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Abstract

In this paper, we introduce and study an Ishikawa-like iterative algorithm to approximate a common solution of a split
common null point problem and a fixed point problem of asymptotically pseudo-contractive mappings in the intermediate sense
on unbounded domains. We prove that the sequence generated by the iterative scheme strongly converges to a common solution
of the above-said problems. The method in this paper is novel and different from those given in many other papers. The results
are the extension and improvement of the recent results in the literature.
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1. Introduction

Let H be a real Hilbert space, C a nonempty closed convex subset of H, T : C — C a self-mapping of C
and Fix(T) :={x € C: Tx = x}.

Recall that a mapping T is said to be an asymptotically k-strict pseudo-contraction [10], if there exist
a constant k € [0,1) and a sequence {kn} C [1,4+00) with k, — 1 as n — oo such that

[T =Ty )* < e [x =y [P+ K JI=TMx = (I=TMy[, ¥n>1, xyeC.
Recall that T is said to be an asymptotically k-strict pseudo-contraction in the intermediate sense [18], if

limsup sup (T = Ty > —kn [[x —y|? =k [[(I=T™)x — (I- T )y|I*} <0, (1.1)

n—oo x,yeC
where k € [0,1) and k,, € [1, ) such that k,, — 1 asn — oo. Put

T, = max{ sup (HT“X—T”yH2 —kn Hx—sz —k(I—=T")x— (I —T“)y||2),0}.
x,yeC
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It follows that T, — 0 as n — oco. Then, (1.1) is reduced to the following:
T = Ty|> <kn Ix—ylP +k|I=T")x = (I=TYy|*+tn, ¥n>1, x,y € C. (1.2)

A mapping T is said to be an asymptotically pseudo-contraction [19], if there exists a sequence {kn,} C
[1, +oc0) with k;; — 1 as n — oo such that

(T — Ty, x—y) < kn|x—ylI*, ¥n>1, x,yeC.
Recall that T is said to be an asymptotically pseudo-contraction in the intermediate sense [16], if

limsup sup {{(T"x—T"y,x —y) —kn Ix —y|[*} <0, (1.3)

n—oo x,yeC

where k,, € [1,00) such that k,, — 1 asn — oo. Put

vn =max{ sup ((T"x—T"y,x—y) —kn Ix —yl*),0
x,yeC

It follows that v, — 0 as n — oo. Then, (1.3) is reduced to the following:
(T =Ty, x —y) < kn [[x—yP+vn, Yn>1, x,yeC. (1.4)
In real Hilbert spaces, we see that (1.4) is equivalent to
T =Ty )* < 2kn =D [x =y + (1= Tx— (I=T")y|* +2vn, ¥n>1, x,yeC. (1.5)

Remark 1.1. From above definitions, we find that

e an asymptotically k-strict pseudocontraction is a uniformly L-Lipschitz mapping with

= VDI, see o,

e if T is an asymptotically k-strict pseudocontraction in the intermediate sense, then it is an asymp-
totically pseudocontractive mapping in the intermediate sense but the converse does not hold such
as in the following example.

Example 1.2 ([7]). Let H=R and C = [0, 1]. For all x € C, define T: C — C by
Tx = (1—+vx)2

Then T is an asymptotically pseudocontractive mapping in the intermediate sense but not an asymptoti-
cally k-strict pseudocontraction in the intermediate sense.

Recall that T is said to be uniformly asymptotically regular [27], if for any ¢ > 0, there exists an integer
N > 1 such that

[T % —Tx|* <&, ¥n>N,xeC. (1.6)

Clearly, (1.6) is equivalent to the following

n—o0

lim sup{HT“Hx — T“XH} =0.
xeC

A mapping T is said to be uniformly L-Lipschitz [27], if there exists some L > 0 such that

IT'x—T™y||<L|x—y|, ¥yn>1, x,yeC.

Recall that T is said to be firmly nonexpansive if

HTx—TyH2 <(Tx—Ty,x—vy), ¥x,yeC.
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It is easily found that T is firmly nonexpansive if and only if T = %(I + V) for some nonexpansive mapping
V; hence a firmly nonexpansive mapping must be nonexpansive.

The class of asymptotically pseudo-contractive mappings in the intermediate sense was introduced by
Qin et al. [16]. We know that the class of asymptotically pseudo-contractive mappings in the intermediate
sense contains properly the class of asymptotic pseudo-contractions as a subclass. To compute the fixed
point of asymptotically pseudo-contractive mappings in the intermediate sense, Qin et al. [16] demon-
strated the hybrid methods on bounded domains. But his methods cannot be applied to the case when
domains are unbounded.

Motivated by Qin et al. [16], Ge [7] introduced and studied certain new hybrid algorithm with variable
coefficients for asymptotically pseudo-contractive mappings in the intermediate sense on unbounded
domains in real Hilbert spaces. However, we find that the sequence generated by the algorithm in [7] is
difficult to compute because it involves projecting xo onto the intersection of closed convex sets C,, and
Qn foreachn > 1.

Recently, Zegeye et al. [26] studied the convergence for the class of asymptotically pseudocontractive
mappings in the intermediate sense without using the hybrid method adopted by Qin et al. [16] and Ge
[7]. They presented the following algorithm

Yn = (1 - Bn)xn +BnT™xn,
Xn+1 = (1 — Qn)Xn + anT”yn, n>1,

where T : C — C is uniformly L-Lipschitz and asymptotically pseudo-contractive in the intermediate
sense with sequences {kn} C [1,00) and {vn} C [0,00) as defined in (1.4). They also proved a strong
convergence theorem under assumption that the interior of Fix(T) is nonempty. But we observe that the
assumption that the interior of Fix(T) is nonempty is also a severe restriction. It is trivial to see the fact
from Example 1.3.

Example 1.3 ([7]). Let H=R and C = [1,9]. For all x € C, define T: C — C by
Tx = (4 — vx)2

Then T is a uniformly L-Lipschitz mapping and asymptotically pseudo-contractive mapping in the inter-
mediate sense. It is easy to see that Fix(T) = 4 and the interior of Fix(T) is empty.

On the other hand, Takahashi and Yao [22] considered the following split common null point problem
in Banach spaces: Given set-valued mappings A : H — 2H, B: E — 2F, respectively, and bounded linear
operator T : H — E, the split common null point problem [22] is to find a point z € H such that

ze A0 T (B 10) #0,

where A~10 and B~'0 are null point sets of A and B, respectively. In order to find a solution of the
split common null point problem in Banach spaces, they also introduced the following hybrid method in
mathematical programming;:

Zn = J?\n (xn — AT e (Txn — QunTXn))/
Yn = GnZn + (1 - an)xnr

Co={z € H: yn — ) < lhen —u,
Qn={z€eH:(xn—2,%x1—xn) =0},
Xn4+1 = PCnﬂanlr vn € N.

Then they obtained a strong convergence theorem under some mild restrictions on the parameters.
Motivated and inspired by Takahashi and Yao [22], Qin et al. [16], Ge [7], Zegeye et al. [26] and

Olaleru and Okeke [14], we suggest and analyze a new iterative algorithm for finding a common solution

to the split common null point problem and the fixed point problem of asymptotically pseudo-contractive
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mappings in the intermediate sense. We prove the convergence of the proposed algorithm without using
hybrid method. Also the assumption that the interior of Fix(T) is empty is not required. Our results
improve essentially the corresponding results in [7, 14, 16, 22, 26]. Further, some other results are also
improved; see [5, 6, 8, 13, 15, 17-19, 24, 25].

2. Preliminaries

Throughout this paper, we denote E the real Banach space, E* the dual of E, I the identity mapping
on E, H the real Hilbert space, R the set of real numbers, and IN the set of nonnegative integers. The ex-
pressions x, — x and x,, — x denote the strong and weak convergence of the sequence {x}, respectively.
The (normalized) duality mapping of E is denoted by J, that is,

Jx={x" € B 1 (o x") = IIxI, I =[x}

for all x € E, where (-, -) denotes the generalized duality pairing between E and E*. If E is a Hilbert space,
then | = I, where I is the identity mapping on H.
The norm of a Banach space E is said to be Gateaux differentiable if the limit

L et tyl = ] o
t—0 t

exists for all x,y on the unit sphere S(E) = {x € E : ||x|| = 1}. In this case, we say that E is smooth. In a
smooth Banach space E, it holds that

(xll = ylD* < (x—y,Tx—Jy)

for all x,y € E; see [1].

The norm of E is said to be uniformly Gateaux differentiable if for each y € S(E), the limit (2.1) is
attained uniformly for x € S(E). The norm of E is said to be Fréchet differentiable if for each x € S(E), the
limit (2.1) is attained uniformly for y € S(E). The norm of E is said to be uniformly Fréchet differentiable
if the limit (2.1) is attained uniformly for x,y € S(E). In this case E is said to be uniformly smooth. It is
known that:

e if E is smooth, then the duality mapping ] is single-valued;

e if the norm of E is uniformly Gateaux differentiable, then | is uniformly norm-to-weakx continuous
on each bounded subset of E;

e if the norm of E is Fréchet differentiable, then ] is norm-to-norm continuous;

e if E is uniformly smooth, then ] is uniformly norm-to-norm continuous on each bounded subset of
E;

see [20, 21] for more details.

A Banach space E is said to be strictly convex if ||x —y|| < 2 whenever x,y € S(E) and x # y. Itis
known that if E is strictly convex, then the duality mapping ] is injective, that is, x,y € E and x # y imply
Jx(Jy = 0. A Banach space E is said to be uniformly convex if ||[xn —yn| — 0 whenever {x,} and {yn}
are sequences in S(E) and ||xn +yn| — 2. It is known that if E is uniformly convex, then

e E is strictly convex and reflexive;

¢ E has the Kadec-Klee property, that is, a sequence {x,,} in E converges strongly to x whenever x,, — x
and [[xn | = [Ix];

see [20, 21] for more details.

We know that E is reflexive if and only if ] is surjective. Therefore, if E is a smooth, strictly convex
and reflexive Banach space, then ] is a single-valued bijection and in this case, the inverse mapping J
coincides with the duality mapping J* on E*.
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Let E be a Banach space and let A be a mapping of E into 2F". The effective domain of A is denoted
by dom(A), that is, dom(A) = {x € E : Ax # 0}. A multi-valued mapping A on E is said to be monotone
if (x—y,u*—v*) >0 for all x,y € dom(A), u* € Ax, and v* € Ay. A monotone operator A on E is said
to be maximal if its graph is not properly contained in the graph of any other monotone operator on E.
Suppose E is a smooth, strictly convex, and reflexive Banach space and A is a monotone operator. Then
it is known that the single-valued mapping J, := (I + 1] !A)~! is well-defined for all v > 0; see [4]. Such
Jr,7 > 0 are called the metric resolvents of A. It is also known that if A is a maximal monotone operator,
then

ran(I+1]7'A) =E

for all r > 0, where ran(I +1J~!A) is the range of (I+ ] !A); see [20]. The set of null points of A is
defined by A0 ={z € E:0 € Az}. We know that A~!0 is closed and convex and Fix(];) = A~10; see
[2, 20].

Let H be a Hilbert space and let A be a maximal monotone operator on a Hilbert space H. The metric
resolvent ], of A is called the resolvent of A simply. It is known that the resolvent |, of A for any r > 0 is
firmly nonexpansive, i.e.,

Tox—=Jryl? < (x—=y, Jrx—Try), Vx,y € H.
Lemma 2.1. In a Hilbert space H, it holds that
A+ (1= A)yl* = M| + (1= A) [y > =A@ =A) [x—y]>
forall x,y € Hand A € [0,1], and
2(x —y,u—v) < [x = [+ ly —ul® — x —uf* = ly — |
forall x,y,u,v € H.

Lemma 2.2. There holds the following inequality in an inner product space H:
Ix+yll” < I +2(y,x +y), ¥xy € H.

Lemma 2.3 ([12]). Let {ot} be a sequence of real numbers such that there exists a subsequence {n;} of {n} such that
On, < &n,+1 for all i € IN. Then there exists a nondecreasing sequence {my} C IN such that my — oo and the
following properties are satisfied for all (sufficiently large) numbers k € IN:

Kmy < X1 and o < Gy +1-

In fact, my = max{j < k: o4 < 541}

Lemma 2.4 ([23]). Let {otn} be a sequence of nonnegative real numbers satisfying the following relation:
A1 < (1+yn)on +0n, M=y,

where ny is some nonnegative integer. If > °_ 1 yn < oo and Y 4 0n < 00, then limp ;o oty exists.

Lemma 2.5 ([16]). Let C be a nonempty close convex subset of a real Hilbert space H and T : C — C a uniformly
L-Lipschitz and asymptotically pseudo-contractive mapping in the intermediate sense such that Fix(T) is nonempty.
Then 1 —T is demiclosed at zero.

Lemma 2.6 ([16]). Let C be a nonempty close convex subset of a real Hilbert space Hand T : C — C a uniformly
L-Lipschitz and asymptotically pseudo-contractive mapping in the intermediate sense with sequences {kn} and {vn}
as defined in (1.4). Then Fix(T) is a closed convex subset of C.
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Lemma 2.7 ([11]). Let {otn} be a sequence of nonnegative numbers satisfying the property:
Ont1 S (1 yTL)O('TL +bn+vnen, MEN,
where {yn},{bn},{cn} satisfy the restrictions:

(i) Z?zl Yn =0, limp o0 Yn=0;
(i) bn =0, Y3 bn <oo;
(iii) limsup, _, cn <O0.

Then, limp oo & = 0.

3. Main results
We also need the following lemmas which are fundamental for Theorem 3.4.

Lemma 3.1. Let H be a Hilbert space and let E be a uniformly convex and smooth Banach space. Let ] be the duality
mapping on E. Let A and B be maximal monotone operators of H into 2" and E into 2%, respectively. Let ] be
the resolvent of A for A > 0 and let Q,, be the metric resolvent of B for u > 0. Let S : H — E be a bounded linear
operator such that S # 0 and let S* be the adjoint operator of S. Suppose that A~10(S~H(B~10) # 0. Then it
holds, for all A,r > 0, that

Fix(Ja(I—rS*J(I—Qy)S)) = A0 () S~
Proof. We first prove that
Fix(Ja(I—-rS*J(I—Qy)S)) CA~'0()S (B 0.
Suppose that z = J5(I1—7S*J(I— Q,)S)z and zp € A~10(S~(B~10). Then we have
= IA(I=7S*J(1—Qu)8)z & (I—1S*J(I—Qu)S)z € (I+AA)z & —%s*m —Qu)Sz € Az

Since A is monotone and 0 € Azy, we see that

(z—20,S*J(I-Q)Sz) <0

and hence
(Sz— Sz, J(I—Qu)Sz) < 0. (3.1)
On the other hand, since B is monotone and Szg € B~1(0), we have from [2] (or [22]) that
(QuSz—Sz0,J(I1—Qu)Sz) > 0. (3.2)

Adding up (3.1) and (3.2) we find that

152 — QuSz||* = (S2— QuSz, J(I—Qu)Sz) < 0.

Therefore, Sz = Q,Sz. That is, z € S7}(B~10) and also Sz — Q,,Sz = 0 implying S*J(I — Q,)S)z = 0. This
reduces the fixed point equation z = Jx(I —rS*J(I — Q. )S)z to the fixed point equation z = J,z that is
equivalent to z € A~10. Consequently, z € A~10(S~}(B~10).

We now prove

10m5 B~10) C Fix(JA(I—1S*J(I— Qu)S)).

Since zg € A0 S~1(B~10), we have that zg € A=10 and zg € S~}(B~10). It follows that zg = Jxzy and
Szp = QuSzp. Hence, we have

zg = JA(I=7S*J(I1—Qu)S)zo,
which implies A~10 S (B~10) C Fix(Ja(I—7S*J(I1— Q.)S)). This completes the proof. O
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Lemma 3.2. In the setting of Lemma 3.1, if v € (0, -5, then the mapping J\(I1 —rS*J(I-Q.)S) : H — H s

H S H
quasi-nonexpansive.

Proof. Since the resolvent J, is nonexpansive, we see that, for u € A~10(S~1(B~10),
Talz —1S*J(Sz— QuSz)) —u?
< ||z—7S*J(Sz— Q. Sz) —u?
= |lz—u|]* + ||[r$*J(Sz — QHSZ)HZ —21(z—u, S*J(Sz— QuSz))

< llz=ul* 7 S [1S2 = QuSzll® — 2r(Sz — QuSz + QuSz — S, J(Sz— QuS2))
< llz=wlP 422 SISz = QuSzl® — 2r[Sz — QuSzll® — 2r{QuSz — Su, J(Sz — QuS2))
< llz—ul® + 72 |IS|? |52 — QuSz* — 2r |5z — Q52|
= llz—u|® == S|*) ISz — QuSz|?
< lz—ul®.
This shows that the mapping Ja(z —1r5*](Sz — Q. Sz)) is quasi-nonexpansive. O

Lemma 3.3 ([3]). Let H be a Hilbert space and let A be a maximal monotone operator with resolvent J) =
(I+AA)~L for A > 0. Then it holds, for all \, . > 0 and x € H,

Jax =5+ (1= S

Theorem 3.4. Let E be a uniformly convex and smooth Banach space and let | be the duality mapping on E. Let
H be a Hilbert space and let C be a nonempty closed convex subset of H. Let A and B be maximal monotone
operators of H into 21 such that dom(A) C C and E into 2%, respectively. Let ] be the resolvent of A for
A > 0 and let Q. be the metric resolvent of B for w > 0. Let S : H — E be a bounded linear operator such that
S # 0 and let S* be the adjoint operator of S. Let T : C — C be a uniformly L-Lipschitz, uniformly asymptotically
reqular and asymptotically pseudo-contractive mapping in the intermediate sense with sequences {kn} C [1,00) and
{vn} C [0, 00) as defined in (1.4). Assume " := Fix(T) N A~10 S~ 1(B~10) is nonempty and the element xo € C
is fixed. Let {xn} be a sequence generated by

x1, chosen arbitrarily,
Zn = Ja, (Xn —0nS*J(Sxn — Q. Sxn)),

3.3
Yn = (1—=vn)zn +¥nT"zn, (3:3)
Xn41 = &nXo + (1 - (Xn)[(l - Bn)zn + BnTnynL
where {otn }, {Bnt, {yn} C [0,1] and {An}, {0n}, {tn} C (0, +00) satisfy the following conditions:
(1) imnp_yoo 0tn =0and Y 7 4 an = o0;
(i) 0 <liminfn o0 B and Brn < v/
1 )
(iii) a <yn < b forsomea>0andb € (0, m)
(iv) > 7 1vn < 00, vn—o(ocn) kn—1=o0(otn) andz 1(kn—1) < oo;
(v) 0 < liminfy, ;008 < limsup, | dn < IISIIZ' 0 < hmmfn_mA < limsup,, . An < coand 0 <

liminfy, o un < limsup, | pn < oo.

Then the sequence {xn} generated by (3.3) converges strongly to a point zg € T, where zy = Prxo.

Proof. Let u € T'. Then we get from (3.3) that

[ Xn+1 _u||2 = [Jon(xo —u) + (1 = an)[(1 = Br)(zn —w) + Pr(Tyn — )]HZ
< ot [[x0 —u* 4 (1 — o) |(1T = Bn) (zn — W) + B (TMyn — ).
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By Lemma 2.1, we get

(1= Bn)(zn — 1) + B (Thyn —w)|

2 n 2 n 2 (34)
= (1—=Bn)[lzn —ul["+ Bn [T Yyn —uf|” = Bn(1—Bn) lzn — T yn|”.
Choose y = uw in (1.5) to derive
T —uf® < 2kn — 1) [lx —ul® + [|x — T™||* + 2vn. (3.5)

From (3.5) and Lemma 2.1, we obtain

2kn — D) [[(1—VYn)zn + YnT zn — qu +[(1—=vn)zn +YnT zn — T“ynH2 +2vn

2kn — D [[(1 = vn)(zn — W) +Yn(T"zn — )|

+ 1= vn)(zn —T™Yn) + Yn (T zn — Thyn) [ +2vn
= (2kn — DI —vn) llza —ull? +vn [T 20 —ul* = yn (1 =vn) zn — T"zn )

+(1=vn) lza = TMynl? +¥n [IT"zn = T"Yn > = vu (L =) [T"zn — za [ +2ve (3.6)
= (2kn — D1 —vn) lzn —ul> +¥n2kn — 1) lzn — > +¥n lzn — Tzn|* + 2ynvn
—Yn(1=vn) lzn = T"2za [Pl + (1 = ¥n) lzn — TYnlf* +¥n [IT"zn — T yn |
—VYn(1=vn) [[T"zn _ZnHz +2vq,
= (2kn —D[(1—vn)|lzn— uHZ +vYn(2kn —1) HZn _u”z +2¥nVn +Y$L HZn - TnZnHZ}

+ (1 —vn)[lzn — T“yn!!2 +yn [T zn — T“yn!!2 —VYn(1=vn) [[T"zn — ZnHZ +2vn.

[T"yn —uH2 < (2kn =1 [[yn — qu +llyn — TnynHZ +2vn
= (
= (

Observe that
[zn = Ynll = ¥n llzn = T"zn |l (3.7)
Since T is uniformly L-Lipschitz, from (3.6) and (3.7), we deduce

Ty —ul® < (2kn — DL —vn) zn —uf® +¥n(2kn — 1) zn —uf® + 2ynvn + 72 20 — T zn ]
+(1—=vn)llzn — TnUnHZ "‘Y%LI—Z lzn — TnZnHZ —VYn(l=vn) [[T"zn _ZnHz +2vn
= [(2kn — 1)1 —yn) + (2kn — 1?vnl zn —ul?
+[(2kn — VA + V22 = v (1 = v 20 — Tz || + 2(2kn — 1)ynvn (3.8)
+(1=vn) lzn = TMyn)? +2vn
= [142(2knYn —¥n + D (kn — D lzn —ul* = vn (1= 2knyn — VAL 20 — Tz |
+2(2kn — 1) ynvn + (1 —vn) l|zn — T“ynH2 + 2vn,.

By condition (iii), we know that y, < for all m > 1. Then, we deduce that 1 — 2k yn —

b < -1
VKE+L24+kn

y%ll_z > 0 for all n > 1. Thus, we have from (3.8) that
T yn —ul® < 14 22knyn = vn + 1) (kn = D] zn — ul + 4knv + (1= vn) lzn = Thynl*. (39)
It follows from (3.4), (3.9), Lemma 3.3, and condition (ii) that

(1= Bn)(zn — 1) + Bn(Tyn —w)|
< (1= Bn) zn —ul? + Bnll +2(2knyn — ¥n + D(kn — D] |20 —ul/?
+4Bnknvn + Bn(1—vn) ||Zn - Tnyn”z —Bn(1—1PBn) ||7~n - Tnyn||2
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<O 4+2Bn(2knyn —¥n +1)(kn —1)] |lzn — uHZ +Bn(Bn—vn)llzn — TnUnHz +4Bnknvn
< [1+2(2knyn —Yn + 1) (kn — D [[xn — uf* + 4knvn.
Thus, we get that
||Xn+1 _uHZ - ”‘XnXO + (1 - o‘n)[(l - Bn)zn + BnTnyn] _qu
< o [xo _u”z + (1 —=otn) |(T—=Bn)(zn —u) + Bn(Tyn _u)Hz
< maX{HXO _uH 1+ 2(2knyYn —¥Yn +1)(kn — 1)} Hxn _uHZ +4Bnknvn}
< max{||xo — %, [1 + M (kn — D] xn — 1 + Mavn),

where M = supn>1{2(2knyn —vn+1)}and M, = supn>1{4kn}. This implies that the sequence {xn} is
bounded by Lemma 2.4. In terms of Lemma 2.2 and (3.3), we have

Hxn+1 _uHZ = Hocn(XO —u)+(1—on)(zn—u)+(1— o‘n)ﬁn(TnUn _Xn)HZ

< ||(1 —on)(zn —u)+ (1 — ‘Xn)Bn(Tnyn _Zn)Hz + 20‘n<XO — U, Xn+1 _u>

= (1= otn)? flzn —ul? + (1= n) B3 I Ty — za | .
+2(1— o) Brzn — W, T™Yn — Zn) + 200 (X0 — W, Xnp 1 — W),
Combining Lemma 2.1 and (3.8) yields
2(zn —u, T"yYn —zn)
= [ T"yn —wf® = [T yn — zn[* = l|zn —u?
<1 422knyn —vn + Dkn = DIz — ul* = yn(1 = 2knyn = VAL [lz0 — T 20| (3.11)

+2(2kn — D ynvn + (1 —vn) |20 — T Yn > +2vn — [T yYn — za|* — |20 —u|?
<2(2knYn —Yn + 1) (kn — 1) lzn — ) = yn (1 —2knyn — VAL [|zn — Tzn|?
—Yn llzn — TnynHZ +4knvn.

Now put |, = %(I + Ky ) for all n > 1. Since J,, is firmly nonexpansive, then we know that K,, is
nonexpansive and Fix(J», ) = Fix(Ky,) for all n > 1. Therefor, we get

Izn —uf® = [Tan (n — 0S¥ (Sxn — Quup Sxn)) — 1|
1 1
= = |(xn — 8nS*T(Sxn — QunSxn)) —u[* + 5 [ Kn (X — 80 S*J(Sxn — Quup Sxn)) —ul?
2 2
1
_ZHKn —0nS*J(Sxn — Q. Sxn)) — (xn —0nS*J(Sxn — Qu, Sxn) ||
< lxn = 80 S*J(Sxn — Qunsxn) —u||
1
- HKn(Xn - 6nS*J(SXn - Qunsxn)) - (Xn - 5nS*](SXn - Qunsxn))HZ
4
< e — W + 180 S*T(Sxn — Qo Sxr )1 = 261 (Xn — 1, S*J(Sxm — Qpup, S ))
1
- = HKn(Xn - énS*J(SXn - Qunsxn)) - (Xn - 6nS*](SXn - QunSXn))HZ
4

< Jxn —ulf? + 180 S T(Sxn — Quu, Sxn) >
—20n(Sxn — Qu, . Sxn + Q. Sxn — SU, J(Sxn — Q.. Sxn)) (3.12)

1
_ZHKTL —0nS™J(Sxn — Qu, Sxn)) — (xn — nS™J(Sxn — Qp, Sxn) ||

< e =l + 8% [ISI7 1% — Quup Sk |
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— 261 (Qu Sxn — S, T(Sxn — Qe SXn)) — 260 [1S%n — Q. Sxn 12
— 1 IKn G = 5SS — Quy S30)) — e — 80" (S5 — Qe S
< [Pen =+ 8% [IS]7 [1Sxn — Qup Sxn /1> = 281 [[Sxn — Quy Sxn [
— i 1K (X — 818 J(Sxn — Quu Sxn)) — (Xn — 80 S*J(Sxm — Qo Sxn ) |12
= [[xn —[> = 850(2 = 8n [IS]*) [[Sxn — Quu, Sxnl?
—iHKn —0nS*J(Sxn — Q. Sxn)) — (xn —0nS™J(Sxn — Qu, Sxn)) || .
It follows from (3.10), (3.11), and (3.12) that
en1 =l < (1= o) [|zn =l + (1= oan)?B% [T yn — za >
+2(1 = otn)?Bn (2kn ¥V —¥n + 1(kn — 1) [zn —
— (1= otn)*Bryn(l = 2knyn — VAL 20 — T"za |
— (1= atn)*Bn¥n [T Yn — zn |
+4(1 — an)?Bnknvn + 20ty (X0 — W, X1 — W)
< (1= otn) |z —ul* +2(1 — an)?Br(2knyn — Yn + 1) (kn — 1) |z —u)?
— (1= atn)?Bn¥n(l = 2knyn — VAL zn — T za|?
+4(1 — an)?Bnknvn + 20ty (X0 — W, X 41 — W) (3.13)
< (1= o) flzn —uf? +2(2knyn —yn + Dikn —1) [lz0 — 1

—(1— “n)ZBnYn(l —2Kn¥Yn _Y%I—z) ||Zn - TnZn||2 +4knvn
+ 20 (X0 — U, X1 — W)

< (= o) e = — (1= ot)8n (2= 80 [ISIP) ISxn — Qpun Sxna I
—}L(l—an)HKn n— 0S8 T (Sxn — Quu, Sxn)) — (Xn — 80 S*J(Sxn — Qpu,. Sxn)) |2
+Mi(kn—1) ||xn—u|| + 20t (X0 — W, X1 — W)
— (1= on)*Bnyn (1= 2knyn — VAL [lzn — T zn | + Mavy,
which implies that
(1= 0tn)8n (2= 8 [IS]?) [|Sxn — Quu, Sxn
30— ) [Kn b — 05" T(Sxn — QuSxn)) — (i — 5087 J (S0 — Quey S P

+ (1 - o‘n)zﬁnYn(l —2Kn¥Yn _YiLZ) Hzn - TnZnHZ
< Jxn =l = Pxns1 —ulf® + My (kn — 1) [[xn — > + Mavy,
+ 20t (X0 — W, X1 — ).

(3.14)

Case 1. Assume there exists some integer m > 0 such that {||x, —u/|} is decreasing for all n > m. In this
case, we know that limy, _, ||x, — u|| exists. From (3.14), conditions (i)-(v), we deduce

lim ||z, — Tz, || =0, (3.15)
n=—oo
nlglgo ||Kn(Xn - 6nS*J(SXn - Qunsxn)) — (xn — énS*](SXn - Qunsxn))H =0 (3.16)

and

T}Ego |Sxn — Q. Sxn || = 0. (3.17)
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It follows from (3.16) and (3.17) that

[zn = xnll = [ITan (xn = 3nS*J(Sxn — Quu, SXn)) — Xn |
1
H —8nS*J(Sxn — QHnan)) + EKn(xTL —0nS*J(Sxn — Q. Sxn)) —xn
< E HénS*J(SXn Qunsxn H + = HK - énS*J(SXn - Qunsxn)) _XnH
1
< 5 ||6nS*J(SXn - Qunsxn)H
2 . (3.18)
+ E HKn(Xn - 5nS*J(SXn - Qunsxn)) — (xn — énS*](SXn - Qunsxn))H
1 x
+ E H(Xn —nS I(an - QHnSXTL)) - Xn“
< An [ISIFIS%n — Qi Sxa |
1
—i—§||Kn —0nS*J(Sxn — Qu, Sxn)) — (xn —nS*J(Sxn — Qu, . Sxn))|| = 0.
Observe that
Manxn = Xnll < [[Tanxn = znll + llzn —xn||
< [3nS*J(Sxn — Qunsxn)H + [|zn —xn ||
< An [IS[HIS%n — Qe Sxn |l + [[zn — Xl -
This together with (3.17) and (3.18) implies
lim |[Ja, Xn —Xn| =0. (3.19)
n—,oo
It follows from (3.7) and (3.15) that
nlgréo [zn —ynll =0.
Since T is uniformly L-Lipschitz, we have
hm [T"zn —TMyn| < L hm |zn —ynll = 0. (3.20)
Taking into consideration that
[xn = T™yYn | < [[xn —znll + lzn =T zn || + [[T 20 — T ynll, (3.21)
we deduce from (3.15), (3.18), (3.20), and (3.21) that
lim |[xn —T™ynl| =0. (3.22)
n—oo
In view of (3.3), we get
[Xni1—xnll < anflxo —Xn ||+ (1= o) (1= Bn) [[zn —xnl| + (1 =) Bn [T Yn —xn -
This together with (3.18), (3.22), and condition (i) implies that
lim ||[xn4+1 —xn|| =0. (3.23)
n—o00

It is clear that
Xn —=T™"%n || < |Pxn —znll +[lzn =T zn || + [T 20 — T . (3.24)
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Again since T is uniformly L-Lipschitz, then we derive from (3.15), (3.18), and (3.24) that

lim [[xn — T™xn|| =0. (3.25)
n—oo

Notice
‘anrl - Tn+1xn+1 H + HTn_HXnJrl - Tn+1XnH + HTn_Hxn — Txnt1 H

Hxn+1 —Txni1 || ’
HXTI+1 - TnJranJrl H + L1 —Xnll + LT %0 —xn 1] (3.26)

NN N

X1 — T x| 421 [}t — X ||+ LT 0 —xn |-
By (3.23), (3.25), and (3.26), we conclude that

lim [xnq1—Txng1 =0.
n—o00

Since {xn} is bounded, there exists a subsequence {xn,} of {x,,} satisfying xn, — % € C. Without loss of
generality, we may also assume

lim (xg — 2o, Xn, — z0) = lim sup(xp — zo, Xn — 20). (3.27)
1—00 n—00

Since S is bounded and linear, we also see that Sx,,, — SX% as i — oco. Noticing (3.17), we also have

Qi Sxn — SX as i—oo0. Since Q,,, is the metric resolvent of B for pun > 0, then we obtain W €

BQ,.,Sxn for all n € N. From the monotonicity of B we see that

I(ani - Qu“i ani)
HT‘Li

0 < (u— Qyu,, Sxn,, - ), V(u, i) € B.

Letting i — oo and noticing H](ani = Qu,., Sxn)|| = Hani — Qup, Sxny H — 0, we deduce that

0< (u—Sx,u—0), VY(ui)eB

by (3.17) and condition (v). Since B is maximal monotone, we get Sx € B~!0. Hence, x € S™!B~10.
Similarly, noticing (3.19), we also get X € A~!10. Therefor, we have x € A~10(1S~!B~10. Meanwhile, using
Lemma 2.5 and (3.26), we obtain % € Fix(T). And hence it follows from (3.27) and Lemma 2.6 that

lim sup(xp — 2o, Xn — z0) = lim (xg — 2o, Xn, — z0) = (X0 — 20, X — 20) = (X0 — Prxo, X — Prxp) < 0.
n—oo 1—00

By (3.13), we deduce
%1 — 2ol < (1= otn) [[Xn — 201> + Mi(kn — 1) |xn — 2o]|* + Mavn, + 20 (x0 — 20, Xn+1 — 20).  (3.28)

Applying Lemma 2.7 and (3.23) to (3.28), we deduce x,, — zo.

Case 2. Suppose that there exists {ni} of {n} such that ||xn, —zo|| < ||[Xn,+1 — 20| for all i € IN. Then by
Lemma 2.3, there exists a nondecreasing sequence {m;} in IN such that

Jm, 20l < [pemy 1 —20l] and x5 = z0]| < [, 1 ~20]

We want to show that
lim sup(xo — zo, Xm; — z0) < 0, (3.29)
j—o0
where zg = Prxg. Without loss of generality, there exists a subsequence {xmjk} of {xm;} such that Xm,;, — @
for some w € C and

klgn (xp — 20, Xm;, — zp) = lim sup(xo — zo, Xm; — z0)-
o j—00
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Following a similar argument as in the proof of Case 1, we also have

lim mej — T %, H =0 (3.30)
j—r00

and
lim me,»+1 — Xm, H =0. (3.31)
j—o00

Since T is uniformly asymptotically regular, we derive from (3.30) that
mej — Txm, H S mej o ijij H + Hijij o ijHXm]’ H + HTmiHXm;’ — Txmy H
< e =T | [T, = T [+ L [T, | (332
<

(L+1) ||y — T %, ||+ [ T™xm, — T™ o, || = 0.

By virtue of Lemma 2.5 and (3.32), we deduce that w € Fix(T). Like in Case 1, we can also obtain
w € A~10NS~H(B~'0). Thus we obtain

lim sup(xo — zo, Xm; — z0) = lim (xo — Zo, Xm;, — z0) = (xg — Prxo, w — Prxp) < 0.

, we deduce from (3.13) that

Since mej —ZOH < mejH —Z9

[éem, = 20l|" < [y 41— 0]
< (1—otmy) ||xm; — 2o’ + M (Km; — 1) + MoV, + 204, (X0 — 20, Xm; +1 — Z0) (3.33)
< (1 - (xmj) me]‘ - ZOHZ + Ml (km] - 1) + MZij + 2(ij <X0 — 20, ij - ZO>
+ 2(xmj HXO - ZOH HXTTI.]'+1 _ij H .
It follows that
1
[ xm; — ZOH2 < T[Ml(kmj —1) + Mavim,] +2(x0 — 20, Xm; — 20) + 2 [|x0 — 20| HXmJ-H —xmy||-  (3.34)
m;
In view of (3.29), (3.31), (3.34), and (iv), we have
lim mej —ZOH =0. (3.35)
j—00
Again apply (3.33) to obtain
mej—H - ZOHZ <(1- O‘mj) me]- - ZOH2 + Ml(kmj -1+ MZij + 2(x0 —20,Xm; — z0) (3.36)
+2[xo —u| me]-ntl — Xmy H .
It follows from (3.29), (3.31), (3.35), (3.36), (i), and (iv) that
lim “ij+1 —ul|=0.
j—o00
Applying Lemma 2.3, we obtain
0 < [l 0] < [femy 1 —zal|.
Consequently, we get x,, — zg as n — co. The proof is completed. O

Remark 3.5. Theorem 3.4 extends, improves and develops Theorem 2.1 and Theorem 2.2 of Qin et al. [16],
Theorem 2.4 of Ge [7], Theorem 2.1 of Zegeye et al. [26], Theorem 2.1 of Olaleru and Okeke [14], and
Theorem 9 of Takahashi and Yao [22] in the following aspects.
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e Theorem 3.4 extends, improves and develops corresponding results in [7, 14, 16, 22, 26] from the
problem for finding an element of Fix(T) or A~10NS~1(B~10) to the more general and challenging
problem for finding an element of Fix(T) N A~'0S~1(B~10).

e We establish strong convergence results concerning asymptotically pseudo-contractive mappings in
the intermediate sense by using the Ishikawa-like algorithm but not the hybrid algorithm. Therefore
the computation of Cy, () Qr, is not required for each n > 1.

e The assumption that the interior of Fix(T) is empty is not required in our Theorem 3.4. However, it
is very necessary in Theorem 2.1 of Zegeye et al. [26] and Theorem 2.1 of Olaleru and Okeke [14].

e The subset C of real Hilbert space H does not have to be bounded in our Theorem 3.4 which is
indispensable in Theorem 2.1 and Theorem 2.2 of Qin et al. [16].

e The algorithm (3.3) is more advantageous and more flexible than the ones given in [16, 26]. In
particular, whenever E = H, a Hilbert space, A = B = 0 and «,, = 0, our scheme (3.3) reduces to (x)
in [16] and (2.1) in [26]. Hence the new algorithm is expected to be widely applicable.

4. An extension of our main results

By using Theorem 3.4, we have the following strong convergence results for computing the fixed point
problem of asymptotically pseudo-contractive mappings.

Conclusion 4.1. Let E be a uniformly convex and smooth Banach space and let ] be the duality mapping
on E. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let A and B be
maximal monotone operators of H into 2" such that dom(A) C C and E into 2, respectively. Let Jx
be the resolvent of A for A > 0 and let Q,, be the metric resolvent of B for p > 0. Let S : H — E be
a bounded linear operator such that S # 0 and let S* be the adjoint operator of S. Let T : C — C be
a uniformly L-Lipschitz, uniformly asymptotically regular and asymptotically strict pseudo-contractive
mapping in the intermediate sense with sequences {kn,} C [1,00) and {vn} C [0,00) as defined in (1.2).
Assume T := Fix(T)N A~10S71(B~10) is nonempty and the element xy € C is fixed. Let {xn} be a
sequence generated by

x1, chosen arbitrarily,
n = ]?\n( —0nS*J(Sxn — Qunsxn))

4.1
Un = (1 —=vn)zn +vnT"zn, (41)
X1 = KnXp + (1— “n)[(l - Bn)zn + BnTnynL
where {otn ], {Bn}, {yn} C [0,1] and {An}, {tn}, {8n} C (0, +00) satisfy the following conditions:
(i) limn oo tn =0and Y v ; &t = o0;
(ii) 0 < liminf,, ;o Pn and B < Yn;
1 )
(ili)) a <yn < bforsomea>0andb € (0, e );
(iv) X 1vn <00, Vn =0(an), kn —1 =o0(an) andZ 1(kn —1) < o0;
(v) 0 < liminfy o 0n < limsup,, ., 0n < HSH2' 0 < 11m inf, 00 An < limsup,, . Ay < oo and

0 <liminf o pn < limsup,, . Hn < 00.

Then the sequence {xn } generated by (4.1) converges strongly to a point zy € I', where zy = Prxo.

Proof. Note that, any uniformly L-Lipschitzian and asymptotically k-strict pseudocontractive mapping T
in the intermediate sense is uniformly L-Lipschitzian and asymptotically pseudocontractive mapping in
the intermediate sense and hence the conclusion follows from Theorem 3.4. O

Conclusion 4.2. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let A and
B be two maximal monotone operators of H into 2H such that dom(A) ¢ C. Let Ja be the resolvent of A
for A > 0 and let Q. be the resolvent of B for p > 0. Let S : H — H be a bounded linear operator such
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that S # 0 and let S* be the adjoint operator of S. Let T : C — C be a uniformly L-Lipschitz, uniformly
asymptotically regular and asymptotically pseudo-contractive mapping in the intermediate sense with
sequences {kn} C [1,00) and {vn} C [0,00) as defined in (1.4). Assume I := Fix(T)NA~!0NS~}(B~10) is
nonempty and the element xg € C is fixed. Let {xn} be a sequence generated by

x1, chosen arbitrarily,

4.2
Yn = (1 _Yn)zn +YnT"zn, (4.2)
Xn+1 = nXo + (1 —an) (1= Bn)zn + BnT ynl,
where {otn ], {Bn}, {yn} C [0,1] and {An}, {in}, {dn} C (0, +00) satisfy the following conditions:
(i) limn_yoo 0tn =0and Y v _; &tn = 00;
(i) 0 < hmmfn_m Brn and Brn < VYn;
1 .
(iii)) a < b forsomea>0andb € (0, e )
(iv) Zn 1Vn < 00, vn:o(ocn), kn—1=o0(an) and >0 i (kn—1) < oo;
(v) 0 < liminfy ;5 0n < limsup, ., 06n < HSHZ' 0 < hm inf, ;00 An < limsup, _, An < oo and

0 < liminfn oo pn < lim Sup,, _, ., Hn < 00.

Then the sequence {xn } generated by (4.2) converges strongly to a point zy € I', where zy = Prxo.
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