
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 12 (2019), 345–348

Research Article

ISSN: 2008-1898

Journal Homepage: www.isr-publications.com/jnsa

A note on the topological transversality theorem for the ad-
missible maps of Gorniewicz

Donal O’Regan

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland.

Abstract

In this paper we discuss essential maps and the topological transversality theorem for maps admissible with respect to
Gorniewicz.
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1. Introduction

The topological transversality theorem was established by Granas [6] for single valued maps. It was
extended by many authors for Kakutani maps [9, 12], acyclic maps [2] and other general classes of maps
[3, 10, 11]. In this paper we consider the topological transversality theorem for the admissible maps of
Gorniewicz [4] and we obtain an ”almost” topological transversality theorem. Our results improve those
in [9] and we discuss briefly how one could obtain the ”full” topological transversality theorem. We also
discuss another approach to overcome the difficulty. One of the advantages of using the admissible maps
of Gorniewicz (in comparison to using acyclic maps) is that the composition of maps admissible with
respect to Gorniewicz are admissible with respect to Gorniewicz [4, 5].

For the remainder of this section we present the maps. Let H be the C̆ech homology functor with
compact carriers and coefficients in the field of rational numbers K from the category of Hausdorff
topological spaces and continuous maps to the category of graded vector spaces and linear maps of
degree zero. Thus H(X) = {Hq(X)} (here X is a Hausdorff topological space) is a graded vector space,
Hq(X) being the q–dimensional C̆ech homology group with compact carriers of X. For a continuous
map f : X → X, H(f) is the induced linear map f? = {f?q} where f?q : Hq(X) → Hq(X). A space X is
acyclic if X is nonempty, Hq(X) = 0 for every q > 1, and H0(X) ≈ K.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued map p : Γ → X is called
a Vietoris map (written p : Γ ⇒ X) if the following two conditions are satisfied:
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(i) for each x ∈ X, the set p−1(x) is acyclic;
(ii) p is a perfect map i.e. p is closed and for every x ∈ X the set p−1(x) is nonempty and compact.

A map φ : X → K(Y) is called an admissible map of Gorniewicz [4] (and we say φ ∈ Ad(X, Y))
provided there exists a space Γ and two continuous maps p : Γ → X and q : Γ → X such that p is a
Vietoris map and φ(x) = qp−1(x) for any x ∈ X; here K(Y) denotes the family of nonempty compact
subsets of Y. Note admissible maps of Gorniewicz are upper semicontinuous (u.s.c.).

2. Essential maps

Let E be a topological space and U an open subset of E.

Definition 2.1. We say F ∈ A(U,E) if F : U→ K(E) is a (u.s.c.) admissible compact map (i.e. F : U→ K(E)
is a compact map and F ∈ Ad(U,E)); here U denotes the closure of U in E.

Definition 2.2. We say F ∈ A∂U(U,E) if F ∈ A(U,E) and x /∈ F(x) for x ∈ ∂U; here ∂U denotes the
boundary of U in E.

Definition 2.3. Let F ∈ A∂U(U,E). We say F is essential in A∂U(U,E) if for every map J ∈ A∂U(U,E)
with J|∂U = F|∂U there exists a x ∈ U with x ∈ J (x). Otherwise F is inessential in A∂U(U,E) i.e. there
exists a map J ∈ A∂U(U,E) with J|∂U = F|∂U and x /∈ J (x) for all x ∈ U.

Definition 2.4. Let F, G ∈ A∂U(U,E). We say F ∼= G in A∂U(U,E) if there exists a u.s.c compact map
H : U × [0, 1] → K(E) with H( . ,η( . )) ∈ Ad(U,E) for any continuous function η : U → [0, 1] with
η(∂U) = 0, x /∈ Ht(x) for any x ∈ ∂U and t ∈ (0, 1) (here Ht(x) = H(x, t)), H0 = F and H1 = G.

Remark 2.5.

(i) We do not assume ∼= is an equivalence relation in A∂U(U,E).
(ii) It is very easy to replace ”compact maps” with ”k–set contractive maps” (here 0 6 k < 1) [9] or

even ”k–set countably contractive maps” (here 0 6 k < 1) [1] in Definition 2.1 and 2.4 and obtain
the obvious analogue of the results in this paper.

(iii) It is also very easy to replace ”essential” with ”Φ–essential” [9–11] and obtain the analogue of the
results in this paper (the obvious details are left to the reader).

We begin with the topological transversality theorem [6, 9, 10].

Theorem 2.6. Let E be a Hausdorff topological vector space, U an open subset of E and suppose F ∈ A∂U(U,E).
Then the following are equivalent:

(i) F is inessential in A∂U(U,E);
(ii) there exists a map G ∈ A∂U(U,E) with F ∼= G in A∂U(U,E) and x /∈ G (x) for all x ∈ U.

Proof. First we prove (i) implies (ii). Let G ∈ A∂U(U,E) with G|∂U = F|∂U and x /∈ G (x) for all x ∈ U.
Define the map H by

H(x, t) = (1 − t) F(x) + tG(x).

Note H0 = F, H1 = G and it is well known [5] that H( . ,η( . )) ∈ Ad(U,E) for any continuous function
η : U→ [0, 1]. Note also that H : U× [0, 1]→ K(E) is a u.s.c. compact map (recall the sum of two compact
sets is compact and the scalar multiples of compact sets are compact). Also if x ∈ ∂U and t ∈ (0, 1) then
since G|∂U = F|∂U we have Ht(x) = (1 − t) F(x) + tG(x) = F(x) so x /∈ Ht(x). Thus F ∼= G in A∂U(U,E),
so (ii) holds.

Next we prove (ii) implies (i). Suppose there exists a map G ∈ A∂U(U,E) with F ∼= G in A∂U(U,E)
and x /∈ G (x) for all x ∈ U. Let H : U× [0, 1]→ K(E) be a u.s.c. compact map with H( . ,η( . )) ∈ Ad(U,E)
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for any continuous function η : U → [0, 1] with η(∂U) = 0, x /∈ Ht(x) for any x ∈ ∂U and t ∈ (0, 1),
H0 = F and H1 = G. Let

D =
{
x ∈ U : x ∈ H(x, t) for some t ∈ [0, 1]

}
.

If D = ∅ then in particular x /∈ H(x, 0) = F(x) for x ∈ U so F is inessential in A∂U(U,E) (take J = F in
Definition 2.3). It remains to consider the case when D 6= ∅. Now a standard argument [9] guarantees
that D is closed. In fact D is compact since H : U× [0, 1]→ K(E) is a compact map and D ⊆ H(D× [0, 1]).
Next note D ∩ ∂U = ∅ (since x /∈ Ht(x) for any x ∈ ∂U and t ∈ (0, 1), H0 = F ∈ A∂U(U,E) and
H1 = G ∈ A∂U(U,E)) so there exists (recall topological vector spaces are completely regular) a continuous
map µ : U → [0, 1] with µ(∂U) = 0 and µ(D) = 1. Define a map J : U → 2E by J(x) = H(x,µ(x)).
Note J ∈ Ad(U,E) and J|∂U = H0|∂U = F|∂U (since µ(∂U) = 0). Finally note if there exists a x ∈ U
with x ∈ J (x) = Hµ(x) (x) then x ∈ D so µ(x) = 1 i.e. x ∈ J (x) = H(x, 1) = G (x), a contradiction. Thus
J ∈ A∂U(U,E) and J|∂U = F|∂U and x /∈ J (x) for x ∈ U. Consequently F is inessential in A∂U(U,E).

Remark 2.7. If in Definition 2.4 we assumed H : U × [0, 1] → K(E) is a compact admissible map then
automatically θ(.) = H( . ,η( . )) ∈ Ad(U,E) for any continuous function η : U → [0, 1] with η(∂U) = 0
since θ(.) = H ◦ τ(.) where τ : U→ U× [0, 1] is given by τ(.) = (. , η(.)).

Remark 2.8. There are very general topological transversality theorems in the literature and we mention
two general results obtained by the author in [10, Theorem 2.14] and in [11, Theorem 2.1]; we remark here
that in these two results the assumption that ∼= is an equivalence relation in A∂U(U,E) is not needed.

Remark 2.9. If we change the definition of an admissible map (i.e. change the definition of a morphism
and spaces as in [4, Section 46] or as in [7, 8]) then in fact ∼= is an equivalence relation in A∂U(U,E) so in
this case one would have immediately the ”full” topological transversality theorem i.e. if F and G are two
maps in A∂U(U,E) with F ∼= G in A∂U(U,E) then F is essential in A∂U(U,E) if and only if G is essential
in A∂U(U,E). This point was inadvertently overlooked in [9, Theorem 2.8].

For the maps considered in this paper we will approach it differently and provide a partial result (see
Corollary 2.12).

Theorem 2.10. Let E be a completely regular topological space, U an open subset of E, F ∈ A∂U(U,E) and
G ∈ A∂U(U,E) is essential in A∂U(U,E). Also assume for any map J ∈ A∂U(U,E) with J|∂U = F|∂U we have
G ∼= J in A∂U(U,E). Then F is essential in A∂U(U,E).

Proof. Consider any map J ∈ A∂U(U,E) with J|∂U = F|∂U. We must show there exists a x ∈ U with
x ∈ J(x). Let HJ : U × [0, 1] → K(E) be a u.s.c. compact map with HJ( . ,η( . )) ∈ Ad(U,E) for any
continuous function η : U → [0, 1] with η(∂U) = 0, x /∈ HJt(x) for any x ∈ ∂U and t ∈ (0, 1) (here
HJt(x) = H

J(x, t)), HJ0 = G and HJ1 = J (this is guaranteed since G ∼= J in A∂U(U,E)). Now let

Ω =
{
x ∈ U : x ∈ HJ(x, t) for some t ∈ [0, 1]

}
.

Now Ω 6= ∅ since G is essential in A∂U(U,E) and HJ0 = G. A standard argument (since HJ is u.s.c.)
guarantees that Ω is closed and in fact it is compact (since Ω ⊆ HJ(Ω× [0, 1]) and HJ is a compact map).
Next notice Ω ∩ ∂U = ∅ (since x /∈ HJt(x) for any x ∈ ∂U and t ∈ (0, 1), HJ1 = J ∈ A∂U(U,E) and
HJ0 = G ∈ A∂U(U,E)) so there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(Ω) = 1.
Define the map R by R(x) = HJ(x,µ(x)). Now R ∈ A∂U(U,E) with R|∂U = G|∂U (note if x ∈ ∂U then
R(x) = HJ(x, 0) = G(x)). Since G is essential in A∂U(U,E) there exists a x ∈ U with x ∈ R(x) (i.e.
x ∈ HJ

µ(x)(x)). Thus x ∈ Ω so µ(x) = 1. As a result x ∈ HJ1(x) = J(x).

Corollary 2.11. Let E be a completely regular topological space, U an open subset of E, G ∈ A∂U(U,E) and
F ∈ A∂U(U,E) is inessential in A∂U(U,E). Also assume for any map J ∈ A∂U(U,E) with J|∂U = F|∂U we have
G ∼= J in A∂U(U,E). Then G is inessential in A∂U(U,E).
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Proof. Suppose G is essential in A∂U(U,E). By assumption for any map J ∈ A∂U(U,E) with J|∂U =
F|∂U we have G ∼= J in A∂U(U,E). Now Theorem 2.10 guarantees that F is essential in A∂U(U,E), a
contradiction.

Corollary 2.12. Let E be a Hausdorff topological vector space, U an open subset of E, F ∈ A∂U(U,E) and
G ∈ A∂U(U,E) is essential in A∂U(U,E). Also assume x /∈ t F(x) + (1− t)G(x) for x ∈ ∂U and t ∈ (0, 1). Then
F is essential in A∂U(U,E).

Proof. Consider any map J ∈ A∂U(U,E) with J|∂U = F|∂U. We will show G ∼= J in A∂U(U,E) and then
apply Theorem 2.10. Let

HJ(x, t) = t J(x) + (1 − t)G(x).

Note HJ0 = G, HJ1 = J, HJ : U× [0, 1] → K(E) is a u.s.c. compact map, and HJ( . ,η( . )) ∈ Ad(U,E) for
any continuous function η : U → [0, 1]. Also if x ∈ ∂U and t ∈ (0, 1) then since J|∂U = F|∂U we have
HJt(x) = t J(x) + (1 − t)G(x) = t F(x) + (1 − t)G(x) so x /∈ HJt(x). Thus G ∼= J in A∂U(U,E). Now apply
Theorem 2.10.
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