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Abstract

Let K be a nonempty closed convex subset of a Banach space E and T : K → K be a nonexpansive mapping. Using
a viscosity approximation method, we study the implicit midpoint rule of a nonexpansive mapping T . We establish a strong
convergence theorem for an iterative algorithm in the framework of uniformly smooth Banach spaces and apply our result to
obtain the solutions of an accretive mapping and a variational inequality problem. The numerical example which compares the
rates of convergence shows that the iterative algorithm is the most efficient. Our result is unique and the method of proof is of
independent interest.
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1. Introduction

Let K be a nonempty closed convex subset of a Hilbert space H and T : K→ K be a nonlinear mapping.
T is said to be nonexpansive if ‖Tx− Ty‖ 6 ‖x− y‖ for all x,y ∈ K. A point x ∈ K is said to be a fixed
point of T if Tx = x. We shall denote the set of fixed points of T by F(T). T is called a c-contraction if there
exists c ∈ (0, 1) such that

||T(x) − T(y)|| 6 c||x− y|| for all x,y ∈ K.

We shall denote the collection of all contractions on K by ΠK. The nearest point projection PK : H → K

from H onto K is defined by
PKx := arg min

y∈K
‖x− y‖2, x ∈ H.
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LetD be a subset of K and let S be a mapping from K toD. Then S is said to be sunny if S(Sx+ t(x−Sx)) =
Sxwhenever Sx+ t(x−Sx) ∈ K for x ∈ K and t > 0. A mapping S from K into itself is said to be a retraction
if S2 = S. A set D is said to be a sunny nonexpansive retract of K if there exists a sunny nonexpansive
retraction from K into D ([8, 24]). It is well known that if E is a smooth Banach space and K is a nonempty
closed convex subset of E, then there exists at most one sunny nonexpansive retraction S from E onto K. In
1967, Halpern [9] considered the iterative sequence for a nonexpansive mapping T in a Hilbert space. He
showed that the conditions (A1) limn→∞ λn = 0 and (A2)

∑∞
n=1 λn =∞ are essential for the convergence

to a fixed point of T of the sequence {xn} defined by

x1 ∈ K, xn+1 = λnu+ (1 − λn)Txn, n ∈N, (1.1)

where u ∈ K is a given point and λn ∈ [0, 1]. Halpern [9] iteration attracted the attention of many
researchers. In 1977, Lions [4] improved on the result of Halpern and showed that for {λn} satisfying
the conditions (A1), (A2), and (A3): limn→∞ |λn − λn−1|/λ

2
n = 0, {xn} converges strongly to a fixed point

of T in a Hilbert space. In 1992, still in Hilbert space and for {λn} satisfying the conditions (A1), (A2),
and (A4):

∑∞
n=1 |λn − λn−1| < +∞, Wittmann [13] proved a strong convergence theorem for the sequence

(1.1) to a fixed point of T . By considering various conditions either on {λn} or on the space, there are also
several theorems for the strong convergence of Halpern’s iteration to a fixed point of T in Banach spaces
(see, e.g., [4, 13, 19–21, 23]). Modification of Halpern [9] type iteration have also been studied by many
authors. In 2000, Moudafi [16] introduced the concept of viscosity approximation method for selecting a
particular fixed point of a given nonexpansive mapping. He considered an explicit viscosity method for
nonexpansive mappings and defined the iterative sequence {xn} by

xn+1 = λnQ(xn) + (1 − λn)Txn,n ∈N, (1.2)

where Q is a contraction on K and the nonexpansive mapping T : K→ K is also defined on K, which is a
nonempty closed convex subset of a real Hilbert space H. He showed that the sequence {xn} defined by
(1.2) converges strongly to a fixed point of T with the conditions that (A1), (A2), and (A5): limn→∞ |λn −
λn−1|/λnλn−1 = 0 are satisfied. One of the essential numerical methods for solving ordinary differential
and differential algebraic equations is the implicit midpoint rule ([5, 6, 10, 22]). In 2014, Alghamdi et
al. [3] presented a semi-implicit midpoint iteration for nonexpansive mappings in a Hilbert space. They
proved a weak convergence theorem for the sequence {xn} defined by

xn+1 = (1 − λn)xn + λnT

(
xn + xn+1

2

)
,n ∈N, (1.3)

where λn ∈ (0, 1) certifies certain conditions. Furthermore, in 2015, Xu et al. [29] used regularized
semi-implicit midpoint by the contraction Q and defined the viscosity implicit midpoint sequence for a
nonexpansive mapping T on K by

xn+1 = λnQ(xn) + (1 − λn)T

(
xn + xn+1

2

)
,n ∈N, (1.4)

where λn ∈ (0, 1). Precisely, they proved the following strong convergence theorem.

Theorem 1.1 ([29]). Let K be a nonempty closed convex subset of a Hilbert space H and T : K → K be a nonex-
pansive mapping such that F(T) 6= ∅. Suppose Q : K → K is a contraction with coefficient λ ∈ [0, 1) and assume
that the sequence {λn} satisfies the conditions (A1), (A2), and either (A4) or limn→∞ λn

λn−1
= 1. Then the sequence

{xn} generated by (1.4) converges in norm to a fixed point p of T , which is also the unique solution of the variational
inequality

〈(I−Q)p, x− p〉 > 0, ∀ x ∈ F(T).

That is, p is the unique fixed point of the contraction PF(T)Q, in other words, PF(T)Q(p) = p.



M. O. Aibinu, P. Pillay, J. O. Olaleru, O. T. Mewomo, J. Nonlinear Sci. Appl., 11 (2018), 1374–1391 1376

Still in a Hilbert space, in 2015, Yao et al. [30] introduced the iterative sequence

xn+1 = λnQ(xn) +βnxn + γnT

(
xn + xn+1

2

)
,n ∈N, (1.5)

where T and Q are as defined in Theorem 1.1 and λn + βn + γn = 1 ∀ n ∈ N. They imposed suitable
conditions on the parameters and obtained that the sequence {xn} generated by (1.5) converges strongly
to p = PF(T)Q(p). In 2017, Luo et al. [15] extends the result of Xu et al. [29] to a uniformly smooth
Banach space. Few among several other works on modified Halpern-type iteration include Qin et al. [18],
Wang et al. [25] and the references contained in them. Also, some authors studied modified Halpern-
type sequences for various classes of mappings (see e.g., Aibinu and Mewomo [1, 2], Chidume and
Mutangandura [7], Hu and Wang [11] and Nandal and Chugh [17]). The following questions are of
interest to us.

Problem 1.2. Do the main results of Yao et al. [30] which are in Hilbert spaces also hold in general Banach
spaces?

Problem 1.3. Comparing the three implicit iterative schemes that we have mentioned, which one has the
highest rate of convergence?

The purpose of this paper is to study the implicit midpoint procedure (1.5) in the framework of
Banach spaces for approximating a fixed point of nonexpansive mappings. We prove a strong convergence
theorem in a uniformly smooth Banach space for the sequence {xn} defined by (1.5) and illustrate with
the numerical example that it is the most efficient among the three algorithms. Moreover, we obtain the
results of Xu et al. [29], Luo et al. [15], and Yao et al. [30] as corollaries.

2. Preliminaries

A real Banach space E with norm ‖.‖ is said to be strictly convex if for all x,y ∈ E, ‖x+y‖2 < 1
with ‖x‖ = ‖y‖ = 1 and x 6= y. The modulus of convexity of E, δE : (0, 2] → [0, 1] is defined by δE(ε) =
inf
{

1 −
‖x+y‖

2 : ‖x‖ = ‖y‖ = 1, ‖x− y‖ > ε
}

, 0 6 ε 6 1. E is uniformly convex if and only if δE(ε) > 0 for
every ε ∈ (0, 2]. Every uniformly convex space is reflexive and strictly convex. LetU(x) := {x ∈ E : ‖x‖ = 1}
be the unit sphere of E. Then E is said to be smooth (or Gáteaux differentiable) if the limit

lim
t→0+

‖x+ ty‖− ‖x‖
t

exists for each x,y ∈ U(x). It is said to have uniformly Gâteaux differentiable norm if for each y ∈ U(x),
the limit is attained uniformly for x ∈ U(x). Furthermore, E is said to be uniformly smooth if it is smooth
and the limit is attained uniformly for each x,y ∈ U(x). The normalized duality mapping J : E → 2E

∗
is

defined as
J(x) =

{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
,

where E∗ denotes the dual of E and 〈., .〉 is the duality pairing between E and E∗. Recall that if E∗ is strictly
convex, then J is single-valued. Moreover, for a Banach space E with a uniformly Gâteaux differentiable
norm, the normalized duality mapping J is uniformly continuous on bounded subsets of E from the
strong topology of E to the weak-star topology of E∗.

We shall need the following lemmas in the sequel.

Lemma 2.1 ([23]). Let {un} and {vn} be bounded sequences in a Banach space E and {βn} be a sequence in [0, 1]
with 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1. Suppose that un+1 = (1 − βn)un + βnvn for all n > 0 and
lim supn→∞ (‖un+1 − un‖− ‖vn+1 − vn‖) 6 0. Then limn→∞ ‖un − vn‖ = 0.
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Lemma 2.2 ([27]). Assume {an} is a sequence of nonnegative real sequence such that

an+1 = (1 − σn)an + σnδn, n > 0,

where {σn} is a sequence in (0, 1) and {δn} is a real sequence such that

(i)
∑∞
n=1 σn =∞,

(ii) lim supn→∞ δn 6 0 or
∑∞
n=1 |σnδn| <∞.

Then, limn→∞ an = 0.

Lemma 2.3 ([28]). Let E be a uniformly smooth Banach space, K be a closed convex subset of E, T : K → K be a
nonexpansive mapping with F(T) 6= ∅, and letQ ∈ ΠK. Then the sequence {xt} defined by xt = tQ(xt)+ (1− t)Txt
converges strongly to a point in F(T). If we define a mapping S : ΠK → F(T) by S(Q) := limt→0 xt, ∀ Q ∈ ΠK,
then S(Q) solves the following variational inequality:

〈(I−Q)S(Q), j(S(Q) − p)〉 6 0, ∀ Q ∈ ΠK.

Lemma 2.4 ([26, Lemma 2.12]). Let E be a Banach space with a uniformly Gâteaux differentiable norm, K be a
nonempty, closed, and convex subset of E, Q : K → K be a continuous operator, T : K → K be a nonexpansive
operator, and {xn} be a bounded sequence in K such that limn→∞ ‖xn − Txn‖ = 0. Suppose that {zt} is a path in
K defined by zt = tf(zt) + (1 − t)Tzt, t ∈ (0, 1) such that zt → z as t→ 0+. Then

lim sup
n→∞ 〈Q(z) − z, j(xn − z)〉 6 0.

3. Main results

Let K be a nonempty closed convex subset of a real Banach space E, T : K→ K a nonexpansive mapping
with F(T) 6= ∅ and Q : K → K a c-contraction. Suppose {λn} ⊂ (0, 1), {βn} ⊂ [0, 1), and {γn} ⊂ (0, 1) are
real sequences satisfying λn + βn + γn = 1, ∀ n ∈ N. For arbitrary x1 ∈ K, we consider the following
iterative scheme for the sequence {xn} defined by (1.5).

Remark 3.1. It is known that the sequence {xn} is well defined [30].

We first give and prove a lemma which is useful in establishing our main result.

Lemma 3.2. Let E be a uniformly smooth Banach space and K be a nonempty closed convex subset of E. Let
T : K→ K be a nonexpansive mapping with F(T) 6= ∅ and suppose Q : K→ K is a c-contraction. For an arbitrary
x1 ∈ K, define the iterative sequence {xn} by (1.5). Then the sequence {xn} is bounded.

Proof. We show that the sequence {xn} is bounded. For p ∈ F(T),

‖xn+1 − p‖ = ||λn (Q(xn) −Q(p)) + λn (Q(p) − p) +βn(xn − p) + γn

(
T(
xn + xn+1

2
) − p

)
||

6 λn||Q(xn) −Q(p)||+ λn||Q(p) − p||+βn||xn − p||+ γn||T(
xn + xn+1

2
) − p||

6 λn||Q(xn) −Q(p)||+ λn||Q(p) − p||+βn||xn − p||+ γn||
xn + xn+1

2
− p||

6 cλn||xn − p||+ λn||Q(p) − p||+βn||xn − p||+
γn

2
||xn − p||+

γn

2
||xn+1 − p||.

We then have that(
1 −

γn

2

)
||xn+1 − p|| 6

(
cλn +βn +

γn

2

)
||xn − p||+ λn||Q(p) − p||,

2 − γn
2

||xn+1 − p|| 6
2cλn + 2βn + γn

2
||xn − p||+ λn||Q(p) − p||,
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1 + λn +βn
2

||xn+1 − p|| 6
2cλn + 2βn + 1 − (λn +βn)

2
||xn − p||+ λn||Q(p) − p||,

1 + λn +βn
2

||xn+1 − p|| 6
1 +βn + λn(2c− 1)

2
||xn − p||+ λn||Q(p) − p||.

Therefore,

||xn+1 − p|| 6
1 +βn + λn(2c− 1)

1 + λn +βn
||xn − p||+

2λn
1 + λn +βn

||Q(p) − p||

=

(
1 −

2λn(1 − c)

1 + λn +βn

)
||xn − p||+

2λn(1 − c)

1 + λn +βn

1
1 − c

||Q(p) − p||

6 max
{
||xn − p||,

1
1 − c

||Q(p) − p||

}
...

6 max
{
||x1 − p||,

1
1 − c

||Q(p) − p||

}
.

This implies that the sequence {xn} is bounded and hence
{
T
(xn+xn+1

2

)}
is also bounded.

Obviously, for p ∈ F(T),

||T(
xn + xn+1

2
)|| = ||T(

xn + xn+1

2
) − p+ p||

6 ||T(
xn + xn+1

2
) − Tp||+ ||p||

6 ||
xn + xn+1

2
− p||+ ||p||

6
1
2
(||xn − p||+ ||xn+1 − p||) + ||p||

6 max
{
||x1 − p||,

1
1 − c

||Q(p) − p||

}
+ ||p||,

because ||xn − p|| 6 max
{
||x1 − p||, 1

1−c ||Q(p) − p||
}

.

Theorem 3.3. Let E be a uniformly smooth Banach space and K be a nonempty closed convex subset of E. Let
T : K → K be a nonexpansive mapping with F(T) 6= ∅ and Q : K → K be a c-contraction. Suppose {λn} satisfies
(A1) and (A2), and {βn} satisfies

(A6) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1, and
(A7) limn→∞ |βn+1 −βn| = 0.

For an arbitrary x1 ∈ K, define the iterative sequence {xn} by (1.5). Then as n → ∞, the sequence {xn} converges
in norm to a fixed point p of T , where p is the unique solution in F(T) to the variational inequality:

〈(I−Q)p, j(x− p)〉 > 0, ∀ x ∈ F(T).

Proof.

Step 1: Let the iterative process (1.5) be written as below:

xn+1 = λnQ(xn) +βnxn + γnT(
xn + xn+1

2
)

= βnxn + (1 −βn)
λnQ(xn) + γnT(

xn+xn+1
2 )

1 −βn
= βnxn + (1 −βn)yn,

(3.1)
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where yn = λn
1−βn

Q(xn) +
γn

1−βn
T(xn+xn+1

2 ), n ∈N.
From condition (A6), we have that

0 < βn 6 β < 1, for some β ∈ R+,

where R+ denotes the set of positive real numbers. Therefore,

1 −βn > 1 −β. (3.2)

Recall that Q is a c-contraction while {xn} and
{
T(xn+xn+1

2 )
}

are bounded sequences. These guarantee
that {yn} is bounded.

Step 2: We show that limn→∞ ||yn − xn|| = 0.
We need to first show that lim supn→∞(||yn+1 − yn||− ||xn+1 − xn||) 6 0. Observe that

yn+1 − yn =
λn+1

1 −βn+1
Q(xn+1) +

γn+1

1 −βn+1
T(
xn+1 + xn+2

2
)

−

(
λn

1 −βn
Q(xn) +

γn

1 −βn
T(
xn + xn+1

2
)

)
=

λn+1

1 −βn+1
(Q(xn+1) −Q(xn)) +

(
λn+1

1 −βn+1
−

λn

1 −βn

)
Q(xn)

+
γn+1

1 −βn+1

(
T(
xn+1 + xn+2

2
) − T(

xn + xn+1

2
)

)
+

(
γn+1

1 −βn+1
−

γn

1 −βn

)
T(
xn + xn+1

2
)

=
λn+1

1 −βn+1
(Q(xn+1) −Q(xn)) +

(
λn+1

1 −βn+1
−

λn

1 −βn

)
Q(xn)

+
γn+1

1 −βn+1

(
T(
xn+1 + xn+2

2
) − T(

xn + xn+1

2
)

)
+

(
1 − λn+1 −βn+1

1 −βn+1
−

1 − λn −βn
1 −βn

)
T(
xn + xn+1

2
)

=
λn+1

1 −βn+1
(Q(xn+1) −Q(xn)) +

(
λn+1

1 −βn+1
−

λn

1 −βn

)
Q(xn)

+
γn+1

1 −βn+1

(
T(
xn+1 + xn+2

2
) − T(

xn + xn+1

2
)

)
+

(
λn

1 −βn
−

λn+1

1 −βn+1

)
T(
xn + xn+1

2
)

=
λn+1

1 −βn+1
(Q(xn+1) −Q(xn)) +

(
λn

1 −βn
−

λn+1

1 −βn+1

)(
T(
xn + xn+1

2
) −Q(xn)

)
+

1 − λn+1 −βn+1

1 −βn+1

(
T(
xn+1 + xn+2

2
) − T(

xn + xn+1

2
)

)
.

Therefore,

||yn+1 − yn|| 6
cλn+1

1 −βn+1
||xn+1 − xn||+

∣∣∣∣ λn

1 −βn
−

λn+1

1 −βn+1

∣∣∣∣ ||T(xn + xn+1

2
) −Q(xn)||

+
1 − λn+1 −βn+1

2(1 −βn+1)
(||xn+2 − xn+1||+ ||xn+1 − xn||) .

(3.3)

We evaluate ||xn+2 − xn+1||.

||xn+2 − xn+1|| = ‖λn+1Q(xn+1) +βn+1xn+1 + γn+1T(
xn+1 + xn+2

2
)
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−

(
λnQ(xn) +βnxn + γnT(

xn + xn+1

2
)

)
‖

= ||λn+1 (Q(xn+1) −Q(xn)) + (λn+1 − λn)Q(xn) +βn+1(xn+1 − xn)

+ (βn+1 −βn)xn + γn+1(T(
xn+1 + xn+2

2
) − T(

xn + xn+1

2
))

+ (γn+1 − γn)T(
xn + xn+1

2
)||

= ||λn+1 (Q(xn+1) −Q(xn)) + (λn+1 − λn)Q(xn) +βn+1(xn+1 − xn)

+ (βn+1 −βn)xn + ((λn − λn+1) + (βn −βn+1))T(
xn + xn+1

2
)||

+ (1 − λn+1 −βn+1)(T(
xn+1 + xn+2

2
) − T(

xn + xn+1

2
))

= ||λn+1 (Q(xn+1) −Q(xn)) + (λn − λn+1)

(
T(
xn + xn+1

2
) −Q(xn)

)
+βn+1(xn+1 − xn) + (βn+1 −βn)

(
xn − T(

xn + xn+1

2
)

)
+ (1 − λn+1 −βn+1)(T(

xn+1 + xn+2

2
) − T(

xn + xn+1

2
))||

6 cλn+1||xn+1 − xn||+ |λn − λn+1|

(
||T(

xn + xn+1

2
)||+ ||Q(xn)||

)
+βn+1||xn+1 − xn||+ |βn+1 −βn| ‖xn − T(

xn + xn+1

2
)‖

+
1 − λn+1 −βn+1

2
(||xn+2 − xn+1||+ ||xn+1 − xn||) .

Therefore, we have that(
1 −

1 − λn+1 −βn+1

2

)
||xn+2 − xn+1|| 6

(
cλn+1 +βn+1 +

1 − λn+1 −βn+1

2

)
||xn+1 − xn||

+ |λn − λn+1|

(
||T(

xn + xn+1

2
)||+ ||Q(xn)||

)
+ |βn+1 −βn| ||xn − T(

xn + xn+1

2
)||.

1 + λn+1 +βn+1

2
||xn+2 − xn+1|| 6

1 +βn+1 + 2cλn+1 − λn+1

2
||xn+1 − xn||

+ |λn − λn+1|

(
||T(

xn + xn+1

2
)||+ ||Q(xn)||

)
+ |βn+1 −βn| ||xn − T(

xn + xn+1

2
)||.

Let where M = sup
{

1
1−βn+1

max
{

sup
{
||T(xn+xn+1

2 )||+ ||Q(xn)||
}

, sup
{
||xn − T(xn+xn+1

2 )||
}}}

.
It follows that

||xn+2 − xn+1|| 6
1 +βn+1 + 2cλn+1 − λn+1

1 + λn+1 +βn+1
||xn+1 − xn||+

2|βn+1 −βn|

1 + λn+1 +βn+1
||xn − T(

xn + xn+1

2
)||

+
2|λn − λn+1|

1 + λn+1 +βn+1

(
||T(

xn + xn+1

2
)||+ ||Q(xn)||

)
=

(
1 −

2λn+1(1 − c)

1 + λn+1 +βn+1

)
||xn+1 − xn||+

2|βn+1 −βn|

1 + λn+1 +βn+1
||xn − T(

xn + xn+1

2
)|| (3.4)
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+
2|λn − λn+1|

1 + λn+1 +βn+1

(
||T(

xn + xn+1

2
)||+ ||Q(xn)||

)
6 ||xn+1 − xn||+

2M
1 + λn+1 +βn+1

(|λn − λn+1|+ |βn+1 −βn|) (1 −βn+1).

By substituting (3.4) into (3.3), we get

||yn+1 − yn|| 6
cλn+1

1 −βn+1
||xn+1 − xn||+

∣∣∣∣ λn

1 −βn
−

λn+1

1 −βn+1

∣∣∣∣M+
1 − λn+1 −βn+1

2(1 −βn+1)
(2||xn+1 − xn||)

+
1 − λn+1 −βn+1

2(1 −βn+1)

(
2M

1 + λn+1 +βn+1
(|λn − λn+1|+ |βn+1 −βn|) (1 −βn+1)

)
=

1 −βn+1 + λn+1(c− 1)
1 −βn+1

||xn+1 − xn||+

∣∣∣∣ λn

1 −βn
−

λn+1

1 −βn+1

∣∣∣∣M
+M (λn − λn+1 + |βn+1 −βn|)

=

(
1 −

λn+1(1 − c)

1 −βn+1

)
||xn+1 − xn||+M

(
|λn − λn+1|+ |βn+1 −βn|+

∣∣∣∣ λn

1 −βn
−

λn+1

1 −βn+1

∣∣∣∣) .

Thus,
lim sup
n→∞ (||yn+1 − yn||− ||xn+1 − xn||) 6 0.

Hence, by Lemma 2.1, we have
lim
n→∞ ||yn − xn|| = 0.

Step 3: We show that ||xn − Txn||→ 0 as n→∞.
We observe from (3.1) that

xn+1 − xn = βnxn + (1 −βn)yn − xn = (1 −βn)yn − (1 −βn)xn = (1 −βn)(yn − xn).

Therefore

||xn+1 − xn|| 6 (1 −βn)||yn − xn||→ 0 as n→∞. (3.5)

Also, from (1.5), we obtain that

||xn − Txn|| 6 ||xn − xn+1||+ ||xn+1 − Txn||

= ||xn − xn+1||+ λn||Q(xn) − Txn||+βn||xn − Txn||

+ (1 − λn −βn)||T(
xn + xn+1

2
) − Txn||

= ||xn − xn+1||+ λn||Q(xn) − Txn||+βn||xn − Txn||+ (1 − λn −βn)||
xn + xn+1

2
− xn||

= ||xn − xn+1||+ λn||Q(xn) − Txn||+βn||xn − Txn||+
(1 − λn −βn)

2
||xn − xn+1||.

By (3.2), we obtain that

||xn − Txn|| 6
3 − λn −βn

2(1 −βn)
||xn − xn+1||+

λn

1 −βn
||Q(xn) − Txn||

6
3 − λn −βn

2(1 −β)
||xn − xn+1||+

λn

1 −β
||Q(xn) − Txn||→ 0 as n→∞.

(3.6)

Step 4: For t ∈ (0, 1) and Q ∈ ΠK, define the sequence {xt} by xt = tQ(xt) + (1− t)Txt. By Lemma 2.3, xt
strongly converges to a fixed point q of T , which is also a solution to the variational inequality

〈(I−Q)q, j(x− q)〉 > 0, x ∈ F(T).
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We show that lim supn→∞ 〈Q(q) − q, j(xn+1 − q)〉 6 0. It is generally known that a contraction map is
continuous. Therefore, using Lemma 2.4 and since ||xn+1 − xn|| → 0 and ||xn − Txn|| → 0 as n → 0 (by
(3.5) and (3.6), respectively), we get

lim sup
n→∞ 〈Q(q) − q, j(xn+1 − q)〉 6 0. (3.7)

Step 5: Lastly, we prove that xn → q.

||xn+1 − q||
2 = λn 〈Q(xn) −Q(q), j(xn+1 − q)〉+ λn 〈Q(q) − q, j(xn+1 − q)〉

+βn 〈xn − q, j(xn+1 − q)〉+ (1 − λn −βn)

〈
T(
xn + xn+1

2
) − q, j(xn+1 − q

〉
6 cλn||xn − q|| ||xn+1 − q||+ λn 〈Q(q) − q, j(xn+1 − q)〉

+βn||xn − q|| ||xn+1 − q||+
1 − λn −βn

2
(||xn − q||+ ||xn+1 − q||)||xn+1 − q||

= cλn||xn − q|| ||xn+1 − q||+ λn 〈Q(q) − q, j(xn+1 − q)〉

+βn||xn − q|| ||xn+1 − q||+
1 − λn −βn

2
(||xn − q|| ||xn+1 − p||+ ||xn+1 − q||

2)

=

(
cλn +βn +

1 − λn −βn
2

)
||xn − q|| ||xn+1 − q||+

1 − λn −βn
2

||xn+1 − q||
2

+ λn 〈Q(q) − q, j(xn+1 − q)〉

6
1 +βn − (1 − 2c)λn

4
(||xn − q||2 + ||xn+1 − q||

2) +
1 − λn −βn

2
||xn+1 − q||

2

+ λn 〈Q(p) − q, j(xn+1 − q)〉

6
1 +βn − (1 − 2c)λn

4
||xn − q||2

+
3 −βn − (3 − 2c)λn

4
||xn+1 − q||

2 + λn 〈Q(q) − q, j(xn+1 − q)〉 .

Consequently, we have

||xn+1 − q||
2 6

1 +βn − (1 − 2c)λn
1 +βn + λn(3 − 2c)

||xn − q||2 +
4λn

1 +βn + λn(3 − 2c)
〈Q(q) − q, j(xn+1 − q)〉

=

(
1 −

4(1 − c)λn
1 +βn + λn(3 − 2c)

)
||xn − q||2

+
4λn

1 +βn + λn(3 − 2c)
〈Q(q) − q, j(xn+1 − q)〉 .

(3.8)

By applying Lemma 2.2 to (3.7) and (3.8), we deduce that xn → q as n→∞.

Remark 3.4. Our result extends and improves the results of Luo et al. [15] and Yao et al. [30] which are
stated below.

Corollary 3.5 ([15]). Let K be a closed convex subset of a uniformly smooth Banach space E. Let T : K → K be
a nonexpansive mapping with F(T) 6= ∅, and Q : K → K a contraction with coefficient c ∈ [0, 1). Let {xn} be a
sequence generated by the following viscosity implicit midpoint rule:

xn+1 = λnQ(xn) + (1 − λn)T

(
xn + xn+1

2

)
,n > 0,

where {λn} is a sequence in (0, 1) such that it satisfies the satisfies the conditions (A1), (A2), and either (A4) or
limn→∞ λn

λn−1
= 1. Then {xn} converges strongly to a fixed point p of T , which also solves the variational inequality

〈(I−Q)p, j(x− p)〉 > 0, ∀ x ∈ F(T).
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Proof. Take βn = 0 in equation (1.5). Then since λn + βn + γn = 1, ∀ n ∈ N, we have that γn = 1 − λn.
Consequently, equation (1.5) becomes

xn+1 = λnQ(xn) + (1 − λn)T

(
xn + xn+1

2

)
,n ∈N.

Hence, the result follows from Theorem 3.3 by taking βn = 0.

Corollary 3.6. The result of Xu et al. [29] is also obtained as a corollary by considering a Hilbert space in Corollary
3.5.

Corollary 3.7 ([30]). Let K be a nonempty closed convex subset of a real Hilbert space H. Let T : K → K be a
nonexpansive mapping with F(T) 6= ∅. Suppose Q : K→ K be a c-contraction. For given x0 ∈ K arbitrarily, let the
sequence {xn} be generated by the manner

xn+1 = λnQ(xn) +βnxn + γnT

(
xn + xn+1

2

)
,n > 0, (3.9)

where {λn} ⊂ (0, 1), {βn} ⊂ [0, 1), and {γn} ⊂ (0, 1) are three sequences satisfying λn + βn + γn = 1 for all
n > 0. Assume that {λn} satisfies (A1) and (A2) and {βn} satisfies

(A6) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1, and
(A8) limn→∞(βn+1 −βn) = 0.

Then the sequence {xn} generated by (3.9) converges strongly to p = PF(T)Q(p).

4. Applications

4.1. Accretive mappings

Recall that a nonlinear mapping A : K → E is called accretive if there exists j(x− y) ∈ J(x− y) such
that

〈Ax−Ay, j(x− y)〉 > 0 ∀ x,y ∈ K.

A is m-accretive if R(I + rA) = E for all r > 0, where I is the identity operator. The set of zeros of
A is denoted by A−1(0), that is A−1(0) = {z ∈ D(A) : 0 ∈ A(z)} . We denote the resolvent of A by JAr =
(I + rA)−1 for each r > 0. It is known that if A is m-accretive then JAr : E → E is nonexpansive and
F(JAr ) = A

−1(0) for each r > 0. Consequently, we can deduce the result below from Theorem 3.3.

Theorem 4.1. Let K be a nonempty closed convex subset of a uniformly smooth Banach space E and Q : K→ K be
a c-contraction. Let A : K → E be an accretive mapping such that R(I+ rA) = E for all r > 0 with A−1(0) 6= ∅.
Suppose {λn} satisfies (A1) and (A2) and {βn} satisfies

(A6) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1, and
(A7) limn→∞ |βn+1 −βn| = 0.

For an arbitrary x1 ∈ K, define the iterative sequence {xn} by

xn+1 = λnQ(xn) +βnxn + γnJ
A
r

(
xn + xn+1

2

)
,n ∈N,

where {λn} ⊂ (0, 1), {βn} ⊂ [0, 1), and {γn} ⊂ (0, 1) are real sequences satisfying λn + βn + γn = 1, ∀ n ∈ N.
Then as n → ∞, the sequence {xn} converges in norm to p ∈ A−1(0), where p is the unique solution to the
variational inequality:

〈(I−Q)p, j(x− p)〉 > 0, ∀ x ∈ A−1(0).
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4.2. Variational inequality problems
Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖ and let K be a nonempty closed

convex subset of H. The variational inequality problem is finding x∗ ∈ K such that

〈Ax∗, x− x∗〉 > 0 for all x ∈ K. (4.1)

We denote the set of all solutions of the variational inequality (4.1) by VI(C,A). We shall consider the
system of general variational inequalities in Banach spaces recently introduced by Katchang and Kumam
[14]. Given two operators A1,A2 : K → E, where E is a real Banach space, where K is a nonempty closed
convex subset E. The authors considered the problem of finding (x∗,y∗) ∈ K×K such that{

〈α1A1y
∗ + x∗ − y∗, j(x− x∗)〉 > 0, ∀ x ∈ K,

〈α2A2y
∗ + x∗ − y∗, j(x− x∗)〉 > 0, ∀ x ∈ K, (4.2)

where α1 and α2 are two positive real numbers. Recall that a nonlinear mapping A : K → E is called
µ-inverse strongly accretive if there exist j(x− y) ∈ J(x− y) and µ > 0 such that

〈Ax−Ay, j(x− y)〉 > µ‖Ax−Ay‖2, ∀ x,y ∈ K.

We need the two Lemmas below to establish our next result.

Lemma 4.2 ([12]). Let K be a nonempty closed convex subset of a real Banach space E and let α1,α2 > 0 and
A1,A2 : K→ E be two mappings. Let G : K→ K be defined by

G(x) = SK[SK(x−α2A2x) −α1A1SK(x−α2A2x)], ∀ x ∈ K,

where SK is a sunny nonexpansive retraction from E onto K. If I−α1A1 and I−α2A2 are nonexpansive mappings,
then G is nonexpansive.

Lemma 4.3 ([14]). Let K be a nonempty closed convex subset of a real smooth Banach space E. Let SK be the sunny
nonexpansive retraction from E onto K. Let A1,A2 : K→ E be two possibly nonlinear mappings. For given x∗,y∗ ∈
K, (x∗,y∗) is a solution of problem (4.2) if and only if x∗ = SK(y∗ −α1A1y

∗), where y∗ = SK(x∗ −α2A2x
∗).

Remark 4.4. Observe that Lemma 4.3 implies that

x∗ = SK[SK(x
∗ −α2A2x

∗) −α1A1SK(x
∗ −α2A2x

∗)].

That is, x∗ is a fixed point of the mapping G, defined in Lemma 4.2. Thus, we can conclude the result
below from Theorem 3.3.

Theorem 4.5. Let K be a nonempty closed convex subset of a 2-uniformly smooth Banach space E and Q : K→ K

be a c-contraction. Let A1,A2 : K→ E be two possibly nonlinear mappings and G be a mapping defined in Lemma
4.2 with F(G) 6= ∅. Let SK be a sunny nonexpansive retraction from E onto K. Suppose {λn} satisfies (A1) and (A2)
and {βn} satisfies

(A6) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1, and
(A7) limn→∞ |βn+1 −βn| = 0.

For an arbitrary x1 ∈ K, define the iterative sequence {xn} by
xn+1 = λnQ(xn) +βnxn + γnyn,
yn = SK(un −α1A1un),
un = SK(vn −α2A1vn),
vn = xn+xn+1

2 ,

where {λn} ⊂ (0, 1), {βn} ⊂ [0, 1), and {γn} ⊂ (0, 1) are real sequences satisfying λn + βn + γn = 1, ∀ n ∈ N.
Then as n→∞, the sequence {xn} converges in norm to a fixed point p of G, where p is the unique solution to the
variational inequality:

〈(I−Q)p, j(x− p)〉 > 0, ∀ x ∈ F(G).
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Remark 4.6. Nonlinear mappings that satisfy Theorem 4.5 are readily available. Let L be the 2-uniformly
smooth constant of a 2-uniformly smooth Banach space and A1,A2 : K → E be µ1-inverse strongly accre-
tive and µ2-inverse strongly accretive, respectively. If 0 < α1 <

µ1
L2 and 0 < α2 <

µ2
L2 , then I− α1A1 and

I−α2A2 are nonexpansive [12].

5. Numerical examples

Example 5.1. Let R be the real line with the Euclidean norm. Let Q, T : R → R be maps defined by
Q(x) = 1

4x and T(x) = 2 − x for all x ∈ R, respectively. It is obvious that T is a nonexpansive mapping
and F(T) = {1} . Let {zn} , {yn}, and {xn} be the sequences generated by (1.3), (1.4), and (1.5) respectively.
We find that {zn} , {yn}, and {xn} strongly converge to 1 (by [16], Theorem 1.1 of [29], and Theorem 3.3,
respectively). Take λn = 2

4n+5 , n ∈ N in (1.3) and (1.4). Notice that the parameters in (1.5) are arbitrary
sequences satisfying the conditions stated in Theorem 3.3. Therefore, the sequence {λn} in (1.5) is not
necessarily the same as the one in (1.3) and (1.4). Thus, for the iterative scheme defined by (1.5), we
choose λn = 1

4n+5 ,βn = n+4
4n+5 and γn = 3n

4n+5 for all n ∈ N. One can rewrite (1.3), (1.4), and (1.5)
respectively as follows

zn+1 =
2n+ 1
2n+ 3

zn +
2

2n+ 3
, (5.1)

yn+1 = −
4n+ 2

12n+ 13
yn +

4(4n+ 3)
12n+ 13

, (5.2)

xn+1 =
17 − 2n

2(11n+ 10)
xn +

12n
11n+ 10

. (5.3)

Using Matlab 2015a and by taking z1 = y1 = x1 = 0, the results for (5.1), (5.2), and (5.3) are displayed
in Table 1 and Figure 1. The graphs show that the three algorithms converge to 1 with the iterative
algorithm (1.5) having the highest rate of convergence for the viscosity implicit midpoint rule. Therefore,
it is the most efficient among the three algorithms.

Remark 5.2. It is worth of mentioning that the efficiency of (1.5) depends on the choice of suitable control
parameters.

The next example displays the result where λn is the same for all the three iterative schemes.

Example 5.3. Let Q and T be as defined in Example 5.1. Then for the iterative scheme defined by (1.5),
choose λn = 2

4n+5 ,βn = n+1
4n+5 and γn = 3n+2

4n+5 for all n ∈N. The equation (5.3) then becomes

xn+1 =
1 −n

2(11n+ 12)
xn +

4(3n+ 2)
11n+ 12

.

The results are presented in Figure 2 and Table 2 with the algorithm (1.4) having the highest rate of
convergence.

The next example compares the convergence rate where where λn is greater for (1.5).

Example 5.4. Let Q and T be as defined in Example 5.1. Then for the iterative scheme defined by (1.5),
choose λn = 4

4n+5 ,βn = n+1
4n+5 , and γn = 3n

4n+5 for all n ∈N. The equation (5.3) then becomes

xn+1 =
4 −n

2(11n+ 10)
xn +

12n
11n+ 10

.

The results are presented in Figure 3 and Table 3 with the algorithm (1.4) having the highest rate of
convergence.
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Figure 1: Comparison of the rates of convergence for the iterative schemes (1.3), (1.4), and (1.5) with different values for λn.

Table 1: Comparison of the rates of convergence for the iterative schemes (1.3), (1.4), and (1.5) with different values for λn.
iteration zn yn xn

(n) e-01 e-01 e-01
1 0 0 0
2 4.444444 8.847215 9.331395
3 5.454545 9.848363 9.666505
4 6.153846 9.63474 9.751273
5 6.666667 9.758785 9.794450
6 7.058824 9.765324 9.824042
7 7.368421 9.797972 9.846041
8 7.619048 9.815513 9.863092
9 7.826087 9.832695 9.876711
10 8.000000 9.846179 9.887849
11 8.148148 9.857905 9.897130
12 8.275862 9.867888 9.904986
13 8.387097 9.876588 9.911723
14 8.484848 9.884205 9.917565
15 8.571429 9.890939 9.922679
16 8.648649 9.896932 9.927194
17 8.717949 9.902301 9.931210
18 8.780488 9.907139 9.934805
19 8.837209 9.911520 9.938042
20 8.888889 9.915507 9.940973
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Figure 2: Comparison of the rates of convergence for the iterative schemes (1.3), (1.4), and (1.5) with same value for λn.

Table 2: Comparison of the rates of convergence for the iterative schemes (1.3), (1.4), and (1.5) with same value for λn.
iteration zn yn xn

(n) e-01 e-01 e-01
1 0 0 0
2 4.444444 8.847215 9.359477
3 5.454545 9.848363 9.498599
4 6.153846 9.63474 9.582173
5 6.666667 9.758785 9.642168
6 7.058824 9.765324 9.687045
7 7.368421 9.797972 9.721907
8 7.619048 9.815513 9.749772
9 7.826087 9.832695 9.772558
10 8.000000 9.846179 9.791537
11 8.148148 9.857905 9.807591
12 8.275862 9.867888 9.821348
13 8.387097 9.876588 9.833268
14 8.484848 9.884205 9.843696
15 8.571429 9.890939 9.852897
16 8.648649 9.896932 9.861074
17 8.717949 9.902301 9.868389
18 8.780488 9.907139 9.874973
19 8.837209 9.911520 9.880929
20 8.888889 9.915507 9.886343
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Figure 3: Comparison of the rates of convergence for the iterative schemes (1.3), (1.4), and (1.5) where λn is greater for (1.5).

Table 3: Comparison of the rates of convergence for the iterative schemes (1.3), (1.4), and (1.5) where λn is greater for (1.5).
iteration zn yn xn

(n) e-01 e-01 e-01
1 0 0 0
2 4.444444 8.847215 8.546512
3 5.454545 9.848363 8.888889
4 6.153846 9.63474 9.094017
5 6.666667 9.758785 9.234368
6 7.058824 9.765324 9.336746
7 7.368421 9.797972 9.414827
8 7.619048 9.815513 9.476384
9 7.826087 9.832695 9.526181
10 8.000000 9.846179 9.567303
11 8.148148 9.857905 9.601842
12 8.275862 9.867888 9.631264
13 8.387097 9.876588 9.656630
14 8.484848 9.884205 9.678726
15 8.571429 9.890939 9.698147
16 8.648649 9.896932 9.715351
17 8.717949 9.902301 9.730698
18 8.780488 9.907139 9.744473
19 8.837209 9.911520 9.756906
20 8.888889 9.915507 9.768185
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Example 5.5. Let E = R2 with the usual norm and Q, T : R2 → R2 be defined by Q(x) = 1
2x and T(x) = 0

for all x = (x1, x2) ∈ R2, respectively. Take λn = 4
4n+5 ,βn = 1

4 − 1
4n+5 , and γn = 12n+3

4(4n+5) for all n ∈ N.
Observe that λn, βn, and γn satisfy the conditions of Theorem 3.3 and T is nonexpansive. Indeed, for
x,y ∈ R2

‖Tx− Ty‖ = 0 6 ‖x− y‖.

Also, it is obvious that F(T) = {0} . Therefore, {xn} strongly converges to 0. A simple computation shows
that (1.5) is equivalent to:

xn+1 =
4n+ 9

4(4n+ 5)
xn. (5.4)

Choosing the initial point for (5.4) to be (1.0, 1.2), Table 4 and Figure 4 show the results from the Matlab
2015a.

Figure 4: Two dimensional figure for (5.4).

Table 4: Values of iteration for (5.4).
iteration (n) x1(n) x2(n)

1 1.0 1.2
2 1.009615e-01 1.211538e-01
3 3.004808e-02 3.605769e-02
4 8.713942e-03 1.045673e-02
5 2.478966e-03 2.974760e-03
6 6.948618e-04 8.338341e-04
7 1.924955e-04 2.309946e-04
8 5.281889e-05 6.338266e-05
9 1.437847e-05 1.725417e-05
10 3.888057e-06 4.665668e-06
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Conclusion 5.6. We have considered the implicit midpoint rule of nonexpansive mappings, using the vis-
cosity approximation method in the framework of Banach spaces. Our method of proof is of independent
interest and our result is an improvement on the existing results in the literature. The numerical examples
show the application of our work and the efficiency of the algorithm over the existing ones. Moreover, we
obtained the results of Xu et al. [29], Yao et al. [30], and Luo et al. [15] as corollaries. It is observed that
the iterative scheme (1.5) converges faster than (1.4) with the following two conditions:

(i) the value of λn in (1.5) is less than the value of λn in (1.4);
(ii) the sum of values of λn and γn in (1.5) is greater than the value of λn in (1.4).

Open question

Can the implicit midpoint rule be applied to approximate a fixed point of non-affine nonexpansive
mappings such as sin x? For instance, taking T(x) = sin x in the implicit midpoint rule, a simplest form
of the equation in R which one would obtain is

y = x+ sin(x+ y),

where y is to be made the subject of the formula in order to get an explicit equation like (5.1), (5.2), or
(5.3).
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