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Abstract

This paper shows that soliton solutions to the nonlocal nonlinear Schrödinger equation (NNLS) proposed recently by
Ablowitz and Musslimani [M. J. Ablowitz, Z. H. Musslimani, Phys. Rev. Lett., 110 (2013), 5 pages] describe a motion of three
distinct complex curves in C3 with initial data being suitably restricted. This gives a geometric interpretation of NNLS.
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1. Introduction

The study of moving curves in a Riemannian or pseudo-Riemannian manifold, especially in the Eu-
clidean or pseudo-Euclidean spaces and their relation to integrable equations, is an attractive topic in
differential geometry (see [6, 9, 11, 12, 17, 19–21, 23]). Pioneering work by Hasimoto [19] showed that the
equation of motion of a vortex filament regarded as a space curve, i.e., the famous Da Rios equation [5]:
Xt = κB, where X(x, t) is the position of the curve, κ stands for the curvature and B denotes the binormal
vector at arclength x and time t at the point X(x, t), was equivalent to the well-known, integrable non-
linear Schrödinger equation (NLS+): iϕt +ϕxx + 2|ϕ|2ϕ = 0. Meanwhile, it is also proved in [6, 7] that
the defocusing nonlinear Schrödinger equation (NLS−): iϕt +ϕxx − 2|ϕ|2ϕ = 0 and the nonlinear heat
system: {

qt = qxx + 2qrq,
rt = −rxx − 2rqr,

describe respectively the binormal motion of timelike and spacelike curves in R2,1: Xt = ±κB. Us-
ing the Hasimoto transformation that relates space curves and complex curvature functions, Lamb [21]
generalized the above result by demonstrating the link between the motion of certain space curves and
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soliton-bearing equations. Murugesh and Balakrishnana [23] had devised a method which derived ex-
plicitly the three distinct evolving curves that correspond to NLS+, and the tangent vector of the first of
these curves, the binormal vector of the second and the normal vector of the third, are shown to satisfy to
the integrable Landau-Lifshitz equation (i.e., the Heisenberg ferromagnetic model):

st = s× sxx, s2 = 1. (1.1)

Fukumoto and Miyazaki showed in [12] that the complex mKdV equation: ϕt = ϕxxx + 3|ϕ|2ϕx is
equivalent to the motion of space curves in R3 satisfying Xt = 1

2κ
2T + κxN + κτB, where τ is the torsion

curvature of curves, T and N are respectively the tangent and principal normal vectors at arclength x and
time t at the point X(x, t). Motion of curves in S2 and S3 were considered by Doliwa and Santini in [11].
In general, Gürses [17] established a connection between the curves moving in a 3-space with arbitrary
signature (−1 or 3) and soliton equations. Furthermore, it is shown that many integrable nonlinear PDEs
including the sine-Gordon equation, the NLS equation, the mKdV equation, and the KdV equation, may
arise from two-dimensions surfaces with vanishing Gaussian curvature, flat surfaces.

Recently Ablowitz and Musslimani (see [2]) proposed a nonlocal nonlinear Schrödinger equation
(NNLS)

iϕt(x, t) +ϕxx(x, t) + 2εϕ(x, t)ϕ∗(−x, t)ϕ(x, t) = 0, (1.2)

where ∗ stands for the complex conjugation and ε = ± signals the focusing (+) and defocusing (-) non-
linearity. The key point is NNLS (1.2) has qualitative properties other than the standard NLS and its
classical generalizations (refer to [22, 28]). For example, in the focusing case, NNLS+ (ε = +1) admits
both bright (sech-type) and dark (tanh-type) soliton states [26], while NLS+ supports only bright soliton
solutions. By using the Hirota bilinear method and the reduction formulas, Gürses and Pekcan [18] have
found one-, two-, and three-soliton solutions of the NLS and NNLS equations. From geometrical point of
view of moving complex curves, a quite relevant question arises: what is the link between the motion of
space curves in the (real or complex) Euclidean or Minkowski 3-space and NNLS?

The purpose of this paper is to give positive answers to the above question. The main idea applying
here is inspired from the work of Ding et al. in [9], which determined a motion of space curves in R2,1

inducing the KdV equation. In this paper, we show that if an initial curve X0(x) = X(x, t)|t=0 at t = 0
is generated by the complex curvature κ(x, 0) = κ0(x) and the complex torsion curvature τ(x, 0) = τ0(x)
satisfying

κ0(x) = εκ
∗
0(−x) exp[i

∫x
0
(τ0(y) + τ

∗
0(−y))dy], (1.3)

then the quantity:

κ(x, t) = εκ∗(−x, t) exp[i
∫x

0
(τ(y, t) + τ∗(−y, t))dy]

is preserved by complex curves X(x, t) evolving by the evolution equation:

Xt = Xx ×Xxx = κB, with Xx ·Xx = 1 (1.4)

in C3, where B is binormal vector at the point X(x, t) in C3, × denotes the cross product between vectors
in C3, i.e., the cross product of u = (u1,u2,u3) and v = (v1, v2, v3) in C3 by

u× v = (u2v3 − u3v2,u3v1 − u1v3,u1v2 − u2v1),

and · denotes the standard holomorphic inner product in C3 (see [25]). This fact comes mainly from the
uniqueness (in a suitable space of functions) of solutions to the initial-value problem of the coupled NLS
system of equations (Ablowitz-Kaup-Newell-Segur (AKNS)) (see [1, 3, 24]){

iϕ1t −ϕ1xx + 2ϕ2
1ϕ2 = 0,

iϕ2t +ϕ2xx − 2ϕ1ϕ
2
2 = 0, (1.5)
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where ϕ1(x, t) and ϕ2(x, t) are complex dynamical variables, which is equivalent to the above evolution
equation (1.4). We call the above system of coupled equations a nonlinear Schrödinger system (NLS
system). Now, by setting s(x, t) = d

dxX(x, t) ∈ C3, we see that Eq. (1.4) is equivalent to the coupled
Landau-Lifshitz equations (CLL)

st = s× sxx, s = (s1, s2, s3) ∈ CS2 ↪→ C3. (1.6)

When s ∈ S2 ↪→ R3, Eq. (1.6) returns to Eq. (1.1). In [10, 13], the NLS system (1.5) is gauge equiv-
alent to CLL (1.6) and vice versa. Here, by using the viewpoint of complex moving curves in C3,
Eq. (1.4) is equivalent to the NLS system (1.5), in which the associated complex function ϕ1(x, t) =
−κ(x, t) exp

(
−i
∫x

0 τ(y, t)dy
)

and ϕ2(x, t) = κ(x, t) exp
(
i
∫x

0 τ(y, t)dy
)

evolves to the NLS system (1.5),
where κ(x, t) and τ(x, t) stand for the complex curvature and the complex torsion curvature at X(x, t)
respectively. This implies that soliton solutions ϕ2(x, t) to NNLS describe the motion (1.4) of complex
curves X(x, t) in C3 with initial data at t = 0 being restricted by the relation (1.3). Hence NNLS arises
from the motion (1.4) of complex curves just with the initial-data being suitably restricted. By using
gauge equivalent way, Ding et al. in [10] have given an accurate characterization of the gauge-equivalent
magnetic structure of NNLS, but here we give the direct interrelations between NNLS and the motion of
complex curves in C3. Finally, by using Murugesh and Balakrishnana’s unified formalism [23], any given
solution of the NLS system (1.5) gets associated with three distinct complex curve evolutions, that is the
tangent vector of the first of these curves, the binormal vector of the second and the normal vector of the
third satisfy to CLL (1.6). These connections enable us to find the three surfaces swept out by the moving
curves associated with the NNLS+.

2. Motion of complex curves in C3

Consider the bilinear form (the standard holomorphic inner product) 〈·, ·〉 on C3 defined by 〈X, Y〉 =
X · Y = X1Y1 + X2Y2 + X3Y3,∀X, Y ∈ C3. If a vector α ∈ C3 satisfies α · α = 1, then α is called the complex
unit vector. The set of all complex unit vectors is the complex 2-sphere CS2(1). One may know that there
are only three complex linearly independent vectors in C3. An 3× 3 complex matrix A = (aij) is said to be
orthogonal if the column vectors that make up A are orthonormal, that is, if

∑3
k=1 akiakj = δij, 1 6 i, j 6

3. Here δij is the Kronecker delta. Equivalently, A is orthogonal if it preserves the standard holomorphic
inner product, namely if 〈Ax,Ay〉 = 〈x,y〉 for all x,y ∈ C3. Still another equivalent definition is that A
is orthogonal if ATA = I, i.e., if AT = A−1. Here, AT is the transpose of A. The set of all 3× 3 complex
matrices A which preserve this form (i.e., such that 〈Ax,Ay〉 = 〈x,y〉 for all x,y ∈ C3) is the complex
orthogonal group O(3; C), and it is a subgroup of the general linear groups GL(3; C).

The study of the special complex curves in C3 including minimal curves [14, 16], null curves [15]
is an attractive topic in differential geometry. Due to C3 is equipped with the standard holomorphic
inner product, the complex curves in C3 have new significance. Next, we consider that a complex curve
X(x) = (z1(x), z2(x), z3(x)) in C3 satisfies reality condition: X ′(x) ·X ′(x) = 1,∀x.

The Frenet frame {T, N, B} of a curve α(x) in R3 is an orthonormal frame of vector fields T (tangent
vector), N (normal vector) and B (binormal vector) moving along the curve α(x). The linear hull of T is
the tangent line, the linear hull of T, N is the osculating plane spanned by the vectors α ′(x) and α ′′(x).
Similar to R3, there are the Frenet frame and formulae of complex curves with reality condition in C3.

To find a Frenet frame {T, N, B} in a similar way, we define the vector fields T(x), N(x), and B(x) on
X(x) by

T(x) = X ′(x), N(x) =
X ′′(x)
κ(x)

, B(x) = T(x)×N(x), (2.1)

where κ(x) =
√

X ′′(x) ·X ′′(x) 6= 0.
Since T·T=1 from the first of Eqs. (2.1) which indicates that the tangent vector T completely locates in

the complex 2-sphere CS2(1). We note that X · Y = 0,∀ X, Y ∈ C3 expresses a notion of orthogonality. An
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important difference with real inner products, is that X · Y = 0 implies that the whole complex lines CX
and CY (which are planed in the real dimensional sense) are orthogonal to each other, i.e., X0 ·Y0 = 0 for
any X0 ∈ CX and Y0 ∈ CY. We have

Lemma 2.1. T, N, B are the unit orthogonal and complex linearly independent vectors.

Proof. Since T, N, B given by (2.1) and reality condition: T·T=1, we have

T ·N = X ′ · X ′′

κ
=

1
2κ

(X ′ ·X ′) ′ = 0,

N ·N =
1
κ2 X ′′ ·X ′′ = 1

||X ′′||2
X ′′ ·X ′′ = 1,

T ·B = T · (T×N) = 0, N ·B = N · (T×N) = 0,
B ·B = (T×N) · (T×N) = 1,

i.e., for the standard holomorphic inner product on C3, the frame {T, N, B} is orthogonal. If there are three
complex-valued functions λ1, λ2, λ3 such that

λ1T + λ2N + λ3B = 0, (2.2)

for the standard holomorphic inner product with T in the both sides of equations (2.2), we have λ1 =
0. Similarly, λ2 = λ3 = 0. Hence T, N, B are the unit orthogonal and complex linearly independent
vectors.

Similarly, the frame {T, N, B} of the curve X(x) in C3 is also called the Frenet frame of a complex curve
in C3. An important difference with the Frenet frame {T, N, B} of a curve in R3, is that the Frenet frame
{T, N, B} of a complex curve in C3 is a family of complex-valued vector functions.

Lemma 2.2. For the derivatives of the Frenet frame {T, N, B} we have the following analogue of the Frenet formulae:

T ′(x) = κ(x)N(x),
N ′(x) = −κ(x)T(x) + +τ(x)B(x),
B ′(x) = −τ(x)N(x),

(2.3)

where τ(x) = N ′(x) · B(x). The complex valued-functions κ(x), τ(x) are called the complex curvature and the
complex torsion curvature of X(x), respectively.

Proof. By Lemma 2.1, it is shown that from the construction that T, N, B are an orthonormal frame. Con-
sequently, expressing these derivatives T ′, N ′, B ′ as linear combinations of T, N, B, the matrix of coef-
fcients so obtained must be skew symmetric. Therefore, since the first of Eqs. (2.3) follows immedi-
ately from Eqs. (2.1), we have only to prove that the last equation of (2.3) is true. But B ′ · B = 0 and
B ′ · T = −B · T ′ = −κ(B ·N) = 0 imply that B ′ = (B ′ ·N)N, therefore, it is sufficient to show that
B ′ ·N = −B ·N ′ = −τ.

Now, we consider the motion of the complex curves X(x, t) in C3 evolving by the evolution equation
(1.4). We assert that the relation Xx ·Xx = 1 is preserved invariant under the evolution equation (1.4), that
is, if X = X(x, t) evolves according to Eq. (1.4) with Xx ·Xx = 1 at t = 0, then Xx ·Xx = 1 for any t > 0. In
fact, it suffices to prove that d

dt(X
2
x) = 0 holds for any t:

d

dt
(X2
x) = 2Xxt ·Xx = 2Xtx ·Xx = 2(Xx ×Xxxx) ·Xx = 0.

Writing matrix S by

S =

(
s3 s1 − is2

s1 + is2 −s3

)
,
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where s2
1 + s

2
2 + s

2
3 = 1, then S = S(x, t) is a 2× 2 matrix with S2 = I (I stands for the unit matrix) and

trS = 0. CLL (1.6) reads as the following complex matrix equation,

St = −
i

2
[S,Sxx]. (2.4)

When S is a Hermitian matrix (i.e., S† = S), Eq. (2.4) returns to LL (1.1). This motivates the introduce in
geometry the concept of Schrödinger flows (or maps) (see [8, 27] or [4]). It is proved in [10] that CLL (1.6)
is exactly the equation of Schrödinger flows from R1 to the complex 2-sphere CS2(1) ↪→ C3.

3. Geometric interpretation of NNLS

This section shows that soliton solutions to NNLS describe a motion of complex curves in C3 with
initial data being suitably restricted.

Proposition 3.1. The complex curves X(x, t) in C3 evolving by the evolution equation (1.4) (or the coupled Landau-
Lishitz equations (2.4)) is equivalent to the NLS system (1.5).

Proof. It is a direct computation by using the Frenet-Serret formula (2.3) that Eq. (1.4) can be rewritten as

Tt = κsB − κτN.

Now we introduce complexifing the Hasimoto frame:

e1 = T, e2 =
1√
2
(N + iB) exp(i

∫x
0
τ(y)dy), e3 =

1√
2
(N − iB) exp(−i

∫x
0
τ(y)dy).

Then the Frenet-Serret formula (2.3) becomes e1
e2
e3


x

=

 0 ϕ1 ϕ2
−ϕ1 0 0
−ϕ2 0 0

 e1
e2
e3

 , (3.1)

where

ϕ1(x, t) =
κ(x, t)√

2
exp

(
−i

∫x
0
τ(y, t)dy

)
, ϕ2(x, t) =

κ(x, t)√
2

exp
(
i

∫x
0
τ(y, t)dy

)
.

On the other hand, it is also a direct verification that Eq. (1.4) now reads

e1t = ϕ1e2 +ϕ2e3.

By using the relations: e1 · e2 = e1 · e3 = e2 · e2 = e3 · e3 = 0 and e2 · e3 = 1, we arrive at e1
e2
e3


t

=

 0 −iϕ1x iϕ2x
−iϕ2x a2 0
iϕ1x 0 −a2

 e1
e2
e3

 , (3.2)

where a2 will be determined. The integrability condition of (3.1) and (3.2) implies

a2x = i(ϕ1xϕ2 +ϕ2xϕ1), ϕ1t + iϕ1xx + a2ϕ1 = 0, ϕ2t − iϕ2xx − a2ϕ2 = 0. (3.3)

One may solve the first of Eqs. (3.3) to obtain

a2 = iϕ1ϕ2 + c(t)
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for some real function c(t) depending only on t. Substituting it into the second and the third of Eqs. (3.3)
we have {

ϕ1t + i(ϕ1xx +ϕ
2
1ϕ2) + c(t)ϕ1 = 0,

ϕ2t − i(ϕ2xx +ϕ1ϕ
2
2) − c(t)ϕ2 = 0.

This differential system is equivalent to the NLS system (1.5) by the transform:

ϕ1 → −
√

2ϕ1 exp
(
−

∫t
0
c(t̃)dt̃

)
, ϕ2 →

√
2ϕ2 exp

(∫t
0
c(t̃)dt̃

)
.

Now, we restrict ourselves to a solution (ϕ1(x, t),ϕ2(x, t)) to the initial value problem of the NLS
system (1.5) with ϕ1 − c1,ϕ2 − c2 ∈ C1([0, T);H2(R)) for some constants c1 and c2 and 0 < T 6 +∞. We
claim that, under this circumstance, solutions to the initial-value problem (i.e., ϕ1|t=0 = ϕ0

1(x),ϕ2|t=0 =
ϕ0

2(x) with ϕ0
1(x) − c1,ϕ0

2(x) − c2 ∈ H2(R)) of the NLS system (1.5) are unique (e.g. refer to [10]).
Returning to the complex moving curves X(x, t) in C3, we have the following conclusion.

Theorem 3.2. Suppose an initial curve X0(x) = X(x, t)|t=0 at t = 0 is generated by the complex curvature κ0(x)
and the complex torsion curvature τ0(x) satisfying

κ0(x) = εκ
∗
0(−x) exp[i

∫x
0
(τ0(y) + τ

∗
0(−y))dy], (3.4)

where ϕ2(x, t) is a solution to the nonlocal nonlinear Schrödinger equation:

iϕ2(x, t) +ϕ2xx(x, t) + 2εϕ2(x, t)ϕ∗2(−x, t)ϕ2(x, t) = 0

with ϕ2 − c ∈ C1([0, T);H2(R)) for some constant c, then the complex moving curves X(x, t) by Eq. (1.4) preserve
the relation: ϕ1(x, t) = −εϕ∗2(−x, t) invariant and take ϕ2(x, t) to satisfy the NNLS (1.2).

Proof. This is because of the above claim of the uniqueness of solutions, since (ϕ1(x, t) = −εϕ∗2(−x, t),
ϕ2(x, t)) is a solution to Eq. (1.5) with ϕ1 − c,ϕ2 − c ∈ C1([0, T);H2(R)) and satisfies the initial data (3.4)
⇔ ϕ1(x, 0) = −εϕ∗2(−x, 0). This fact indicates that soliton solutions ϕ2(x, t) to NNLS describe complex
curves X(x, t) in C3 evolving by Eq. (1.4) with initial data X0(x) = X(x, t)|t=0 at t = 0 generated by the
complex curvature κ0 and the complex torsion curvature τ0 satisfying the relation (3.4). Hence NNLS
arises from the above motion of complex curves just with the initial-data being suitably restricted.

Remark 3.3. By the way, in a similar way by the restriction ϕ1(x, t) = −εϕ∗2(x, t), the same conclusion is
also valid for the nonlinear Schrödinger equation: iϕ2(x, t) +ϕ2xx(x, t) + 2ε|ϕ2(x, t)|2ϕ2(x, t) = 0. Since
ϕ1(x, t) = −κ exp(−i

∫x
0 τ(y)dy) = −εκ∗ exp(−i

∫x
0 τ
∗(y)dy) = −εϕ∗2(x, t) implies κ = εκ∗ and τ = τ∗. If

ε = 1, then κ(x, t), τ(x, t) ∈ R, i.e., the complex moving curves X(x, t) completely locate in R3. If ε = −1,
then iκ(x, t), τ(x, t) ∈ R, i.e., the complex moving curves X(x, t) completely locate in R2,1. This indicates
again that NLS arises from a motion of space curves, which coincides with the geometric interpretation
of NLS displayed in [6, 7, 19].

4. Construction of the three complex curves in C3 associated with the NLS system

In this section, we show that the equivalence of the NLS system (1.5) to CLL (1.6) in three ways.
By using Murugesh and Balakrishnana’s unified formalism [23], we have the following Proposition.

Proposition 4.1. The tangent vector of the first of complex curves, the binormal vector of the second, and the normal
vector of the third satisfy to CLL (1.6), are proved to be equivalent to the NLS system (1.5).

Proof.

(I) From Proposition 3.1, we show that the tangent vector T1 = T1(x, t) of complex curves X1 = X1(x, t) in
C3 satisfy CLL (1.6) is equivalent to the NLS system (1.5).
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(II) Let the binormal vector B2 = B2(x, t) of complex curves X2 = X2(x, t) in C3 satisfy to CLL (1.6), i.e.,

B2t = B2 ×B2xx, B2 ∈ CS2(1). (4.1)

By using the Frenet-Serret formula (2.3), Eq. (4.1) can be rewritten as

B2t = κ2τ2N2 + τ2sB2.

Now, let

m1 = B2, m2 =
1√
2
(N2 + iT2) exp(i

∫x
0
κ2(y, t)dy), m3 =

1√
2
(N2 − iT2) exp(−i

∫x
0
κ2(y, t)dy).

Then the Frenet-Serret formula (2.3) now becomes m1
m2
m3


x

=

 0 φ1 φ2
−φ1 0 0
−φ2 0 0

 m1
m2
m3

 ,

where

φ1(x, t) = −
τ2(x, t)√

2
exp

(
−i

∫x
0
κ2(y, t)dy

)
, φ2(x, t) = −

τ2(x, t)√
2

exp
(
i

∫x
0
κ2(y, t)dy

)
.

Similarly, we show that the binormal vector B2 of the second of complex curves X2 in C3 satisfy to CLL
(1.6) is equivalent to the NLS system (1.5).

(III) Let the normal vector N3 = N3(x, t) of complex curves X3 = X3(x, t) in C3 satisfy to CLL (1.6), i.e.,

N3t = N3 ×N3xx, N3 ∈ CS2(1). (4.2)

By using the Frenet-Serret formula (2.3), Eq. (4.2) can be rewritten as

N3t = τ3sT3 + κ3sB3.

Now, let

n1 = N3, n2 =
1√
2
(T3 + iB3), n3 =

1√
2
(T3 − iB3).

Then the Frenet-Serret formula (2.3) reads n1
n2
n3


x

=

 0 χ1 χ2
−χ1 0 0
−χ2 0 0

 n1
n2
n3

 ,

where

χ1(x, t) = −
1√
2
(κ3 −

√
−1τ3), χ2(x, t) = −

1√
2
(κ3 +

√
−1τ3).

Similarly, it is shown that the normal vector N3 of the third of complex curves X3 in C3 satisfy to CLL
(1.6) is equivalent to the NLS system (1.5).

Now, we turn to the construction of the three moving complex curves associated with the NLS sys-
tem (1.5) (see [23]). The corresponding expressions for the position vectors X1(x, t), X2(x, t) and X3(x, t),
creating the three moving complex curves, are obtained as follows.
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(I) The position vector X1 for the first moving is obtained by integrating T1 = s. Namely,

X1(x, t) =
∫x

T1(y, t)dy =

∫x
s(y, t)dy. (4.3)

(II) Here, the binormal B2 satisfies CLL (1.6). Hence B2 = s. Using the Frenet-Serret formula (2.3), then
the unit tangent vector T2 = s×sx

|sx|
, yielding the expression for the position vector creating the second

moving complex curve as

X2(x, t) =
∫x

T2(y, t)dy =

∫x s(y, t)× sy(y, t)
|sy(y, t)|

dy. (4.4)

(III) Here, since the normal vector N3 satisfies CLL (1.6), N3 = s. Hence the unit tangent vector T3 can
be expressed in term of s as follows:

T3 =
s× sx sinα− sx cosα

κ1
, (4.5)

where α =
∫x
τ1(y, t)dy+C(t), and C(t) is an arbitrary function of time t. Thus Eq. (4.5) leads to

the following expression for the position vector of the third moving complex curve in C3:

X3(x, t) =
∫x

T3(y, t)dy =

∫x s(y, t)× sy(y, t) sinα− sy(y, t) cosα
κ1

dy. (4.6)

Combining Theorem 3.2, Proposition 4.1, and Eqs. (4.3), (4.4), (4.6), we have the following theorem.

Theorem 4.2.

(a) Suppose an initial curves X0
1(x) = X1(x, t)|t=0 at t = 0 is generated by κ0

1(x) and τ0
1(x) satisfying κ0

1(x) =
εκ0∗

1 (−x) exp[i
∫x

0 (τ
0
1(y)+τ

0∗
1 (−y))dy], whereϕ2(x, t) is a solution to NNLS withϕ2 −c∈C1([0, T);H2(R))

for some constant c, then the tangent vector T1 of complex curves X1(x, t) in C3 satisfy CLL (1.6)) preserve the
relation: ϕ1(x, t) = −εϕ∗2(−x, t) invariant and take ϕ2(x, t) to satisfy the NNLS (1.2).

(b) Suppose an initial curves X0
2(x) = X2(x, t)|t=0 at t = 0 is generated by κ0

2(x) and τ0
2(x) satisfying τ0

2(x) =
ετ0∗

2 (−x) exp[i
∫x

0 (κ
0
2(y)+κ

0∗
2 (−y))dy], whereφ2(x, t) is a solution to NNLS withφ2 −c∈C1([0, T);H2(R))

for some constant c, then the binormal vector B2 of complex curves X2(x, t) in C3 satisfy to CLL (1.6) preserve
the relation: φ1(x, t) = −εφ∗2(−x, t) invariant and take φ2(x, t) to satisfy the NNLS (1.2).

(c) Suppose an initial curves X0
3(x) = X3(x, t)|t=0 at t = 0 is generated by κ0

3(x) and τ0
3(x) satisfying κ0

3(x) −
εκ0∗

3 (−x) = i(τ0
3(x) − ετ

0∗
3 (−x)), where χ2(x, t) is a solution to NNLS with χ2 − c ∈ C1([0, T);H2(R)) for

some constant c, then the normal vector N3 of complex curves X3(x, t) in C3 satisfy to CLL (1.6) preserve the
relation: χ1(x, t) = −εχ∗2(−x, t) invariant and take χ2(x, t) to satisfy the NNLS (1.2).

This theorem shows that soliton solutions to NNLS describe a motion of three distinct complex curves
in C3 with initial data being suitably restricted. This gives a geometric interpretation of NNLS.

5. Example: soliton solutions

A solution of the NLS system (1.5) is given by

ϕ1(x, t) = −κ(x, t) exp(−iσ), ϕ2(x, t) = κ(x, t) exp(iσ), (5.1)

where σ =
∫x

0 τ(y, t)dy. It is a direct verification that κ(x, t) and τ(x, t) satisfy{
κt = −2κxτ− κτx,
τt = (κxxκ − τ2 + 2κ2)x. (5.2)
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Now we introduce η= x+ 2ivt+ d11, where parameters v and d11 are complex. Then κ(x, t) = κ(η),
τ(x, t) = τ(η) and

κt = 2ivκ ′, τt = 2ivτ ′, κx = κ ′, τx = τ ′. (5.3)

Substituting Eqs. (5.3) in Eqs. (5.2) gives{
2ivκ ′ = −2κ ′τ− κτ ′,
2ivτ ′ = (κ

′′

κ − τ2 + 2κ2) ′.
(5.4)

One may solve the first of Eqs. (5.4) to obtain

((iv+ τ)κ2) ′ = 0. (5.5)

Here, we assume that κ and τ satisfy lim
x→+∞ κ = 0 and τ is bounded. Then one may solve Eq. (5.5) to give

τ = −iv and substituting in the second of Eqs. (5.4) gives

κ ′′

κ
+ 2κ2 = ±a2, (5.6)

where a is the constant of integration. Its solution of Eq. (5.6) can be written

κ = a sec(−iaη) or − a csc(−iaη). (5.7)

It is a direct verification that

σ = −ivx+ (a2 + v2)t+ d2, (5.8)

where d2 is the constant of integration. Here, using the first of Eq. (5.7) (i.e., κ = a sec(−iaη)) and Eq.
(5.8) in Eq. (5.1) yields

ϕ1(x, t) = −a sec(P) exp(iQ), ϕ2(x, t) = a sec(P) exp(−iQ),

where P = −iaη = −iax+ 2avt+ d1, d1 = −iad11, and Q = ivx− (a2 + v2)t− d2. Note that

ϕ1(x, t) = −ϕ∗2(−x, t)(⇔ ϕ2(x, t) is solution of NNLS+)⇔ all parameters a, v,d1,d2 are real.

Next, we return to CLL (1.6). A soliton solution of CLL (1.6) is given by (see [13])

s =

(
2ia secP
a2 − v2 (v sinQ+ a cosQ tanP),

2ia secP
a2 − v2 (v cosQ− a sinQ tanP), 1 −

2a2 sec2 P

a2 − v2

)
↪→ C3, (5.9)

where all parameters a, v,d1, and d2 are real, which corresponding to the soliton solution ϕ2(x, t) =
a sec(P) exp(−iQ) of NNLS+. The three moving curves that correspond to the soliton solution ϕ2(x, t) of
NNLS+ are found by substituting Eq. (5.9) in Eqs. (4.3), (4.4), (4.6), respectively. Note that ϕ∗2(−x, t) =
a secP exp(iQ) 6= ϕ2(x, t), then the solution ϕ2 is not a solution of NLS+. For the sake of illustration, let
us consider the special case v = 0. We have the following three swept-out surfaces:

(I) The position vector X1(x, t) for the first moving is

X1(x, t) =
1
a
(−2 cosQ secP, 2 sinQ secP, i(P− 2 tanP)) ∈ C3. (5.10)

It is a direct verification that κ1 = 2a secP and τ1 = 0. Note that κ∗1(−x, 0) = κ1(x, 0), i.e., κ1(x, 0)
and τ1(x, 0) satisfying relation (3.4). This surface is given in Fig. 1 (a).
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(a) (b) (c)

Figure 1: Surface swept-out by the moving curve X1(x, t) (Eq. (5.10)) for a = 1,d1 = π, and d2 = 2; Surface swept-out by the
moving curve X2(x, t) (Eq. (5.11)) for a = 1,d1 = π

2 , and d2 = −2; Surface swept-out by the moving curve X3(x, t) (Eq. (5.12)) for
a = 1,d1 = π

2 , and d2 = −2.

(II) The position vector X2(x, t) for the second moving is

X2(x, t) =
i

a
(P sinQ,−P cosQ, 0) ∈ C3. (5.11)

Here, κ2 = 0 and τ2 = 2a secP. This planar surface is given in Fig. 1 (b).
(III) The position vector X3(x, t) for the third moving is

X3(x, t) =
i

a
(−P sinQ sinα+ cosQ(2 tanP− P) cosα,

− P cosQ sinα− sinQ(2 tanP− P) cosα, 2i secP) ∈ C3,
(5.12)

where α = a2t. Here, κ3 = κ1 cosα, τ3 = κ1 sinα. This surface is given in Fig. 1 (c).

6. Conclusion

In this paper, by using the idea of uniqueness of solutions, we show that, if an initial curve X0
1(x) at

t = 0 is generated by the complex curvature κ0(x) and the complex torsion curvature τ0(x) satisfying
κ0

1(x) = εκ0∗
1 (−x) exp[i

∫x
0 (τ

0
1(y) + τ

0∗
1 (−y))dy], then the relation: κ1(x, t) = εκ∗1(−x, t) exp[i

∫x
0 (τ1(y, t) +

τ∗1(−y, t))dy] is preserved by the tangent vector T1 of complex curves X1(x, t) in C3 satisfy CLL (1.6). This
implies that soliton solutions ϕ2(x, t) = κ1(x, t) exp

(
i
∫x

0 τ1(y, t)dy
)

to NNLS describe the above motion of
complex curves X1(x, t) in C3 with initial data at t = 0 being restricted by κ0

1(x) = εκ
0∗
1 (−x) exp[i

∫x
0 (τ

0
1(y)+

τ0∗
1 (−y))dy]. Similarly, soliton solutions φ2(x, t) = −τ2(x, t) exp

(
i
∫x

0 κ2(y, t)dy
)

to NNLS describe the bi-
normal vector B2(x, t) of complex curves X2(x, t) in C3 satisfy to CLL (1.6) with initial data at t = 0 being
restricted by τ0

2(x) = ετ0∗
2 (−x) exp[i

∫x
0 (κ

0
2(y) + κ

0∗
2 (−y))dy], and soliton solutions χ2(x, t) = −(κ3(x, t) +√

−1τ3(x, t)) to NNLS describe the normal vector N3(x, t) of complex curves X3(x, t) in C3 satisfy to CLL
(1.6) with initial data at t = 0 being restricted by κ0

3(x) − εκ
0∗
3 (−x) = i(τ0

3(x) − ετ
0∗
3 (−x)). Hence NNLS

arises from the motion of three distinct complex curves just with the initial data being suitably restricted.
This gives a geometric interpretation for NNLS.
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