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1. Introduction and preliminaries

Matthews [8] introduced the notion of partial metric space and extended the Banach contraction prin-
ciple to the class of complete partial metric space. After remarkable contribution of Matthews, many
authors have studied partial metric space and its topological properties. Matthews discussed not only
the general topological properties of partial metric spaces, but also some properties of convergence of
sequences. The concept of compatible mapping was introduced by Jungck in the year 1986 [4] and proved
that weakly commuting mappings are compatible mappings. In 1993 Cho et al. [5] introduced compatible
of type (A) and proved common fixed point. In this paper we obtained common fixed points of contractive
type self-mappings on partial metric spaces which cannot be deduced from the corresponding results in
metric spaces. An example is also established to show that the result is a real generalization of analogous
results for metric spaces.

We begin with some basic known definitions and lemmas on partial metric space which will be used
in the sequel. Throughout this article, N, R+, and R denote the set of natural numbers, the set of positive
real numbers, and the set of real numbers, respectively.

Before proceeding further, we recall some relevant concepts.
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Definition 1.1. A pair (S, T) of self-mappings of a metric space (X,d) is said to be compatible mappings,
if

lim
n→∞d(STxn, TSxn) = 0,

whenever {xn} is a sequence in X such that

lim
n→∞Sxn = lim

n→∞ Txn = t

for some t ∈ X.

In 1993 Jungck et al. [5] introduced the notion of compatible mappings of type (A) in such a way.

Definition 1.2. A pair (S, T) of self-mappings of a metric space (X,d) is said to be compatible mappings
of type (A), if

lim
n→∞d(STxn, TTSxn) = 0 and lim

n→∞d(TSxn, TTSxn) = 0,

whenever {xn} is a sequence in X such that

lim
n→∞Sxn = lim

n→∞ Txn = t

for some t ∈ X.

Matthews [8] gave the concept of partial metric space in this way.

Definition 1.3. A partial metric on a nonempty set X is a function p :X × X→[0,∞) such that for all
x,y, z∈X:

(P1) p(x, x) = p(y,y) = p(x,y) if and only if x = y;
(P2) p(x, x)6p(x,y);
(P3) p(x,y) = p(y, x);
(P4) p(x, z)6p(x,y) + p(y, z) − p(y,y).

The pair (X,p) is then called a partial metric space. Also, each partial metric p on X generates a T0
topology τp on X with a base of the family of open p-balls {Bp(x, r) : x∈X, r > 0}, where Bp(x, r) =
{y∈X : p(x,y) < p(x, x) + r}. If (X,p) is a partial metric space, then the function ps : X× X→R+ given by
ps(x,y) = 2p(x,y) − p(x, x) − p(y,y), x,y∈X, is a metric on X. A basic example of a partial metric space is
the pair (R+,p), where p(x,y) = max{x,y} for all x,y∈R+.

Lemma 1.4 ([8]). Let (X,p) be a partial metric space, then we have the following.

1. A sequence {xn} in a partial metric space (X,p) converges to a point x∈X if and only if

lim
n→∞p(x, xn) = p(x, x).

2. A sequence {xn} in a partial metric space (X,p) is called a Cauchy sequence if the limn,m→∞ p(xn, xm)
exists and is finite.

3. A partial metric space (X,p) is said to be complete if every Cauchy sequence {xn} in X converges to a point
x∈X, that is p(x, x) = limn,m→∞(xn, xm).

4. A partial metric space (X,p) is complete if and only if the metric space (X,ps) is complete. Furthermore,
limn→∞ ps(xn, z) = 0 if and only if p(z, z) = limn→∞ p(xn, z) = limn,m→∞ p(xn, xm).

2. Main results

Now I state my main result.

Theorem 2.1. Let (X,p) be a complete partial metric space and S, T , f : X→X be self-mappings satisfying the
following assertions:

(i) S(X)∪T(X)⊆f(X);
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(ii)

p(Sx, Ty)6amax{p(fx, fy),p(fx,Sx),p(fy, Ty)}+ b{p(fx, Ty) + p(fy,Sx)} (2.1)

for all x,y∈X and a,b >0 with a+ 2b <1;
(iii) one of the pairs (S, f) or (T , f) is compatible of type (A);
(iv) the mapping f is continuous.

Then the mappings S, T , and f have a unique common fixed point.

Proof. Let x0 be an arbitrary point of X. We define the sequence {fxn} by

fx2n+1 = Sx2n and fx2n+2 = Tx2n+1

for all n = 0, 1, 2, . . .. From the inequality (2.1), we have

p(fx2n+1, fx2n+2) = p(Sx2n, Tx2n+1)

6amax{p(fx2n, fx2n+1),p(fx2n,Sx2n),p(fx2n+1, Tx2n+1)}

+ b{p(fx2n, Tx2n+1) + p(fx2n+1,Sx2n)}

= amax{p(fx2n, fx2n+1),p(fx2n, fx2n+1),p(fx2n+1, fx2n+2)}

+ b{p(fx2n, fx2n+2) + p(fx2n+1, fx2n+1)}.

By using (P4), we get

p(fx2n+1, fx2n+2)6amax{p(fx2n, fx2n+1),p(fx2n+1, fx2n+2)}

+ b{p(fx2n, fx2n+1) + p(fx2n+1, fx2n+2)}−p(fx2n+1, fx2n+1),

which can written as

p(fx2n+1, fx2n+2)6amax{p(fx2n, fx2n+1),p(fx2n+1, fx2n+2)}+ b{p(fx2n, fx2n+1) + p(fx2n+1, fx2n+2)}.

Now two cases arise:

Case 1. If max{p(fx2n, fx2n+1),p(fx2n+1, fx2n+2)} = p(fx2n, fx2n+1), then from previous inequality, we
get

p(fx2n+1, fx2n+2)6ap(fx2n, fx2n+1) + b{p(fx2n, fx2n+1) + p(fx2n+1, fx2n+2)},

which can be written in simplifying form as

p (fx2n+1 , fx2n+2) 6
(a+ b)

(1 − b)
p (fx2n, fx2n+1 ) .

Let a−b
1−b = λ1, then from above we have

p(fx2n+1, fx2n+2)6λ1p(fx2n, fx2n+1).

Case 2. If max{p(fx2n, fx2n+1),p(fx2n+1, fx2n+2)} = p(fx2n+1, fx2n+2), then from previous inequality,
we get

p(fx2n+1, fx2n+2)6ap(fx2n+1, fx2n+2) + b{p(fx2n, fx2n+1) + p(fx2n+1, fx2n+2)},

which can be written in simplifying form as

p(fx2n+1 , fx2n+2 ) 6
b

(1 − a− b)
p(fx2n , fx2n+1 ).



D. Lateef, J. Nonlinear Sci. Appl., 12 (2019), 38–47 41

Let b
1−a−b = λ2 then from above we have

p(fx2n+1, fx2n+2)6λ2p(fx2n, fx2n+1).

As a+ 2b <1, so we will have both λ1 and λ2 less than 1. If we take λ = max{λ1, λ2}, then from both cases
we have

p(fx2n+1, fx2n+2)6λp(fx2n, fx2n+1).

If we repeat the same procedure as above, we get

p(fx2n, fx2n+1) 6 λp(fx2n−1, fx2n).

Inductively we have
p(fx2n+1, fx2n+2)6λ

2n+1p(fx0, fx1).

Hence

p(fxn, fxn+1)6λ
np(fx0, fx1). (2.2)

Now we prove that the sequence {fxn} is a Cauchy sequence in (X,p).
Let m,n∈N, with m > n and consider

p(fxn, fxn+m) 6 p(fxn, fxn+1) + p(fxn+1, fxn+2) + · · ·+ p(fxn+m−1, fxn+m)

− p(fxn+, fxn+1) + p(fxn+2, fxn+2) + · · ·+ p(fxn+m−1, fxn+m−1)).

By using the inequality (2.2), we get

p(fxn, fxn+m)6[λn + λn+1 + · · ·+ λn+m−1]p(fx0, fx1) 6
λn

1 − λ
p(fx0, fx1).

As λ <1, so we have p(fxn, fxn+m)→0 as m,n→∞. Hence

lim
n,m→∞p(fxn, fxn+m) = 0. (2.3)

We have the following relation

ps(x,y) = 2p(x,y)−p(x, x)−p(y,y).

So we can write it as

ps(fxn, fxn+m) = 2(fxn, fxn+m)−(fxn, fxn)−(fxn+m, fxn+m)62(fxn, fxn+m).

Applying (2.3), we have
lim

n,m→∞ps(fxn, fxn+m) = 0.

Hence the sequence {fxn} is a Cauchy sequence in (X,ps). Since (X,p) is complete, so the corresponding
metric space (X,ps) is also complete. Therefore, the sequence {fxn} converges to some z∈X with respect
to the metric p that is

lim
n→∞ps(fxn, z) = 0.

Since
p(fxn, fxn)6p(fxn, fxn+1)6λ

np(fx0, fx1)→0 as n→∞.

Therefore
p(z, z) 6 lim

n→∞p(fxn, z) 6 lim
n,m→∞p(fxn, fxn+m) = 0.
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Thus the sequence {fxn} is a Cauchy sequence in (X,p). Since (X,p) is complete, so there exists some z∈X
such that limn→∞ fxn = z. It follows that the sequences {Sxn} and {Txn+1} also converge to z. First we
suppose that the pair (f,S) is compatible of type (A). Then from the inequality (2.1), we have

p(Sfx2n, Tx2n+1)6amax{p(ffx2n, fx2n+1),p(ffx2n,Sfx2n),p(fx2n+1, Tx2n+1)}

+ b{p(ffx2n, Tx2n+1) + p(fx2n+1,Sfx2n)}.
(2.4)

Since the mapping f is continuous, so we have ffx2n→fz and fSx2n→fz as n→∞. From the supposition
that the pair (f,S) is compatible of type (A), we have

fSx2n→fz,Sfx2n→fz and ffx2n→fz

as n→∞. So letting n→∞ in inequality (2.4), we have

p(fz, z)6amax{p(fz, z),p(fz, fz),p(z, z)}+ b{p(fz, z) + p(z, fz)}.

As p(x, x)6p(x,y), so we can write

p(fz, z)6amax{p(fz, z),p(fz, z),p(fz, z)}+ b{p(fz, z) + p(z, fz)}.

Thus after simplifying, we have
(1−a−2b)p(fz, z)60.

It follows that fz = z.
Now from inequality (2.1), we have

p(Sz, Tx2n+1)6amax{p(fz, fx2n+1),p(fz,Sz),p(fx2n+1, Tx2n+1)}+ b{p(fz, Tx2n+1) + p(fx2n+1,Sz)}.

Letting n→∞, we have

p(Sz, z)6amax{p(fz, z),p(fz,Sz),p(z, z)}+ b{p(fz, z) + p(z,Sz)}.

As fz = z, so one can easily get Sz = z from above. Similarly, we consider

p(Sx2n, Tz)6amax{p(fx2n, fz),p(fx2n,Sx2n),p(fz, Tz)}+ b{p(fx2n, Tz) + p(fz,Sx2n)}.

Letting n→∞, we have

p(z, Tz)6amax{p(z, fz),p(z, z),p(fz, Tz)}+ b{p(z, Tz) + p(fz, z)}.

Using the fact as fz = z, we can obtain Tz = z. Thus we have Sz = Tz = fz = z that is z is a common fixed
point of S, T , and f. Similarly we can prove that z is a common fixed point of S, T , and f when the pair
(f, T) is compatible of type (A).

Now we prove the uniqueness of this theorem. Let w be another common fixed point of S, T and f
other than z. Then Sw = Tw = fw = w and Sz = Tz = fz = z but w = z. Now from the inequality (2.1),
we have

p(z,w) = p(Sz, Tw)6amax{p(fz, fw),p(fz,Sz),p(fw, Tw)}+ b{p(fz, Tw) + p(fw,Sz)}
= amax{p(z,w),p(z, z),p(w,w)}+ b{p(z,w) + p(w, z)}
= ap(z,w) + 2bp(z,w) = (a+ 2b)p(z,w),

which is a contradiction to the fact that z = w. Thus z = w. This completes the proof.

Corollary 2.2. Let (X,p) be a partial metric space and S, f : X→X be self-mappings satisfying the following
assertions:
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(i) S(X)⊆f(X);
(ii)

p(Sx,Sy)6amax{p(fx, fy),p(fx,Sx),p(fy,Sy)}+ b{p(fx,Sy) + p(fy,Sx)}

for all x,y∈X and a,b >0 with a+ 2b <1;
(iii) the pair (S, f) is compatible of type (A);
(iv) the mapping f is continuous.

Then the mappings S and f have a unique common fixed point.

Remark 2.3. By taking different mappings as Identity mapping in my main result we can get variety of
corollaries.

Theorem 2.4. Let (X,p) be a complete partial metric space and S, T , f : X→X be self-mappings satisfying the
following assertions:

(i) S(X)∪T(X)⊆f(X);
(ii)

p(Sx, Ty)6b{p(fx, Ty) + p(fy,Sx)}

for all x,y∈X and 06b < 1
2 ;

(iii) one of the pairs (S, f) or (T , f) is compatible of type (A);
(iv) the mapping f is continuous.

Then the mappings S, T and f have a unique common fixed point.

3. Common fixed point results for F-contraction

F-contraction is recent development in the field of fixed point theory and has lot of generalizations
in current research. This concept was given by Wardowski [9] in 2012. We begin this section with the
following basic definition of F-contraction.

Definition 3.1. Let F :R+→R be a mapping satisfying the following conditions:

(F1) F is strictly increasing;
(F2) for all sequence αn⊆R+, limn→∞ αn = 0 if and only if limn→∞ F(αn) = −∞;
(F3) there exists 0< k <1 such that limn→0+ α

kF(α) = 0.

A mapping T :X→X is said to be an F-contraction if there exists τ∈R+ such that for all x,y∈X,

d(Tx, Ty)>0 =⇒τ+ F.d(Tx, Ty)6F.d(x,y).

To be consistent with Wardowski [9], we denote the set of all functions F :R+→R by J, satisfying the
above conditions. Later on many authors generalized this result in a different way in various generalized
metric spaces. For more details in this direction I refer the reader to [1–3, 6, 7, 10].

In this paper, I establish a common fixed point theorem for three self-mappings in the setting of
complete partial metric spaces and obtained different results as corollaries of my main result. I also give
a remark with a suitable example that my result cannot be derived from the ordinary metric space.

Now I state and prove my main result for three self-mappings in partial metric space.

Theorem 3.2. Let (X,p) be a complete partial metric space and S, T , f : X→X be self-mappings satisfying the
following assertions:

1. S(X)∪T(X)⊆f(X);
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2. p(Sx, Ty)>0 implies

τ+ F(p(Sx, Ty))6F(p(fx, fy)) (3.1)

for all x,y∈X and F∈J;
3. one of the pairs (S, f) or (T , f) is compatible of type (A);
4. the mapping f is continuous.

Then S, T , and f have a unique common fixed point.

Proof. Let x0 be an arbitrary point of X. As I have done in previous theorem, I define the sequence {fxn}

by
fx2n+1 = Sx2n and fx2n+2 = Tx2n+1

for all n = 0, 1, 2, . . . . From the inequality (3.1), we have

τ+ F(p(fx2n+1, fx2n+2)) = τ+ F(p(Sx2n, Tx2n+1))6F(p(fx2n, fx2n+1)),

which implies that
F(p(fx2n+1, fx2n+2))6F(p(fx2n, fx2n+1))−τ.

From (3.1) we have

τ+ F(p(fx2n+2, fx2n+3)) = τ+ F(p(Tx2n+1,Sx2n+2))

= τ+ F(p(Sx2n+2, Tx2n+1))6F(p(fx2n+2, fx2n+1)) = F(p(fx2n+1, fx2n+2)),

which implies that

F(p(fx2n+2, fx2n+3))6F(p(fx2n+1, fx2n+2))−τ.

Thus for all n = 1, 2, . . .

F(p(fxn, fxn+1))6F(p(fxn−1, fxn))τ6F(p(fxn−2, fxn−1))−2τ 6 · · ·6F(p(fx0, fx1))−nτ (3.2)

for all n∈N. Since F∈J, so by taking limit as n→∞ in (3.2),

lim
n→∞ F(p(fxn, fxn+1)) = −∞⇐⇒ lim

n→∞p(fxn, fxn+1) = 0. (3.3)

Now from (F3), there exists 0< k <1 such that,

lim
n→∞[p(fxn, fxn+1)]

kFp(fxn, fxn+1) = 0. (3.4)

By (3.4), we have

p(fxn, fxn+1)
kF(p(fxn, fxn+1)) − p(fxn, fxn+1)

kF(p(fx0, fx1))

< p(fxn, fxn+1)
k[Fp(fx0, fx1)−nτ)−F(p(fx0, fx1))] = −nτ[p(fxn, fxn+1)]

k60.
(3.5)

By taking limit as n→∞ in (3.5) and applying (3.3) and (3.4),

lim
n→∞n[p(fxn, fxn+1)]

k = 0. (3.6)

It follows from (3.6) that there exists, n1∈N such that,

n[p(fxn, fxn+1)]
k61
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for all n > n1. This implies,

p(fxn, fxn+1)6
1

n
1
k

.

Now we prove that {xn} is a Cauchy sequence.
For m > n > n1 we have,

p(fxn, fxn+m) 6
n+m−1∑

i=n

p(fxi, fxn+m) 6
n+m−1∑

i=n

1

i
1
k

.

Since, 0< k <1, then
∑∞

i=1
1

i
1
k

converges, so we have p(fxn, fxn+m)→0 as m,n→∞. Hence

lim
n,m→∞p(fxn, fxn+m) = 0. (3.7)

As we have the following relation

ps(x,y) = 2p(x,y)−p(x, x)−p(y,y).

So we can write it as

ps(fxn, fxn+m) = 2(fxn, fxn+m)−(fxn, fxn)−(fxn+m, fxn+m)62(fxn, fxn+m).

Applying (3.7), we have
lim

n,m→∞ps(fxn, fxn+m) = 0.

Hence the sequence {fxn} is a Cauchy sequence in (X,ps). Since (X,p) is complete, so the corresponding
metric space (X,ps) is also complete. Therefore, the sequence {fxn} converges to some z∈X with respect
to the metric ps, that is

lim
n→∞ps(fxn, z) = 0.

Since
p(fxn, fxn)6p(fxn, fxn+1)6n1/k→0 as n→∞.

Therefore
p(z, z) 6 lim

n→∞p(fxn, z) 6 lim
n,m→∞p(fxn, fxn+m) = 0.

Thus the sequence {fxn} is a Cauchy sequence in (X,p). Since (X,p) is complete, so there exists some z∈X
such that limn→∞ fxn = z. It follows that the sequences {Sxn} and {Txn+1} also converge to z. First we
suppose that the pair (f,S) is compatible of type (A) and contrary suppose that fz 6=z. Then from the
inequality (3.1),

τ+ F(p(Sfx2n, Tx2n+1))6F(p(ffx2n, fx2n+1)).

As F is strictly increasing, so we get

p(Sfx2n, Tx2n+1)6p(ffx2n, fx2n+1). (3.8)

Since the mapping f is continuous, so we have ffx2n→fz and fSx2n→fz as n→∞. From the supposition
that the pair (f,S) is compatible of type (A), we have

fSx2n→fz,Sfx2n→fz and ffx2n→fz

as n→∞. So letting n→∞ in inequality (3.8), we have

p(fz, z)< p(fz, z),
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which is a contradiction. Thus fz = z.
Now from the inequality (3.1), we have

τ+ F(p(Sz, Tx2n+1))6F(p(fz, fx2n+1)).

As F is strictly increasing, so we get

p(Sz, Tx2n+1)6p(fz, fx2n+1).

Letting n→∞, we have
p(Sz, z)6p(fz, z).

As fz = z, so one can easily get Sz = z from above. Similarly, we consider

τ+ F(p(Sx2n, Tz))6F(p(fx2n, fz)).

As F is strictly increasing, so we get
p(Sx2n, Tz)6p(fx2n, fz).

Letting n→∞, we have
p(z, Tz)6p(z, fz).

Using the fact as fz = z, we can obtain Tz = z. Thus we have Sz = Tz = fz = z that is z is a common
fixed point of S, T and f. Similarly we can prove that z is a common fixed point of S, T , and f when the
pair (f, T) is compatible of type (A).

Now we prove the uniqueness of this theorem. Let w be another common fixed point of S, T , and f
other than z. Then Sw = Tw = fw = w and Sz = Tz = fz = z but w = z. Now from the inequality (3.1),
we have

τ+ F(p(z,w)) = τ+ F(p(Sz, Tw))6F(p(fz, fw)) = F(p(z,w)),

which is a contradiction to the fact that z 6=w, because τ >0. Thus z = w. This completes the proof.

Corollary 3.3. Let (X,p) be a complete partial metric space and S, T : X→X be self-mappings satisfying the
following assertion:

p(Sx, Ty)>0 implies τ+ F(p(Sx, Ty))6F(p(x,y))

for all x,y∈X and F∈J. Then S and T have a unique common fixed point.

Proof. Taking f = I (identity mapping).

Corollary 3.4. Let (X,p) be a complete partial metric space and S, T : X→X be self-mappings satisfying the
following assertion:

p(Sx, Ty)6λp(x,y) (3.9)

for all x,y∈X where 06λ <1. Then S and T have a unique common fixed point.

Remark 3.5. The above theorem cannot be deduced from similar result of metric spaces. Actually the
contractive condition (3.9) for a pair S, T :X→X of mappings on a metric space (X,d) that is

d(Sx, Ty)6λd(x,y) for all x,y∈X

is not attainable. Because S6=T implies that Sv 6=Tv for some v∈X, then d(Sv, Tv)>0 = λd(v, v).
Condition (3.9) is not satisfied for x = y = v. However the same condition in partial metric space

is feasible to find common fixed point result for a pair of mappings. This fact can be seen again in the
following example.
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Example 3.6. Let X = [0,1] and p(x,y) = max{x,y} and S, T : X→X be defined by

Sx =
1
8
x, Tx =

3
8
x.

Then

d(Sx, Ty) = max
{

1
8
x,

3
8
x

}
and d(Sx, Ty) =

1
8

max {x, 3y} 6
5
11

max {x,y} 6 λp(x,y).

Therefore, for λ = 3
10 all the conditions of Corollary 3.4 are satisfied to find common fixed point of S and

T . However, note that for any metric d on X

d(S1, T1) = d
(

1
8

,
3
8

)
> λd(1,1) = 0 for any λ∈[0,1).

Therefore common fixed points of S and T cannot be obtained from a corresponding metric fixed point
theorem.
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