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Abstract

In this paper, we modify the implicit hybrid methods for solving fractional Riccati equation. Similar methods are imple-
mented for the ordinary derivative and we are the first who implement it for fractional derivative case. This approach is of
higher order comparing with the existing methods in the literature. We study the convergence, zero stability, consistency, and
region of absolute stability. Numerical results are presented to show the efficiency of the proposed method.
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1. Introduction

Riccati equation is used for constructing the exact solutions of nonlinear fractional partial differential
equations. Riccati equation appears in a wide range of contexts such that physics, biology, engineering,
signal processing, systems identification, control theory, finance, and fractional dynamics. Fractional Ric-
cati equation plays an important role in several physical and engineering applications. Since it is not
easy task to find the exact solution of the fractional Riccati equation, several researchers investigated its
solution numerically such as the Legendre wavelet operational matrix method [3], Adomian decomposi-
tion method [18], homotopy perturbation method [13], the Laplace transform and homotopy perturbation
method [2], fractional Chebyshev finite difference method [10], the polynomial least squares method [4],
and the Bezier curves [7]. In addition, artificial neural networks [20], the optimal homotopy asymptotic
method [8] and the Laplace-Adomian-Pade method [12], Backlund transformation [17], and He’s varia-
tional iteration method [9], are used to solved this problem. More methods can be found in [1, 5, 6, 22-26].

Fractional derivatives have several definitions. In this paper, we use the conformable fractional deriva-
tive which was presented in [11]. The definition is given as follows.

Definition 1.1. Let y : [0,00) — R be a given function. The conformable fractional derivative of y of order
o is defined by

D%y (t) = lim Y (t+htlia) —y(®)

,t>0,0< <.
h—0 h
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Some properties of the conformable fractional derivative are given in the following theorem.

Theorem 1.2. Let 0 < o < 1 and u,v are -differentiable at t > 0. Then,

1. D%c = 0 for all constants c;

2. D*tP=RtP~* for all BER;

3. D* (uov) (t) =t!=*' (t)u’ (v (t));

4. D* (w) (t) =u (t) D*v (t) +v(t)D*u(t).

In this paper, we consider the following class of fractional order Riccati differential equations of the
form

D%y (t)=a(t)y(t)+b(t)y>(t)+r(t), 0<t<1, 0 <a< 1 (1.1)
subject to
y (0) =Y, (1.2)
where lim¢_,g @ and lim¢_,g fl(,ti exist. Let y (t) =t*'u(t). Then, Egs. (1.1)-(1.2) become
, alt) (a—1) u(t))’
u (t)= (tla— " >u(t) +b(t) <t1°‘> +r(t)=h(t,u) (1.3)
subject to
u(0) =0.

We organize our paper as follows. In section 2, we present some definitions and results which we use in
this paper. The proposed methods for solving Egs. (1.1)-(1.2) are presented in Section 3. Some theoretical
results will be presented in Section 4. Numerical results will be presented in Section 5. We draw some
conclusions in Section 6.

2. Preliminaries

In this section, we review the implicit hybrid methods as well as some definitions related to these
methods. Let {to, t1,...,tm} be a uniform partition of [0,1] witht; =ie,1=0,1,...,M,and h = ﬁ

Definition 2.1. A k-step hybrid formula is defined by

k 1 k 1
E AilUn4i+ E Antv;Untv; =€ E bihniite E bnvi bty
i=0 i=0 i=0 i=0

where ax=1, ap and by are nonzeros, v¢{0,1,... Kk}, unri=u(tn+i €) and hnqy, =h (tn4v,, tnsv,). For
more details, see [14].

Definition 2.2. Let
Kk ! 3 1
Llultn]el= Z QiUntit Z Qnfv; Un v, =€ Z bihnite Z brtvintv,=Coun+ciu,+--- .
i=0 i=0 i=0 i=0

If co=0,¢c1=0,...,cp+1=0,cp417#0, then the order of the method is p and the error constant is c;, 1, see
[14].

Definition 2.3 ([14]). A linear multi-step method is said to be consistent if it has order at least one.

Definition 2.4 ([14]). If no zeros of the first characteristic polynomial have modulus greater than one and
every root of modulus one has multiplicity not greater than one, then it is called zero stable.
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Definition 2.5 ([14]). If the method is consistent and zero stable, it is convergent.

3. Methods of solution

In this section, we derive the proposed methods. We approximate the solution of Eq. 1.3 by

1+vy
u(t) = Z a t* (3.1)
k=0
and its first derivative by
1+vy
u (1) =) kap t*7, (3.2)
k=1

where v is the number of points. Let {tp, ti,t2,...,tm} be a uniform partition of [0,1] with e = ﬁ and
1=0,1,...,7r to get

t; =1e. Collocate Eq. (3.1) at t, | 1 and interpolate Eq. (3.2) at t, i,
Y Y
Aa =R, (3.3)
where (a); = ay,
- _ .
o tJnJr%, i=1, . un+%:u(tn+%), i=1,
ij = . j—2 . i= R A A ;
v G — 1)t11+%2, i>1, ' hn+1y;1 = h(tn+%,un+%), i>1,

(i-1)

fori,j =1,2,...,2+7v. Lett_,1 =t—es. Then, t T Cand t, =t—e s— € for
) n+l n+ T T

Y

i=1,2,...,1. Solving System (3.3), we get
u(t) = (s)uy 1+ Bils)hy, s, (34)
=0
where o and (i (s) are given in Table 1.

Table 1: The values of «y and B (s) for y = 3,4, 5.

Yy=3 y=4 Yy=>5

o (s)] 1 1 1

Bo(s)] (13 — 108t> + | 15(17 + 180s® + 160s® — | (621 — 6000s* — 15000s° +
108t3 + 243t4 1440s* — 15365°) 65625s* 4 225000s° + 156250s°)

B1(s)| %(13 + 72t + 54t> — | 55;(114 — 1080s® + 480s° + | 7555(1566 + 18000s® + 35000s° —
216t3 — 243t4) 5760s* + 4608s°) 206250s* — 525000s° — 312500s°)

B (s)] ~(—1+36t2+108t°+ | 35(34 + 360s + 600s” — | =(1566 — 36000s” — 10000s® +
81t4) 1600s® — 4800s* — 3072s°) 318750s* 4 600000s° + 312500s°)

B3 (s) — 0 0

Ba(s)] — — 0

Fort=1t i, s= 1;—1 fori=0,1,2,3,...,v and Eq. (3.4) becomes for the three points, four points,
Y
and five points, respectively.
1. Three points:

€
Uil = Uyl o (an% +326,,; + 8fn+1> , (3.5)
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€
Un+z = Un+l + ﬁ (_fn + 13fn+% + 13fn+% - fn+1) 7 (36)
Yn =Uns) s (—9fn —19f, 1 +5F, 2 — an) . (3.7)
2. Four points:
Yni1=Yn 1+ ﬁ (270 +378f,, 1 +648F,, | +918F, 3 +243Fn1 ), (3.8)

Uni3 =Ynyo + 360 ( f + 340, + 1141, ) +34f, n+1> (3.9)
Yni2 =VYnil + 5o 288 5 (—19Fn 3461,y +456f,, ) — 72fn+% +11fn1 ), (3.10)
Un = Ypy1 + % (25160 — 646f,, 1 +264f, 1 —106f,,, 3 + 19 ;1) (3.11)
3. Five points:
Unt1 = Yni 00 (448f,,, 1 +2048f, 2 + 768, ; +2048f,,, 4 +448f 1), (3.12)
Ynit =Vnslt 3 0 5 (<27 621f, | +1566f,, 3 +1566F, 5 +621f, s —27fnia),  (313)
Yois — 0 (—16fn +544f,,,  +1824f, 5 + 5441, 5 —16F, 4 ), (3.14)
Yni? =Yyt + oo 7200 ( 27 +637f, 1 +1022f, 3 — 258, 3 +77f, 11fn+1> , (3.15)
Un = Yot + mos (47500 — 14276, + 7981, 2 —482f,, 3 + 173fn+% —27fna1). (3.16)

Then, we solve the above systems iteratively.

4. Analysis of the methods

In this section, we analyze Egs. (3.5)-(3.7), (3.8)-(3.11), and (3.12)-(3.16). Using the Taylor series to
expand Egs. (3.5)-(3.16) we have the following.

a) Three points:

€ 3€6y(6)
Yn+1 7Un+% - ﬁ <8fn+% +32fn+% =+ 8fn+1> = 765531610 +.-,
€ 11e yf
Uni3 ~Ynad g (—fnF18F, 0 #1300z — i) = o750 b
€ 19¢° yn
Un —Ynig — g (9 —19F, g + 56,z —fuit) = o0

Thus, the order of Eq. (3.5) is 5 and the error constant is = 655360 Also, the order of the block system

0:
(3.5)-(3.7) is (4, 4,4)T and the error constant is <O, 611714%560, %) . The first and section characteristic

functions are 711 (1) =1 — 3 and o (1) = (81‘3 13215 ¢ Sr) Thus,

1. the roots of m; (1) are 0 and 1, thus, all roots are simple;

2. M (1) = 0}

3. 7'[,1 (1) =T (1) .
Hence, Eq. (3.5) is consistent, zero stable, and convergent. The interval of absolute stability is (0.367855,
2.71847) and the region of absolute stability is given in Figure 1.
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=1k

Figure 1: Region of absolute stability of three points method.

Let
~10 1 Ysl 0 il
A= -1 10 | Vin=|yp2 [A2=]| 0 ), Von=(yn),Fin=(0f), Fon=1| f .2 |,

-1.00 Yn+1 —1 frni1

0 8e 32e 8¢

7 7

As=| 7 | A= B % 7

—Ye¢ —19¢ S5e —e

72 7 72 ™

Then, System (3.5)-(3.7) can be written in the matrix form as

A1Yin = AxYon +AszF 0 + Agbo .
Multiply both sides of last equation by A; ! to get

B1Y1n = B2Yon +BsFin + BaFon,

where B; = I3,

Normalize last system to get

Thus,
det (sB1 —By) = (s+1)s%
Since the roots of the above equation which has modulus 1 is simple, the block method is zero stable as
e — 0.
b) Four points:

B 3eb y((,)
655360~ "

€
Un1 = Vn i — ggan (—27fn +378f, ) +648f, ) 918, 3 + 243 ) = TR
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7
Uni} ~Unsg g (—fn 34, + 1141 4346, s —fui) = oyl
116 (6)
Unt? ~Yns] — gggg (—19Fn + 3466, ) 456, ) — 726, 3 + 11 ) = —com syl 4
366 (6)
Un —Vni1 ~ 5550 (~B51fn 646fn+31+264fn+%—106fn+%+19fn+1):_655360yn

Thus, the order of Eq. (3.8) is 5 and the error constant is = 655360 Also, the order of the block system

(3.8)-(3.11) is (5,5, 5,5)T and the error constant is (—%,O, — 5819186240,—6535%) The first and section

characteristic functions are 711 (1) = r— r1 and o (1) = 2880 ( —27 + 37871 + 64877 + 9181 + 243r) Thus,
1. the roots of m; (r) are 0 and 1, thus, all roots are simple;
2. M (1) =0;
3. 11 (1) =m (1).

Hence, Eq. (3.8) is consistent, zero stable, and convergent. The interval of absolute stability is (0.381829,
2.68863) and the region of absolute stability is given in Figure 2.

— 7T 77T 7T T T

i 5

Figure 2: Region of absolute stability of the four points method.

Let
100 1 Ynyl
-1 01 0 1
M= 11900 | Vin= It |
1000 Ind
- Yn+1
0 n+i
0 o1
AZ = 0 7 YZ,Tl = (Un) /Fl,n = (fn) 7 FZ,TL = fn+2 7
1 n+%
- n+1
—27e 378¢ 648 918  243e
2880 2880 2880 2880 2880
—€ de 114e e —€
_ 360 _ 360 360 360 360
As=1| ge |, Aa=] 3de 4oe —Tle e
2880 2 2880 289 2880
—251e 7684%)5 264¢ ge 9¢

2880 2880 2880 2880 2880
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Then, system (3.8)-(3.11) can be written in the matrix form as
A1Yin = A2Yon + AsFn + Agbon.
Multiply both sides of last equation by A; ! to get
B1Y1n = B2Yon + B3Fyn + BaFon,

where B = 1,

-1

-1

B, = 1

-1

Normalize last system to get

-1 0 00
. -1 0 00
2= 1 0 oo
-1 0 00

Thus,
det (sB1 —By) = (s+1)s°

Since the roots of the above equation which has modulus 1 is simple, the block method is zero stable as
€ —0.

c) Five points:

Unt =Yy}~ 7ppp (4487, ) +2048F, 2 7681, 5 +2048f, s +448fs 1)

_ 8T o,
= 73828125 0™ ’

€
Unit —Unit — g (27 +621F, ) +1566f,,, 2 +1566f,, 3 +621f, 4 —27Fn1)

_ 187 o,
= 175000000 7™ ’

€
Un3 ~Ynsy — mpos (16T +544F, ) +1824f, 5 +544f, , —16F, )

7
AN
= 500625007 T

€
Uni2 ~Ynst — g (27 + 6376, ) 10226, 2 —258f, 3 + 776, s —11fnea )

271€7 (7) .
4:72500000015n ’
Yn =Yl — 72 - ( —475f, — 1427F, 1 + 798, ; —482f, s +173f, 27fn+1)
863¢€” (7) 4.
= 47250000007 '

Thus, the order of Eq. (3.12) is 6 and the error constant is = %. Also, the order of the block System

: T : —8e” 13¢7 e’ 271¢’ 863¢’
(3.12)-(3.16) is (6,6,6,6,6) " and the error constant is <73828125’ 1750000007 59062500 4725000000 4725000000) :
The first and section characteristic functions are m; (1) = r— 5 and T (T) = 2559 (448Té 1204875 +

76813 + 20487% + 448r) . Thus,
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1. the roots of m; () are 0 and 1, thus, all roots are simple;
2. m (1) =0;
3. 7'[/1 (1) = T (1) .

Hence, Eq. (3.12) is consistent, zero stable, and convergent. The interval of absolute stability is (0.367879,
2.71828) and the region of absolute stability is given in Figure 3.

a1t

Figure 3: Region of Absolute stability for the five points method.

Let
-1 0 0 0 1 Ynl
-1 0010 Yn 2
At=| -1 0100 [ Yin=] ynpyz |-
-110 0 0 .
yn+g
-1 0 0 0 0
Yn+1
0 fn+%
0 fn+%
Aa=1| 0 |, Von=(yn), Fin=(fn), Fan= [ f 15 |,
0
1 fn—O—%
fn+1
0 448¢ 2048¢ 768¢ 2048¢ 448¢
7200 7200 7200 7200 7200
—27¢ 621e 1566€ 1566¢€ 621e —27€
7200 7200 7200 7200 7200 7200
Ax = —16e Ay = 544e 1824¢ 544e —16e 0
3 7200 s M4 7200 7200 7200 7200
—27€ 637¢ 1022e  —258¢ 77¢ —1le
7200 7200 7200 7200 7200 7200
—475¢ —1427¢ 798¢ —482¢ 173¢ —27¢€
7200 7200 7200 7200 7200 7200

Then, System (3.12)-(3.16) can be written in the matrix form as
A1Y1in = A2Yon + AsFin + AsFon.
Multiply both sides of last equation by Afl to get

B1Yl,n = B2Y2,Tl + B3F1,n + B4F2,TL/
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where Bl = 14,

0

0

B,=1] 0

0

—1

Normalize last system to get

-1 00 00
-1 00 00
Bo=| -1 00 0 0
-1 00 00
-1 00 00

Thus,

det (sB; —By) = (s+ 1)s*.

Since the roots of the above equation which has modulus 1 is simple, the block method is zero stable as
e — 0.

5. Numerical results

In this section, we present two examples of our results. Comparison with [15, 16, 19, 21] will be
presented.

Example 5.1. Consider the following problem
Dy (t) =1+2y (1) —y* (1), 0<t <1
subject to

y(0) =0.
The exact solution is
V2 -1
24+42v2)°

In Table 2, we compare of the absolute errors of our results when € = 0.1 and the results in [15, 16, 19, 21]
for « = 0.75.

yt)=1+ V2tanh (\@t +

Table 2: The absolute errors of our results when € = 0.1 and the results in [15, 16, 19, 21] for & = 0.75.

t | Method [21] | Method [16] | Method [19] | Method [15] | Three points | Four points | Five points
0.2 0.23 0.23 0.19 0.34 21x107% | 31x10™° | 26x107°
0.4 0.37 0.37 0.32 0.46 24x107% | 32x107° [ 27x10°°
0.5 0.39 0.39 0.38 0.44 28x107% | 36x10° [ 29x10°
0.6 0.38 0.38 0.42 0.40 31x107% | 39%x10° [31x10°°
0.8 0.28 0.28 0.45 0.25 33x107% | 41x10™° [ 32x107°

1 0.13 0.13 0.40 0.11 34x107% | 42x107° [ 35x10°°

Example 5.2. Consider the following problem

subject to

DXy (t) =—y () —y*(t) +7(t), 0< t < 1
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where

8t>
r(t) = — + 2+ th

-3/

The exact solution is

y(t) =2

In Table 3, we present our results for o« = 0.65.

Table 3: Our results when € = 0.1 for &« = 0.65.
t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 | 0.8 09 |1

Our method | 0.01 | 0.04 | 0.09 | 0.16 | 0.25 | 0.36 | 0.49 | 0.64 | 0.81 | 1

6. Conclusion

In this paper, we modify the implicit hybrid methods for solving fractional Riccati equation. Simi-
lar methods are implemented for the ordinary derivative and we are the first who implement it for the
fractional derivative case. This approach is of higher order compared with the existing methods in the lit-
erature. We study the convergence, zero stability, consistency, and region of absolute stability. Numerical
results are presented to show the efficiency of the proposed method. We notice the following.

1. The order of the one step-three hybrid point method is (4,4, 4).

Ol LN

N o

The order for the one step-three hybrid point method is (5,5, 5,5).

The order of the one step-three hybrid point method is (6,6,6,6,6).

All methods are consistent, zero stable, and convergent.

We draw the region of absolute stability for the three, four, and five points in Figures 1-3, respec-
tively.

From Example 5.1, we see that our results are more accurate than the results in [15, 16, 19, 21].

In Example 5.2, we get the exact solution.

8. The proposed method is accurate and can be applied to more physical and engineering problems.
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