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Abstract
In this paper, a new mathematical model of a thermoelastic isotropic unbounded medium contains a spherical cavity

thermally shocked under generalized thermo-elasticity with the fractional order strain model. The governing system of the
partial differential equations has been derived in Laplace transform domain, and the inversion was done numerically by using
the sum of Riemann approximation techniques. The numerical outputs of the displacement, the temperature, the stress, and the
strain have been obtained and presented graphically. The fractional order parameter has an essential consequence on the stress,
the strain, and the displacement distributions while its effect on the temperature increment distribution is very limited.
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Nomenclature

λ,µ : Lame’s constants; ρ : density;
CE : specific heat at constant strain; αT : the coefficient of linear thermal expansion;
γ = (3λ+ 2µ)αT ; t : time;
T : temperature; To : reference temperature;

θ = (T − To) temperature increment such that
|θ|

To
<< 1; σij : components of the stress tensor;

eij : components of the strain tensor; ui : components of the displacement vector;
K : thermal conductivity; τ0 : relaxation times;

co =

√
λ+ 2µ
ρ

; η =
ρCE
K

;

ε =
γ

ρCE
; α =

γTo

µ
;

β =

(
λ+ 2µ
µ

) 1 / 2
.
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1. Introduction

The classical uncoupled model of thermo-elasticity offers two phenomena not agree with the physical
observations. First, the equilibrium of heat conduction does not restrain any elastic terms. Second, the
heat conduction equation generates infinite speeds of propagation for the thermal wave. Biot deduced the
theory of coupled thermo-elasticity (CTE) which is coupled governing equations, and it eliminated the
first paradox of the classical theory. Both theories still have the second paradox where the heat conduction
equation for the coupled theory is parabolic type [2]. Lord and Shulman constructed a new law of heat
conduction by replacing the classical Fourier’s law [7]. Because of the heat conduction equation of this
model is of the hyperbolic type, it predicts finite speeds of propagation for the thermal and the mechanical
waves. The equations of motion and constitutive relations of this model are the same as those for the
previous models.

Müller considered a new entropy inequality restriction on a class of constitutive equations [11]. New
generalizations of this inequality were introduced by Green-Laws [5], Green-Lindsay [6], and Suhubi [14].

Erbay and Suhubi studied the longitudinal wave propagation in an infinite cylinder and got the equa-
tion of dispersion when the temperature of the cylinder surface was constant [3]. Problems of the gener-
alized thermoelastic infinite cylindrical body with a hole were solved by Furukawa et al. [4] and Misra
et al. [9, 10]. Sherief and Anwar discussed a problem of two-dimensional generalized thermoelasticity
problems for an infinitely long cylinder [13]. Youssef solved problems on generalized thermo-elasticity
for an infinite material with a spherical cavity [16, 17]. Al-Huniti et al. discussed the dynamical response
of an elastic rod due to a moving heat source under the non-Fourier law of heat conduction [1].

Magin and Royston introduced the first model by using the fractional order derivative of the defor-
mation of the material’s behavior [8]. In this model, the zero-order of the derivative gives Hookean solid,
and the one-order of the derivative gives Newtonian fluid while elastic and viscoelastic materials fill the
intermediate range between zero and one [8]. The cartilage as an example is a sensitive type of tissue.
It needs a multi-scale model that spans a wide range of collagen and proteoglycan molecules. The big
challenge for the bioengineers is to improve the multi-scale tools that offer the macro-scale mechanical
behavior of cartilage from micro-scale models [8].

Youssef constructed a new theory of thermo-elasticity based on fraction order of strain which is con-
sidered as a new modification to Duhamel-Neumann of stress-strain relation. Youssef solved the first
mathematical model of thermo-elasticity with fractional order strain for a homogeneous isotropic one-
dimensional thermoelastic half-space based on different models of thermo-elasticity [18].

2. The governing equations

We assume a perfectly conducting thermoelastic infinite body with a spherical cavity occupies the
region R 6 r < ∞ of an isotropic homogeneous medium whose state can be expressed in terms of the
space variable r and the time variable t such that all of the field functions vanish at infinity. A spherical
system of coordinates (r, ϕ,ψ) will be used, and due to the symmetric construction, the problem is one-
dimensional. It is assumed that there are no external body that forces or heat suppliers in the medium
and it is initially quiescent.

Thus the field equations in spherical one-dimensional take the form [18]:

(λ+ 2µ)
(

1 + τξDξt

) ∂ e
∂ r

− γ
∂θ

∂ r
= ρ

∂2u

∂ t2 , (2.1)

and

∇2θ =
ρCE
K

(
∂

∂ t
+ τ0

∂ 2

∂ t2

)
θ+

Toγ

K

(
∂

∂ t
+ τ0

∂ 2

∂ t2

) (
1 + τξDξt

)
e, (2.2)

where

∇2 =
1
r2
∂

∂ r

(
r2 ∂

∂ r

)
.
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The constitutive equations take the following forms [18]:

σrr = 2µ
(

1 + τξDξt

) ∂u
∂ r

+ λ
(

1 + τξDξt

)
e− γθ, (2.3)

σψψ = σϕϕ = 2µ
(

1 + τξDξt

) u
r
+ λ

(
1 + τξDξt

)
e− γθ, (2.4)

σrϕ = σrψ = σϕψ = 0,

e =
1
r2

∂
(
r2 u

)
∂ r

.

The fractional derivative with respect to the time Dξt is defined as [8, 18]:

Dξt f (t) =
∂ξf (t)

∂ tξ
=

1
Γ (1 − ξ)

∫t
0

f ′ (χ)

(t− χ)ξ
dχ, 0 6 ξ < 1.

Applying the following non-dimensional variables [18]:

r ′ = co η r,u ′ = co ηu, t ′ = c2
o η t, τ

′
0 = c2

oη τ0, τ ′ = c2
oη τR

′ = co ηR, θ ′ =
T − To
To

,σ ′ =
σ

µ
,

where c2
o = λ+2µ

ρ and η = ρCE
K .

Equations (2.1), (2.2), (2.3), and (2.4) take the following forms (where the primes are suppressed for
simplicity): (

1 + τξDξt

) ∂e
∂r

− b
∂θ

∂r
=
∂2u

∂t2
,

∇2
(

1 + τξDξt

)
e− b∇2θ =

∂2e

∂t2
,

∇2θ =

(
∂

∂t
+ τ0

∂2

∂t2

)
θ+ ε

(
∂

∂t
+ τ0

∂2

∂t2

)(
1 + τξDξt

)
e,

σrr = β
2
(

1 + τξDξt

)
e− 4

(
1 + τξDξt

) u
r
−αθ,

σψψ = σϕϕ =
(
β2 − 2

) (
1 + τξDξt

)
e+ 2

(
1 + τξDξt

) u
r
−αθ,

where γ = (3λ+ 2µ)αT , α = γTo
µ , ε = γ

ρCE
, β =

(
λ+2µ
µ

)1/2, and b = α
β2 .

We use the Laplace transform of both sides of the last equations which is defined in the form

f̄ (s) =

∫∞
0
f (t) e−stdt.

Hence, we obtain

∇2 (1 + τξsξ
)
ē = s2ē+ b∇2θ̄, (2.5)

∇2θ̄ = s (1 + τ0s) θ̄+ εs (1 + τ0s)
(
1 + τξsξ

)
ē, (2.6)

σ̄rr = β
2 (1 + τξsξ

)
ē− 4

(
1 + τξsξ

) ū
r
−αθ̄, (2.7)

σ̄ψψ = σ̄ϕϕ =
(
β2 − 2

) (
1 + τξsξ

)
ē+ 2

(
1 + τξsξ

) ū
r
−αθ̄,

and

ē =
1
r2

∂
(
r2ū
)

∂r
. (2.8)



E. A. N. Al-Lehaibi, J. Nonlinear Sci. Appl., 12 (2019), 30–37 33

The rule for the Laplace transforms of the Riemann-Liouville fractional derivative, reads from [12] as
follows:

L
{
Dξt f (t)

}
= sξL {f (t)} = sξf̄ (s) , ξ > 0,

where all the initial state functions are zero.
By rewriting equations (2.5) and (2.6), we get[

∇2 −α1
]
ē = α2∇2θ̄, (2.9)

and [
∇2 −α3

]
θ̄ = α4ē, (2.10)

where α1 = s2

(1 + τξsξ)
, α2 = b

(1 + τξsξ)
, α3 =

(
s+ τ0s

2
)
, and α4 = ε

(
s+ τ0s

2
) (

1 + τξsξ
)
.

Eliminating ē from equations (2.9) and (2.10), we obtain[
∇4 − L∇2 +M

]
θ̄ = 0, (2.11)

where
L = α1 +α3 −α2α4, M = α1α3.

Similarly, we can get the following equation[
∇4 − L∇2 +M

]
ē = 0. (2.12)

The solutions of equations (2.11) and (2.12) which are bounded at infinity, can be written in the form

θ̄ =

2∑
i=1

Ai
(
p2
i −α1

) e−pir
r

, (2.13)

and

ē =

2∑
i=1

Bi
e−pir

r
,

where A1, A2, B1, and B2 all are parameters depending on the s of the Laplace transform and p2
1 and p2

2
are the roots of the characteristic equation

p4 − Lp2 +M = 0.

Using equation (2.9), we obtain
Bi = α2p

2
iAi, i = 1, 2.

Hence, we have

ē = α2

2∑
i=1

p2
iAi

e−pir

r
. (2.14)

Substituting from equation (2.14) into equation (2.8), we obtain

ū = α2

2∑
i=1

Ai (1 + rpi)
e−pir

r2 . (2.15)

Substituting from equations (2.13), (2.14), and (2.15) into equation (2.7), we obtain

σ̄rr =

2∑
i=1

Li (r)Aie
−pir,
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where Li (r) =
α(α1−p

2
i)

r +α2
(
1 + τξsξ

) (p2
iβ

2

r + 4(pir+1)
r3

)
, i = 1, 2.

To get the complete solutions in the Laplace transform domain, we will assume the bounding plane
of the cavity (r = R) traction free and subjected to a thermal shock as follows:

θ (R, t) = θ0H (t) ,

where θ0 is constant and H(t) is the well-known Heaviside function (unite step function).
After using Laplace transform, we have

θ̄ (R, s) =
θ0

s
. (2.16)

Also, we have
σ (R, t) = 0.

After using Laplace transform, we have
σ̄ (R, s) = 0. (2.17)

Applying the last two conditions (2.16) and (2.17), we obtain

A1 =
L22Rθ0e

p1R

s
[
L11
(
α1 − p

2
2

)
− L22

(
α1 − p

2
1

)] ,

and

A2 =
−L11Rθ0e

p2R

s
[
L11
(
α1 − p

2
2

)
− L22

(
α1 − p

2
1

)] ,

where

L11 =
α
(
α1 − p

2
1

)
R

+α2
(
1 + τξsξ

)(β2

R
+

4 (p1R+ 1)
p2

1R
3

)
,

L22 =
α
(
α1 − p

2
2
)

R
+α2

(
1 + τξsξ

)(β2

R
+

4 (p2R+ 1)
p2

2R
3

)
,

which complete the solution of the problem in the Laplace transform domain.

3. Numerical inversion of the Laplace transform

To obtain the conductive temperature increment, the dynamical temperature increment, the displace-
ment, and the stress distributions in the time domain, the Riemann-sum approximation techniques will
be used where any function in Laplace transform domain can be inverted to the time domain as [15]:

f(t) =
eκt

t

[
1
2
f̄ (κ) + Re

N∑
n=1

(−1)n f̄
(
κ+

inπ

t

)]
,

where Re is the real part and i is the imaginary number unit. For faster convergence, numerous numerical
experiments have shown that the value of κ satisfies the relation κt ≈ 4.7, [15].

4. Numerical results and discussion

Assume a numerical example for which computational results are given. For this purpose, copper
is taken as the thermoelastic material for which we take the following values of the different physical
constants [16–18]:

K = 386kgmk−1s−3, αT = 1.78 (10)−5 k−1, ρ = 8954kgm−3, To = 293k,

CE = 383.1m2 k−1 s−2, µ = 3.86 (10)10 kgm−1 s−2, λ = 7.76 (10)10 kg m−1 s−2.
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From the above values, we get the non-dimensional values of the problem as:

b = 0.010471, α = 0.0418853, ε = 1.6086, β2 = 4, R = 1.0, τ0 = 0.02, t = 0.3.

The numerical results have been represented in figures with a wide range of the radial distance r
starting from the cavity r = R =1.0 up to r = 2.0 and with different values of a parameter of the fractional
order of the strain ξ = 0.0, 0.5, 1.0 including the case of with/without fractional order parameter τ =
0.0, 0.01.

Figure 1 shows that the fractional order parameter of the strain has a tiny effect on the temperature
distribution where the difference between the values of the temperature in the context of fractional order
strain and the context of usual strain is of order 10−6. So the curves of all the cases that we mentioned
them are almost identical.

Figure 1: The temperature distribution with different values of fractional order parameter.

Figures 2, 3, and 4 show that the strain, the displacement, and the stress distributions respectively,
and we can note that the fractional strain order parameter has significant effects. The absolute value of
the peak point of the strain, the displacement, and the stress increases when the value of the fractional
order parameter increases. We can note that also the difference between the cases of the usual strain and
the fractional strain is apparent.

Figure 2: The strain distribution with different values of fractional order parameter.
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Figure 3: The displacement distribution with different values of fractional order parameter.

Figure 4: The radial stress distribution with different values of fractional order parameter.

5. Conclusions

The theory of generalized thermo-elasticity with fractional order strain introduces new results for
thermoelastic materials when the stress-strain relation changes from a linear stage to the damper stage
0 6 ξ < 1.0.

The fractional order parameter has significant effects on all studied mechanical fields and tiny effect
on the temperature.
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