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Abstract

In this paper, we apply the differential transform method to find the particular solutions of some types of Euler-Cauchy
ordinary differential equations. The first model is a special case of the nonhomogeneous nth order ordinary differential equations
of Euler-Cauchy equation. The second model under consideration in this paper is the nonhomogeneous second order differential
equation of Euler-Cauchy equation with a bulge function. This study showed that this method is powerful and efficient in finding
the particular solution for Euler-Cauchy ODE and capable of reducing the size of calculations comparing with other methods.
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1. Introduction

There are more than one method to solve the Euler-Cauchy equation such as the Laplace transform,
the variation of parameters method, and the method of reduction of the order. Kim [13] applied the
Laplace transform to find the solution of a homogeneous Euler-Cauchy equation of the second order ODE,
Abualrab [1], found a solution of a special case of nonhomogeneous Euler-Cauchy equation using the
variation of parameters, and Haarsa and Pothat [14], found the solution of a second order Euler-Cauchy
equation with bulge function using the reduction of the order method. The differential transform method
presented by Pukhov [12] in 1982 and the concept of differential transform proposed first by Zhou [23]
in 1986 when applied to solve linear and nonlinear initial value problems in electric circuit analysis. The
differential transform method presented as a new method based on Taylor series [23] and considered as
a semi-analytical technique uses the Taylor series to construct the solutions of differential equations in
the form of a power series. The method represents an iterative procedure for obtaining analytic series
solutions of differential equations and useful for obtaining exact and approximate solutions of linear
ordinary differential equations [7] and system of linear ordinary differential equations [20]. In this paper,
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the differential transform method has been applied to the second order nonhomogeneous ODE of Euler-
Cauchy equation with a bulge function and the general nonhomogeneous Euler-Cauchy equation. The
differential transform method develops from the differential equation with initial conditions a recurrence
relation that finally leads to the solution of algebraic equations as coefficients of Taylor’s series solution.
Moreover, the DT method does not evaluate the derivatives symbolically and this gives advantages over
other methods. For the related work, (see [18, 19, 21, 22]). The paper is written in the following structure.
In Section 2 we introduce the concept of a one dimension differential transform and review some basic
fundamental theorems from references, and then we prove a lemma which is very important in our work.
The differential transform method to find the particular solution of special cases of the nonhomogeneous
ODE of Euler-Cauchy equation is presented in Section 3. We conclude the paper with some remarks in
Section 4.

2. The differential transform method

In this section, we introduce the concept of one-dimensional differential transform and review some
basic fundamental theorems [8–17]. We assume that the function f(x) ∈ C∞ (I), and x0 be any point of I.
Then the Taylor’s series of f(x) about x0 can be written as

f(x) =

∞∑
k=0

1
k!
dkf(x)

dxk
(x− x0)

k .

Definition 2.1. Let the function f(x) be analytical function about x0 = 0, then the kth differential transform
of f(x) is defined by

F(k) = DT {f(x)} =
1
k!

[
dkf(x)

dxk

]
x=0

.

Note that, the inverse differential transform of F(k) is defined by

DT−1 {F(k)} = f(x) =

∞∑
k=0

F(k)xk.

Theorem 2.2 ([1–11, 13–17]). Let f(x) and g(x) be analytic functions, with differential transforms F(k) and G(k),
respectively, then for σ and β:

1. DT {σf(x) +βg(x)} = σF(k) +βG(k).

2. DT
{
dnf(x)
dxn

}
=

(k+n)!
k! F(k+n).

3. DT {xm} = F(k) = δk,m = δ (k−m) (k+n)!
k! F(k+n), where δk,m is the Kronecker delta.

4. If f(x) =

x∫
0

g(x)dx, then the differential transform of the function f(x) is given by be F(k) = G(k−1)
k .

5. If f1(x) and f2(x) be analytic functions, with f(x) = f1(x).f2(x), then F(k) =
k∑
n=0

F1(n)F2(k−n).

6. DT
{
xmf(n)(x)

}
=

k∑
i=0

δi,m
(k+n−i)!
(k−i)! F(k + n − i), and if m = n, then DT

{
xnf(n)(x)

}
= Πn−1

i=0 (k −

i)F(k).
7. Let f(x) = ααx, then F(k) = αk

k! .

8. DT
{
eαxf(n)(x)

}
=

k∑
i=0

αi

i!
(k+n−i)!
(k−i)! F(k+n− i).
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9. DT {cos (αx)} = αk

k! cos
(
kπ
2

)
and DT {sin (αx)} = αk

k! sin
(
kπ
2

)
.

10. Let f(x) be analytic function, with DT {f(x)} = F(k), then DT
{
d
dx

(
f(n)(x)

)}
= (k+1)(k+n)!

k! F(k+n). Note
that for n = 1 then DT

{
d
dx

(
xf(1)(x)

)}
= (k+ 1)2 F(k+ 1).

11. Let f(x) be analytic function with DT {f(x)} = F(k), then DT
{
d
dx

(
xmf(n)(x)

)}
= (k+1)(k+n−m+1)!

(k−m+1)! F(k+

n−m+ 1).
12. The differential transform F(k) for any analytic nonlinear term f(y) can be calculated from the formula

F(k) = 1
k!
dk

dµk

[ ∞∑
i=0

Y(i)µi
]

,k > 0, where Y(k) is the differential transform of y(x).

13. DT {tf(y)} = F(k− 1), where F(k) is the differential transform of f(y).
14. DT

{
t2f(y)

}
= F(k− 2), where F(k) is the differential transform of f(y).

15. DT {tmf(y)} = F(k−m), where F(k) is the differential transform of f(y).

Lemma 2.3.

1. One have for z(t) = tdydt , z(k) = kY (k), and

2. for z(t) = t2d2y
dt2 , z(k) = k (k− 1) Y (k), and

3. for z(t) = t3d3y
dt3 , z(k) = k (k− 1) (k− 2) Y (k), and

4. for z(t) = tnd
ny
dtn , z(k) = k (k− 1) · · · (k−n+ 2) Y (k) .

Proof. (1) Let u(t) = dy
dt −→ U(k) = (k+ 1) Y (k+ 1) . Then or z = tu(t) −→ z(k) = U(k− 1) = kY (k) .

(2) Let u(t) = d2y
dt2 −→ U(k) = (k+ 2) (k+ 1) Y (k+ 2) . Then for z = t2u(t) −→ z(k) = U(k− 2) =

k (k− 1) Y (k) . The proof of (3) and (4) is similar to (1) and (2).

3. Euler-Cauchy equation

In this section, we apply the differential transform method (DTM) to find the particular solution of
special cases of nonhomogeneous Euler-Cauchy ordinary differential equation.

The general nth order Cauchy-Euler ODE is defined as follows

ant
nd

ny

dtn
+ an−1t

n−1d
n−1y

dtn−1 + · · ·+a1t
dy

dt
+a0 = r(t).

As a first special case, let
r(t) = btm, (3.1)

where, m > n and m must not equal any of the roots of the characteristic equation and m,n are integer, we
have the following formula for the particular solution of (3.1).

Lemma 3.1. The particular solution of the nth order Euler-Cauchy ODE (3.1), where m > n and m must not equal
any of the roots of the characteristic equation and m,n are integer can be expressed by

y(t) =

∞∑
i=0

bδ (k−m) tk

anΠ
n−1
i=0 (k− i)+an−1Π

n−2
i=0 (k− i)+ · · ·+a2k (k− 1)+a1k+a0

.

Proof. Apply the differential transform to both sides of equation (3.1), and making use of Lemma 2.3, we
get

anΠ
n−1
i=0 (k− i) Y(k)+an−1Π

n−2
i=0 (k− i) Y(k)+ · · ·+a2k (k− 1) Y(k)+a1kY(k)+a0Y(k) = bδ (k−m) , (3.2)

where δ (k−m) is the kth differential transform of tm.
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From (3.2), we have the recurrence relation

Y(k) =
bδ (k−m)

anΠ
n−1
i=0 (k− i)+an−1Π

n−2
i=0 (k− i)+ · · ·+a2k (k− 1)+a1k+a0

. (3.3)

Applying Definition 2.1, we get the formula

y(t) =

∞∑
i=0

bδ (k−m) tk

anΠ
n−1
i=0 (k− i)+an−1Π

n−2
i=0 (k− i)+ · · ·+a2k (k− 1)+a1k+a0

. (3.4)

Example 3.2. Consider the third order ODE of Cauchy-Euler equation

t3y
′′′
− 3t2y

′′
+ 6ty

′
− 6y = 5t4.

Solution. By using equation (3.3), we get

Y(k) =
5δ (k−m)

k (k− 1) (k− 2)−3k (k− 1) + 6k− 6
.

From the definition of δ (k−m) , m = 4, we get, Y(4) = 5
6 , Y(k) = 0, k 6= 4. Therefore, the particular

solution is given by (3.4) as follows

y(t) =
5
6
t4.

Example 3.3. Consider the Euler-Cauchy equation

t2y
′′
− ty

′
− 3y = 2t2.

Solution. From the recurrence relation (3.3), we get

Y(k) =
2δ (k−m)

k (k− 1)−k− 3
.

From the definition of δ (k−m) , m = 2, we get, Y(2) = − 2
3 , Y(k) = 0, k 6= 2. Therefore, the particular

solution will be given by (3.4) in the form

y(t) =
−2
3
t2.

Example 3.4. Consider the Euler-Cauchy equation

t2y
′′
− 2ty

′
+ 2y = t3.

Solution. Using the recurrence relation (3.3), we get

Y(k) =
δ (k−m)

k (k− 1)−2k+ 2
.

From the definition of δ (k−m) , m = 3, we get, Y(3) = 1
2 , Y(k) = 0, k 6= 3, therefore, the particular

solution will be given by (3.4) as

y(t) =
1
2
t3.

Example 3.5. Consider the second order ODE of Cauchy-Euler equation

t2y
′′
− 4ty

′
+ 4y = t2.
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Solution. Applying the recurrence equation (3.3), yields

Y(k) =
δ (k−m)

k (k− 1)−4k+ 4
.

From the definition of δ (k−m) , m = 2, we get, Y(2) = −1
2 , Y(k) = 0, k 6= 2, therefore, the particular

solution will be given by (3.4) as

y(t) = −
1
2
t2.

Example 3.6. Consider the Euler-Cauchy ODE

t2y
′′
+ 10ty

′
+ 8y = t2.

Solution. By applying the recurrence relation (3.3), we have

Y(k) =
δ (k−m)

k (k− 1)+10k+ 8
.

From the definition of δ (k−m) , m = 2, we get, Y(2) = 1
30 , Y(k) = 0, k 6= 2, therefore, the particular

solution will be given by (3.4) as

y(t) =
1
30
t2.

As the second special case, we consider the second order Euler-Cauchy differential equation with

r(t) = e−
(t−l)2

2 .

Lemma 3.7. The particular solution of the nonhomogeneous Euler-Cauchy ODE with a bulge function

t2y
′′
+ aty

′
+ by = e−

(t−l)2
2 , (3.5)

where a,b are constants, l is a positive constant, and y(t) is unknown function can be expressed by

Y(k) =

∞∑
k=2

F (k)

k [a+ (k− 1)] +b
tk,

where F (k) is the kth differential transform of the bulge function f(t) = e−
(t−l)2

2 .

Proof. Applying the differential transform on both sides of equation (3.5), and making use of lemma 2.3,
we get

k (k− 1) Y(k) + akY(k) ++bY(k) = F (k) . (3.6)

From equation (3.6), we get the recurrence relation

Y(k) =
F (k)

k [a+ (k− 1)] +b
,

where, F (k) , k = 2, 3, 4, 5, 6, are given by Definition 2.1 as follows

F (2) =
(
−

1
2
+
l2

2

)
e−

1
2 l

2
, F (3) =

(
−
l

2
+
l3

3!

)
e−

1
2 l

2
, F (4) =

(
1
8
−
l2

4
+
l4

4!

)
e−

1
2 l

2
,

F (5) =
(
l

8
−
l3

12
+
l5

5!

)
e−

1
2 l

2
, F (6) =

(
−

1
48

+
l2

16
−
l4

48!
+
l6

6!

)
e−

1
2 l

2
, . . . .

Therefore the particular solution of (3.5) is given by

y(t) =

∞∑
k=2

Y(k)tk =

∞∑
k=2

F (k)

k [a+ (k− 1)] +b
.
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4. Conclusion

Based on the work has been done, it can be concluded that the differential transform method can
be used to find the particular solutions of some types of Euler-Cauchy ODE accurately. The recurrence
relations are very simple; therefore, they are easy to compute. This study showed that the differential
transform technique is capable of reducing the size of calculations comparing with the method of reduction
of order and the method of variation of parameters.

References

[1] M. S. Abdualrab, A formula for solving a special case of Euler-Cauchy ODE., Int. Math. Forum, 4 (2009), 1997–2000. 1,
2.2

[2] J. Ali, One dimensional differential transform method for some higher order boundary value problems in finite domain, Int. J.
Contemp. Math. Sci., 7 (2012), 263–272.

[3] M. T. Alquran, Applying differential transform method to nonlinear partial differential equations: a modified approach, Appl.
Appl. Math., 7 (2012), 155–163.

[4] A. Aslanov, Determination of convergence intervals of the series solutions of EmdenFowler equations using polytropes and
isothermal spheres, Phy. Lett. A, 372 (2008), 3555–3561.

[5] K. Batiha, B. Batiha, A new algorithm for solving linear ordinary differential equations, World Appl. Sci. J., 15 (2011),
1774–1779.

[6] C. Bervillier, Status of the differential transformation method, Appl. Math. Comput., 218 (2012), 10158–10170.
[7] J. Biazar, M. Eslami, Differential transform method for quadratic Riccati differential equation, Int. J. Nonlinear Sci., 9

(2010), 444–447. 1
[8] S.-H. Chang, I.-L. Chang, A new algorithm for calculating one dimensional differential transform of nonlinear functions,

Appl. Math. Comput., 195 (2008), 799–805. 2
[9] E. A. Elmabrouk, F. Abdewahid, Useful Formulas for One-dimensional Differential Transform, Britsh J. Appl. Sci. Tech.,

18 (2016), 1–8.
[10] V. S. Ertürk, Application of differential transformation method to linear sixth-order boundary value problems, Appl. Math.

Sci. (Ruse), 1 (2007), 51–58.
[11] V. S. Ertürk, Approximate Solutions of a Class of Nonlinear Differential Equations by Using Differential Transformation

Method, Int. J. Pure Appl. Math., 30 (2006), 403–407. 2.2
[12] G. G. Ev Pukhov, Differential transforms and circuit theory, Circuit Theory Appl., 10 (2008), 265–276. 1
[13] B. Ghil, H. Kim, The Solution of Euler-Cauchy Equation Using Laplace Transform, Int. J. math. Anal., 9 (2015), 2611–2618.

1, 2.2
[14] P. Haarsa, S. Pothat, The Reduction of Order on Cauchy-Euler Equation with a Bulge Function, Appl. Math. Sci., 9 (2015),

1139–1143. 1
[15] I. H. A. H. Hassan, V. S. Ertürk, Solution of differential types of the linear and nonlinear higher-order boundary value

problems by differential transformation method, Eur. J. Pure Appl. Math., 2 (2009), 426–447.
[16] K. Parand, Z. Roozbahani, F. Bayat Babolghani, Solving nonlinear Lane-Emden type equations with unsupervised

combined artificial neural networks, Int. J. Industrial Mathematics, 5 (2013), 12 pages.
[17] M. A. Soliman, Y. Al-Zeghayer, Aproximate analytical solution for the isothermal Lane Emden equation in a spherical

geometry, Revist Mexicanade Astronmiay Atrofisca, 15 (2015), 173–180. 2, 2.2
[18] A.-M. Wazwas, A new algorithm for solving differential equations of LaneEmden type, Applied Math. Comput., 118

(2001), 287–310. 1
[19] A.-M. Wazwas, The modified decomposition method for analytic treatment of differential equations, Appl. Math. Comput.,

173 (2006), 165–176. 1
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