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Abstract

A new three parameters distribution called the odd Frechet inverse Weibull (OFIW) distribution is introduced. The reliability
analysis of the new model is discussed. Several of its mathematical properties are studied. The maximum likelihood (ML)
estimation are derived for OFIW parameters. The importance and flexibility of the OFIW is assessed using one real data set.

Keywords: Odd Frechet family, inverse Weibull distribution, order statistics, maximum likelihood.

2010 MSC: 60E05, 62E10, 62N05.

c©2019 All rights reserved.

1. Introduction

Inverse Weibull (IW) distribution has wider application in the field of reliability and biological studies
due to its failure rate. Keller and Kanath [10] introduced the IW distribution to study the shape of the
density and the failure rate function. The IW distribution provides a good fit of several data sets in
terms of times to breakdown of an insulating fluid, the subject leaded to the action of constant tension,
see Nelson [15], Jiang et al. [9] presented Weibull and Weibull inverse mixture models. Jiang et al. [8]
discussed the models involving two IW distributions. Khan et al. [13] studied the flexibility of the IW
distribution.

The probability density function (pdf) and cumulative distribution function (cdf) of IW distribution

g (x:α)=
βα

xβ+1 e
− α

xβ , x,α,β > 0, (1.1)

and

G (x:α)=e
− α

xβ , x,α ,β > 0. (1.2)

IW distribution have recently been proposed in literature on statistical theory. de Gusmão et al. [3] pro-
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posed the generalized IW distribution and discussed several properties of this model with applications.
Modified inverse Weibull distribution has been proposed by Khan and King [11], Shahbaz et al. [16]
proposed the Kumaraswamy IW distribution. Hanook et al. [6] derived beta IW distribution, Khan et
al. [12] studied characterizations of the transmuted IW distribution with an application to bladder cancer
remission times data. Abbas et al. [1] introduced topp-Leone IW distribution. Elbatal et al. [4] studied
the beta generalized IW geometric distribution.

Recently, Haq and Elgarhy [7] studied odd Frechet generated (OF-G) family of distributions. The cdf of
OF-G is given by:

F (x: θ, ξ)=
∫ [ G(x;ξ)

1−G(x;ξ)

]
0

θ

xθ+1 e
−x−θdx=e

−
[

1−G(x;ξ)
G(x;ξ)

]θ
, x ∈ R, θ > 0. (1.3)

The corresponding pdf to (1.3) is given by

f (x : θ, ξ) =
θg (x; ξ) [1 −G (x; ξ)]θ−1

G (x; ξ)θ+1 e
−
[

1−G(x;ξ)
G(x;ξ)

]θ
, (1.4)

where g (x : ξ) considers a pdf of baseline distribution. Hereafter, a random variable X with density
function (1.4) is denoted by X ∼ OF-G (θ, ξ) .

In this paper, we define a new lifetime model called the odd Frechet inverse Weibull (OFIW) distribution.
The cdf of OFIW distribution with set of parameters ϕ = (α, β, θ)is obtained by substituting (1.2) in (1.3)
as

F (x; θ, α,β) = e
−

[
e
α
xβ −1

]θ
, x, α, θ, β > 0. (1.5)

The corresponding pdf to (1.5) is given by inserting (1.1) and (1.2) in (1.4) as

f (x; θ, α, β) =
βθα

xβ+1 e
α

xβ

[
e
α

xβ − 1
]θ−1

e
−

[
e
α
xβ −1

]θ
, x, α, θ, β > 0, (1.6)

where α is a scale parameter and θ, β are two shape parameters.
The OFIW distribution is a very flexible model that includes some distributions when β = 1 we

get odd Frechet inverse exponential distribution and when β = 2 we get odd Frechet inverse Rayleigh
distribution. Figure 1 displays some plots of the OFIW pdf for some different values of parameters.

Figure 1: Plots of the pdf of the OFIW distribution for different values of parameters.
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From Figure 1, we conclude that pdf of OFIW distribution can be uni-model and right skewed.
We aim that it will attract wider applications in engineering, medicine and other areas of research.

This paper is organized as follows. In Section 2, reliability analysis is discussed. Section 3 studies the
linear representation of the pdf for OFIW distribution. Statistical properties is studied in Section 4. The
maximum likelihood method of estimation is applied to calculate the estimates of the OFIW parameters
in Section 5. The analyses of one real data set is employed in Section 6. Concluding remarks are presented
in Section 7.

2. The reliability analysis

The survival function (sf), hazard rate function (hrf), reversed hrf, and cumulative hrf of X are given,
respectively, as

R (x; θ, α, β) = 1 − e
−

[
e
α
xβ −1

]θ
,

h (x; θ, α, β) =
βθα
xβ+1 e

α

xβ

[
e
α

xβ − 1
]θ−1

e
−

[
e
α
xβ −1

]θ

1−e
−

[
e
α
xβ −1

]θ ,

τ (x; θ, α, β) =
2θα
x3 e

α

x2

[
e
α

x2 − 1
]θ−1

,

and

H (x; θ, α, β) = − ln (1−e
−

[
e
α
x2 −1

]θ
).

Figure 2 displays some plots of the OFIW hrf for some different values of parameters.

Figure 2: Plots of the hrf of the (OFIW) distribution for different values of parameters.

From Figure 2, we conclude that the hrf of OFIW distribution can be J-shaped and unimodal.

3. Useful expansion

In this section expansion of the pdf and cdf for OFIW distribution are calculated.
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Haq and Elgarhy [7] expressed the equation (1.4) as

f (x) =

∞∑
k=0

ηkg (x, ξ)G (x, ξ)k, (3.1)

where

ηk =

∞∑
i,j=0

θ(−1)i+k

i!

(
θ (i+ 1) + j

j

)(
θ (i+ 1) + j− 1

k

)
.

By inserting (1.6) in (3.1) we can rewrite the OFIW as a linear combination of IW distribution as

f (x) =

∞∑
k=0

wk
xβ+1 e

−
α(k+1)
xβ , (3.2)

where wk = βαηk.

4. Statistical properties

In this section some statistical properties of the OFIW distribution are obtained.

4.1. Quantile function
The quantile function, say Q(u) = F−1(u) of X is given by

u = e
−

[
e
α
xβ −1

]θ
.

After some simplifications, it reduces to the following form

Q (u) =
β

√√√√√ α

ln
(

1 +
[
ln
( 1
u

) ] 1
θ

) , (4.1)

where u is considered as a uniform random variable on the unit interval (0, 1).
In particular, the median can be derived from (4.1) by setting u = 0.5. That is, the median (M) is given

by

M = β

√√√√ α

ln
(

1 + [ln (2) ]
1
θ

) .

4.2. Moments
If X has the pdf (3.2), then its rthmoment is given from the following relation

µ
′
r = E(X

r) =

∫∞
−∞ xrf(x;ϕ)dx. (4.2)

Substituting (3.2) into (4.2) yields

µ
′
r = E(X

r) =

∞∑
k=0

wk

∫∞
0
xr−β−1e−α(k+1)x−βdx.

Let y = x−β, then

µ
′
r =

∞∑
k=0

wk
β

∫∞
0
y

−r
β e−α(k+1)ydx.
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Then µ
′
r becomes

µ
′
r =

∞∑
k=0

wkΓ(1 − r
β)

β [α(k+ 1)]1−
r
β

, r < β.

The moment generating function of OFIW distribution is given by

MX(t) =

∞∑
r=0

tr

r!
E(Xr) =

∞∑
r,k=0

tr

r!

wkΓ(1 − r
β)

β [α(k+ 1)]1−
r
β

, r < β.

4.3. Incomplete and conditional moments
The incomplete moments, say ϕs(t), is given by

ϕs(t) =

∫t
0
xsf(x;ϕ)dx.

Using (3.2), then ϕs(t) can be written as follows

ϕs(t) =

∞∑
k=0

wk

∫t
0
xs−β−1e−α(k+1)x−βdx.

Then, using the lower incomplete gamma function, we obtain

ϕs(t) =

∞∑
k=0

wk
ν
(

1 − s
β ,α(k+ 1)t−β

)
β (α(k+ 1))1− s

β

, s < β,

where ν (s, t) =
∫t

0 x
s−1e−xdx is the lower incomplete gamma function.

Further, the conditional moment say τs(t), is given by

τs(t) =

∫∞
t

xsf(x;ϕ)dx.

Hence, by using pdf (3.2), we can write

τs(t) =

∞∑
k=0

wk

∫∞
t

xs−β−1e−α(k+1)x−βdx.

Then using the upper incomplete gamma function, we obtain

τs(t) =

∞∑
k=0

wk
Γ
(

1 − s
β ,α(k+ 1)t−β

)
β (α(k+ 1))1− s

β

, s < β,

where Γ (s, t) =
∫∞
t x

s−1e−xdx is the upper incomplete gamma function.

4.4. Order statistics
Let X1:n < X2:n < · · · < Xn:n be the order statistics of a random sample of size n following the OFIW

distribution, with parameters α, β, and θ, then the pdf of the kth order statistic, can be written as follows

fk:n(x) =
1

B(k,n− k+ 1)
f(x)F(x)k−1(1 − F(x))n−k, (4.3)

where B(., .) is the beta function. By substituting (1.5) and (1.6) in (4.3), then

fk:n (x) =
βθα

B(k,n− k− 1)
x−β−1e

α

xβ

[
e
α

xβ − 1
]θ−1

e
−k
[
e
α
xβ −1

]θ1 − e
−

[
e
α
xβ −1

]θn−k. (4.4)

When we put k = 1 in (4.4) we get the pdf of the smallest order statistics as
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f1:n (x) = nβθαx−β−1e
α

xβ

[
e
α

xβ − 1
]θ−1

e
−

[
e
α
xβ −1

]θ1 − e
−

[
e
α
xβ −1

]θn−1

,

when we put k = n in (4.4) we get the pdf of the largest order statistics as

fk:n (x) = nβθαx−β−1e
α

xβ

[
e
α

xβ − 1
]θ−1

e
−n
[
e
α
xβ −1

]θ
.

4.5. Inequality measures

In this subsection, we will calculated Lorenz, Bonferroni, and Zenga curves for the OFIW distribution.
The Lorenz, Bonferroni, and Zenga curves are obtained, respectively, as

LF(x) =

∫t
0 xf(x)dx

E(X)
=

∑∞
k=0wk

ν( 1
β ,α(k+1)t−β)

β(α(k+1))
1
β∑∞

k=0
wkΓ(

1
β )

β[α(k+1)]
1
β

,

BF(x) =

∫t
0 xf(x)dx

E(X)F(x)
=
LF(x)

F(x)
=

∑∞
k=0wk

ν( 1
β ,α(k+1)t−β)

β(α(k+1))
1
β(∑∞

k=0
wkΓ(

1
β )

β[α(k+1)]
1
β

)
e
−

(
e
α
xβ −1

)θ ,

and

AF(x) = 1 −
µ−(x)

µ+(x)
,

where

µ−(x) =

∫t
0 xf(x)dx

E(X)
=

∑∞
k=0wk

ν( 1
β ,α(k+1)t−β)

β(α(k+1))
1
β∑∞

k=0
wkΓ(

1
β )

β[α(k+1)]
1
β

,

and

µ+(x) =

∫∞
t xf(x)dx

1 − F(x)
=

∑∞
k=0wk

Γ( 1
β ,α(k+1)t−β)

β(α(k+1))
1
β

1 − e
−

(
e
α
xβ −1

)θ .

5. Maximum likelihood estimation

The maximum likelihood estimates of the unknown parameters for the OFIW distribution are deter-
mined based on complete samples. Let X1, . . . , Xn be observed values from the OFIW distribution with
set of parameters ϕ = (α, β, θ)T . The total log-likelihood function for the vector of parameters ϕ can be
expressed as

lnL(ϕ) = n ln θ+n lnβ+n lnα− (β+ 1)
n∑
i=1

ln xi



A. Fayomi, J. Nonlinear Sci. Appl., 12 (2019), 165–172 171

+α

n∑
i=1

1
xiβ

+ (θ− 1)
n∑
i=1

ln
(
e
α

xi
β − 1

)
−

n∑
i=1

(
e
α

xi
β − 1

)θ
.

The elements of the score function U(ϕ) = (Uα, Uα, Uθ) are given by

Uα =
n

α
+

n∑
i=1

1
xiβ

+ (θ− 1)
n∑
i=1

1
xiβ
e
α

xi
β

e
α

xi
β − 1

− θ

n∑
i=1

1
xiβ

e
α

xi
β
(
e
α

xi
β − 1

)θ−1
,

Uβ =
n

β
−

n∑
i=1

ln xi −αβ
n∑
i=1

1
xiβ+1 −αβ(θ− 1)

n∑
i=1

1
xiβ+1 e

α

xi
β

e
α

xi
β − 1

+αβθ

n∑
i=1

1
xiβ+1 e

α

xi
β
(
e
α

xi
β − 1

)θ−1
,

and

Uθ =
n

θ
+

n∑
i=1

ln
(
e
α

xi
β − 1

)
−

n∑
i=1

(
e
α

xi
β − 1

)θ
ln
(
e
α

xi
β − 1

)
.

Then the maximum likelihood estimators of the parameters α and θ are obtained by setting Uα, Uβ,
and Uθ to be zero and solving them. Clearly, it is difficult to solve them, therefore applying the Newton-
Raphson’s iteration method and using the computer packages such as Maple or R or other softwares.

6. Application

In this section, we provide an application to a real data set to assess the flexibility of the OFIW model.
In order to compare the OFIW model with other fitted distributions we compare the fits of the OFIW
distribution with the generalized Sujatha (GS) (Shanker et al. [19]), Sujatha (S) (Shanker [18]), Aradhana
(A) (Shanker [17]), Lindley (L) (Lindley [14]), new modified Weibull (NMW) (Almalki and Yuan [2]),
Weibull (W), and exponential distributions.

Table 1: MLEs -2ln L, AIC, CAIC, and BIC of the fitted distributions of data set.
Model MLE - 2log L AIC CAIC BIC

θ̂ = 0.208
OFIW α̂ = 25.815 38.253 44.253 45.753 42.156

β̂ = 13.215
α̂ = 0.1215
β̂ =2.7837

NMW γ̂ = 8.227×10−5 41.173 51.173 55.459 47.678
δ̂ = 0.0003
θ̂ = 2.7871

GSD θ̂ = 1.5712 45.97 49.96 50.67 51.96
α̂ = 222.235

S θ̂1.1367 57.49 59.49 59.71 60.49
A θ̂1.1232 56.37 58.37 58.59 59.36
L θ̂ = 0.8161 60.49 62.49 62.71 63.49
E θ̂ 0.5263 65.67 67.67 67.89 68.67

W α̂ = 2.7870 41.1728 45.1728 47.1643 45.8787
β̂ =2.1300

The data set: (Gross and Clark [5]). The relief times of twenty patients receiving an analgesic is: 1.1, 1.4,
1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.
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The ML estimates of the model parameters are provided in Table 1. In the same table, the analytical
measures including minus double log-likelihood (-2log L), Akaike Information Criterion (AIC), corrected
Akaike information criterion (CAIC), Bayesian information criterion, and (BIC) are presented.

Table 1 lists the MLEs of the model parameters and the values of -2LogL, AIC, CAIC, BIC.
Table 1 compares the fits of the OFIW distribution with the NMW, GSD, S, A, L, E, and W distributions.

The table shows that the OFIW model has the lowest values for -2LogL, AIC, CAIC, and BIC among all
fitted distributions. So, it could be chosen as the best model.

7. Conclusion

In this paper, we propose a new three-parameter distribution named the odd Frechet inverse Weibull
(OFIW) distribution. The pdf of OFIW can be expressed as a linear mixture of IW densities. We calculate
explicit expressions for some of its statistical properties. We study maximum likelihood estimation. The
proposed model provides better fits than some other competitive models using a real data set.

References

[1] S. Abbas, S. A. Taqi, F. Mustafa, M. Murtaza, M. Q. Shahbaz, Topp-Leone inverse Weibull distribution: theory and
application, Eur. J. Pure Appl. Math., 10 (2017), 1005–1022. 1

[2] S. J. Almalki, J. Yuan, A new modified Weibull distribution, Reliab. Eng. Sys. Safety, 111 (2013), 164–170. 6
[3] F. R. S. de Gusmao, E. M. M. Ortega, G. M. Cordeiro, The generalized inverse Weibull distribution, Statist. Papers, 52

(2011), 591–619. 1
[4] I. Elbatal, Y. M. El Gebaly, E. A. Amin, The beta generalized inverse Weibull geometric distribution and its applications,

Pak. J. Stat. Oper. Res., 13 (2017), 75–90. 1
[5] A. J. Gross, V. A. Clark, Survival distributions: Reliability applications in the biomedical sciences, John Wiley & Sons,

New York, (1975). 6
[6] S. Hanook, M. Q. Shahbaz, M. Mohsin, B. M. G. Kibria, A Note On beta inverse Weibull distribution, Comm. Statist.

Theory Methods, 42 (2013), 320–335. 1
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