > 0 such that if λn < γ0θn for all n > 1, the sequence {(un, vn)} given by (3.1) converges
strongly to (u∗, v∗), where u∗ is a solution of the Hammerstein equation 0 ∈ u+KFu and v∗ ∈ Fu∗.

3.3. Convergence in `p,Lp and Wm,p-spaces, 2 6 p <∞
Theorem 3.11. For s > 1, let E be a s- uniformly convex and 2-uniformly smooth real Banach space with dual
E∗. Let F : E → 2E

∗
and K : E∗ → E be bounded, maximal monotone mappings such that D(F) = E and

D(K) = R(F) = E∗ and for each x ∈ E, Fx is a nonempty convex subset of E∗. Suppose that the Hammerstein
inclusion 0 ∈ u+KFu has a solution. Then, there exists γ0 > 0 such that if λn < γ0θn for all n > 1, the sequence
{(un, vn)} given by (3.1) converges strongly to (u∗, v∗), where u∗ is a solution of the Hammerstein equation
0 ∈ u+KFu and v∗ ∈ Fu∗.

Proof. For p > 2, E is p-uniformly convex and 2-uniformly smooth. So it satisfies the conditions of the
Lemmas 2.6 and 2.7. Therefore we deduce the result by the arguments in Theorem 3.9.

Corollary 3.12. Let E be a Banach space either `p or Lp or Wm,p, 2 6 p <∞ with dual E∗. Let F : E→ 2E
∗

and
K : E∗ → E be bounded, maximal monotone mappings such that D(F) = E and D(K) = R(F) = E∗ and for each
x ∈ E, Fx is a nonempty convex subset of E∗. Suppose that the Hammerstein inclusion 0 ∈ u+KFu has a solution.
Then, there exists γ0 > 0 such that if λn < γ0θn for all n > 1, the sequence {(un, vn)} given by (3.1) converges
strongly to (u∗, v∗), where u∗ is a solution of the Hammerstein equation 0 ∈ u+KFu and v∗ ∈ Fu∗.
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[13] H. Brézis, F. E. Browder, Some new results about Hammerstein equations, Bull. Amer. Math. Soc., 80 (1974), 567–572.

1, 1
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