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Abstract
Considering economic variables changing from time to time, the time-varying models can fit the financial data better. In

this paper, we construct stochastic volatility models with time-varying coefficients. Furthermore, the interest rate risk is one of
important factors for timer options pricing. Therefore, we study the timer options pricing for stochastic volatility models with
changing coefficients under time-varying interest rate. Firstly, the partial differential equation boundary value problem is given
by using ∆-hedging approach and replicating a timer option. Secondly, we obtain the joint distribution of the variance process
and the random maturity under the risk neutral probability measure. Thirdly, the explicit formula of timer option pricing is
proposed which can be applied to the financial market directly. Finally, numerical analysis is conducted to show the performance
of timer option pricing proposed.
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1. Introduction

Timer options are barrier style options, which depend on the realized volatility of the underlying asset.
Timer call (put) options entitle investors to the right to buy (sell) the underlying asset at random maturity
when occurs at the first time that a prescribed variance budget is exhausted. In 2007, timer options were
first traded by Société Général Corporate and Investment Banking. In fact, timer options were discussed in
academic literature before they appeared in the financial market. For example, Neuberger [13] proposed
the “mileage option” and Bick [2] studied timer options for the continuous time models and so on.

Stochastic volatility models are widely used in option pricing (see [3, 4, 8–10] and so on). In recent
years, timer options pricing for stochastic volatility have been proposed by lots of researchers. Carr
and Lee [5] discussed the timer options under the risk-free rate being zero. Saunders [14] studied an
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asymptotic expansion of time options for fast mean reverting stochastic volatility models. Li and Mercurio
[12] proposed the time options pricing for general stochastic volatility models around small volatility of
variance. Li [11] proposed a Black-Scholes-Merton-type formula of timer options pricing by using the
joint distribute of the first-passage time of the realized variance and the corresponding variance.

To the best of our knowledge, all the literatures about time option pricing assume that the interest
rates and the coefficients in models are both constants. However, due to economic variables are varying
time to time, their models do not fully fit all financial data well. Furthermore, the interest rate is an
important risk factor for time options (see [1]). Those motivate us to consider a large class of stochastic
volatility models, such as considering time-varying coefficient stochastic volatility models. In this paper,
we study the timer option pricing for stochastic volatility models with changing coefficients under time
varying interest rate. We first obtain the partial differential equation boundary value problem by using
replicating a timer option and ∆-hedging approach. Then we propose the explicit formula of timer option
pricing through the joint distribution of the variance process and the first-passage time of the realized
variance.

The organization of the rest of this paper is as follows. In section 2, we construct the stochastic
volatility models with time-varying coefficients and propose the price of timer option for our models.
The explicit formula of timer option pricing is obtained in Section 3. In Section 4, we construct numerical
analysis for timer option pricing. Conclusions are given in Section 5.

2. Model and timer option pricing

On a filtered probability space (Ω, F, (Ft),P), assume that the asset St and its volatility Vt satisfy the
following stochastic volatility model with changing coefficients:

dSt = µ(t)Stdt+
√
VtSt(ρdW(1)

t +
√

1 − ρ2dW(2)
t ), (2.1)

dVt = {θ(t) − ζVt}dt+ σv
√
VtdW

(1)
t , (2.2)

where µ(t) means the return of the asset at time t. W(1)
t and W(2)

t are Brownian motion, ζ is the speed of
mean reversion of Vt, θ(t) is a drift function of Vt, σv is a function reflecting the volatility of Vt, and ρ is
the correlation coefficient of W(1)

t and W(2)
t .

In this paper, we suppose that the market is completed. Let Q be a risk-neutral probability measure.
Under the measure Q, equations (2.1) and (2.2) can be expressed as the following.

dSt = r(t)Stdt+
√
VtSt(ρdB(1)

t +
√

1 − ρ2dB(2)
t ), (2.3)

dVt = (α(t) −βVt)dt+ σv
√
VtdB

(1)
t , (2.4)

where r(t) is the risk-free interest rate at time t. B(1)
t and B(2)

t are standard Brownian motion. We assume
that B is a pre-specified variance budget. Denote τ as the random time that the first time when the realized
variance exceeds the level B, i.e.,

τ = inf{t > 0 :

∫t
0
Vudu = B}. (2.5)

The price of variance swap Gt = G(t,Vt, It) satisfies the following PDE (see [4]),

∂G

∂t
+ (α(t) −βv)

∂G

∂v
+ v

∂G

∂o
+

1
2
σ2
vv
∂2G

∂v2 = r(t)G, and d(e−
∫t

0 r(s)dsGt) = e
−
∫t

0 r(s)ds∂G

∂v
σv
√
VtdB

(1)
t ,

where It is the accumulated variance, that is It =
∫t

0 Vsds. Suppose that an investor holds ∆St shares of
the asset with price Gt at time t. Let Πt −∆StSt −∆

G
t Gt is the remainder of the portfolio value, which is
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fully invested in the risk-free market. We can replicate a timer option. According to the portfolio being
self-financing, we obtain

dΠt = ∆StdSt +∆Gt dGt + r(t)(Πt −∆StSt −∆
G
t Gt)dt. (2.6)

Equation (2.6) is equivalent to

d(e−
∫t

0 r(s)dsΠt) = e
−
∫t

0 r(s)ds
[
∆St (dSt − r(t)Stdt) +∆

G
t (dGt − r(t)Gtdt)

]
= e−

∫t
0 r(s)ds

[
∆Gt

∂G

∂v
σv
√
VtdB

(1)
t +∆St

√
VtSt(ρdB(1)

t +
√

1 − ρ2dB(2)
t )
]
.

Let K be struck price of the timer option. The payoff function H(s) of the timer option can be expressed
as H(s) = max{K− s, 0} for a timer put option and H(s) = max{s− K, 0} for a timer call option. Denote
Pt = P(t, s, v, x) by the price of the timer option. We obtain

d(e−
∫t

0 r(s)dsPt) = e
−
∫t

0 r(s)ds
[∂P
∂t

+ (α(t) −βVt)
∂P

∂v
+ r(t)St

∂P

∂S
+ Vt

∂P

∂x

+
1
2
σ2
vVt

∂2P

∂v2 +
1
2
S2
tVt

∂2P

∂s2 + ρ∆vStVt
∂2U

∂s∂v
− r(t)ρ

]
dt

+ e−
∫t

0 r(s)ds
[∂P
∂v
σv
√
VtdB

(1)
t +

∂P

∂s

√
VtSt(ρdB(1)

t +
√

1 − ρ2dB(2)
t )
]
.

According to the following replicating strategy ∆St = ∂P/∂s and ∆Gt = ∂P
∂v

/
∂F
∂v replication yields that

d(e−
∫t

0 r(s)dsPt) = d(e−
∫t

0 r(s)dsΠt),

which results the following PDE

∂P

∂t
+ (α(t) −βv)

∂P

∂v
+ r(t)s

∂P

∂s
+ v

∂U

∂x
+

1
2
σ2
vv
∂P2

∂v2 +
1
2
s2v
∂P2

∂s2 + ρσvsv
∂P2

∂s∂v
− ru = 0, P(t, s, v,B) = H(s).

Theorem 2.1. Under models (2.3) and (2.4), the initial arbitrage-free price of the timer put option and the timer
call option satisfy

P0 = EQ
[
e−
∫τ

0 r(s)dsmax(K− Sτ, 0)
]

= EQ
[
Ke−

∫τ
0 r(s)dsΦ

(
−d2(Vτ, τ)

)
− S0

(
1 − ed0(Vτ,τ)Φ

(
d1(Vτ, τ)

))]
,

(2.7)

and

C0 = EQ
[
e−
∫τ

0 r(s)dsmax(Sτ −K, 0)
]
= EQ

[
S0e

d0(Vτ,τ)Φ
(
d1(Vτ, τ)

)
−Ke−

∫τ
0 r(s)dsΦ

(
d2(Vτ, τ)

)]
, (2.8)

respectively, where τ is defined by equation (2.5). Here

d0(Vτ, τ) =
ρ

σv
(Vτ − V0 −

∫τ
0
α(s)ds+βB) −

1
2
ρ2B,

d1(Vτ, τ) =
1√

(1 − ρ2)B

[
log(

S0

K
) +

∫τ
0
r(s)ds+

1
2
B(1 − ρ2) + d0(Vτ, τ)

]
,

and

d2(Vτ, τ) =
1√

(1 − ρ2)B

[
log(

S0

K
) +

∫τ
0
r(s)ds−

1
2
B(1 − ρ2) + d0(Vτ, τ)

]
.
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Proof. We will prove equation (2.7) as following. Equation (2.8) can be proved similarly. The solutions of
stochastic differential equations (2.3) and (2.4) can be expressed as

St = S0 exp
{∫t

0
r(s)ds−

1
2

∫t
0
Vsds+ ρ

∫t
0

√
VsdB

(1)
t +

√
1 − ρ2

∫t
0

√
VsdB

(2)
s

}
,

Vt = V0 +

∫t
0
α(s)ds−β

∫t
0
Vsds+ σv

∫t
0

√
VsdB

(1)
s .

According to the above two equations, we have

Sτ = S0 exp
{∫τ

0
r(s)ds−

1
2

∫τ
0
Vsds+

ρ

σv
(Vτ − V0 −

∫τ
0
α(s)ds+β

∫τ
0
Vsds) +

√
1 − ρ2

∫t
0

√
VsdB

(2)
s

}
= S0 exp

{∫τ
0
r(s)ds−

1
2
B+

ρ

σv
(Vτ − V0 −

∫τ
0
α(s)ds+βB) +

√
1 − ρ2

∫t
0

√
VsdB

(2)
s

}
.

Since {Vt} is independent of standard Brownian motion, B(2)
t and Example 4.7.3 of [15], we obtain∫τ

0

√
VsdB

(2)
s

∣∣∣∣ FVτ D= N(0,
∫τ

0
Vsds)

∣∣∣∣ FVτ ≡ N(0,B)| FVτ ,

where {FVτ } means the filtration generated by process {Vt}. Since Vτ and τ are FVτ -measurable, we have

P0 = EQ
[
EQ
[
e−
∫τ

0 r(s)dsmax {K− Sτ, 0}
∣∣∣FVτ ]] = EQ [EQ[e− ∫τ0 r(s)dsmax {K− S0 exp {m+nξ} , 0}

∣∣∣FVτ ]] ,

where ξ is the standard normal variable, which is independent of FVτ ,

m =

∫τ
0
r(s)ds−

1
2
B+

ρ

σv
(Vτ − V0 −

∫τ
0
α(s)ds+βB)

and n =
√

(1 − ρ2)B. Thus, we obtain

EQ
[
e−
∫τ

0 r(s)dsmax {K− S0 exp {m+nξ} , 0}
∣∣∣FVτ ]

= e−
∫τ

0 r(s)dsEQ
[
(K− S0 exp{m+nξ})I{S0 exp{m+nξ}6K}

∣∣∣Vτ, τ
]

= e−
∫τ

0 r(s)dsKQ

(
ξ 6

1
n
(log

K

S0
−m)

∣∣∣∣Vτ, τ
)
− e−

∫τ
0 r(s)dsS0E

Q

[
exp{m+nξ}I{ξ6 1

n (log K
S0

−m)}

∣∣∣∣Vτ, τ
]

.

So, the time put options pricing (2.7) can be obtained by the above two terms on the standard normal
distribution. Equations (2.7) and (2.8) in Theorem 2.1 both include the conditional expectation, which are
difficult to be calculated. In the next section, we will give the explicit formula of timer option pricing.

3. Explicit formula of timer option pricing

Equations (2.7) and (2.8) in Theorem 2.1 both include the conditional expectations. In this section, we
will discuss the explicit formula of timer option pricing. The following Lemma 3.1 gives the distributional
identity of the bivariate random variable(Vτ, τ).

Lemma 3.1. under the risk neutral probability measure Q, we have

(Vτ, τ) D= (σvXB,
∫B

0

1
σvXv

ds), (3.1)
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where τ is defined by equation (2.5), and B is a variance budget. Here {Xt} is a Bessel process which
satisfies the following stochastic differential equation

dXt = (
α(t)

σ2
vXt

−
β

σ v
)dt+ dBt, X0 =

V0

σv
,

where {Bt} is standard Brownian motion.
The proof of Lemma 3.1 is similar to that of Proposition 4.1 in [11]. Now we obtain the following

Theorem 3.2.

Theorem 3.2. Under the time-varying stochastic volatility model (2.3) and (2.4), for varying budget B and strike
price K, the initial price of timer call option and timer put option are given by

C0 = S0Ω
c
1 −KΩc2 (3.2)

and
P0 = KΩP1 − S0Ω

P
2 , (3.3)

respectively, where

ΩC1 =

∫+∞
0

∫+∞
0

Φ(d1(σvx,
t

σv
)) exp{d0(σvx,

t

σv
) +C(σvx,

t

σv
)}f(x, t;B)dxdt,

ΩC2 =

∫+∞
0

∫+∞
0

Φ(d2(σvx,
t

σv
)) exp{−

1
σv

∫t
0
r(s)ds+C(σvx,

t

σv
)}f(x, t;B)dxdt,

and

ΩP1 =

∫+∞
0

∫+∞
0

[1 −Φ(d1(σvx,
t

σv
)) exp{d0(σvx,

t

σv
) +C(σvx,

t

σv
)}] exp{C(σvx,

t

σv
)}f(x, t;B)dxdt,

ΩP2 =

∫+∞
0

∫+∞
0

Φ(−d2(σvx,
t

σv
)) exp{−

1
σv

∫t
0
r(s)ds+C(σvx,

t

σv
)}f(x, t;B)dxdt.

Here

C(x, t) =
β

σ2
v

(V0 − x) +
β

σ2
v

∫t
0
α(s)ds−

β2

2σ2
v

B,

and f(x, t;B) is the transition density of a Standard Bessel Process (see Proposition 4.2 in [11]). d0(x, t), d1(x, t),
and d2(x, t) are defined by Theorem 2.1.

Proof. Based on Theorem 2.1 and Lemma 3.1, we have

C0 = EQ
[
S0e

d0(σvXB,
∫B

0
ds

σVXS
)
Φ
(
d1(σvXB,

∫B
0

1
σvXs

ds)
)
−Ke−

∫B
0
r(s)
σvXs

dsΦ
(
d2(σvXB,

∫B
0

1
σvXs

ds)
)]

(3.4)

and

P0 = EQ
[
Ke−

∫τ
0 r(s)dsΦ

(
−d2(σvXB,

∫B
0

1
σvXs

ds)
)
− S0

(
1 − ed0(σvXB,

∫B
0

ds
σvXs

)Φ
(
d1(σvXB,

∫B
0

1
σvXs

ds)
))]

.

Now, we change the probability measure Bessel process. Let B̂t = Bt − tβ/σv. By using the Girsanov
theorem, B̂t is a standard Brownian motion under a new probability measure Q̂ whose Radon-Nikodym
derivative is

dQ̂
dQ

∣∣∣
Ft
= exp

{
β

σ v
Bt −

1
2
(
β

σ v
)2t

}
.
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So, under probability measure Q̂, Xt is a standard Bessel process which satisfies the following equation

dXt =
α(t)

σ2
vXt

dt+ dB̂t, X0 = V0/σv.

Thus, we obtain
dQ̂
dQ

∣∣∣
Ft
= exp

{
β

σv
(Xt −

V0

σv
) −

β

σv

∫t
0

α(s)

σ2
vXs

ds+
1
2
(
β

σv
)2t

}
.

It follows from (3.4) that

C0 = EQ̂
{[
S0e

d0(σvXB,
∫B

0
ds
σvXs

)Φ
(
d1(σvXB,

∫B
0

ds
σvXs

)
)
−Ke−

∫B
0
r(s)
σvXs

dsΦ
(
σvXB,

∫B
0

ds
σvXs

)]dQ
dQ̂

∣∣∣∣
Ft

}
, (3.5)

so, the timer call option price (3.1) can be obtained by using equation (3.4), (3.5), and the joint density
function f(x, t;B) given by Proposition 4.2 in [11]. The formula of timer option pricing (3.3) can be
similarly proved.

Remark 3.3. When r(t) = 0%, a much simpler expression of the formulas for timer option pricing are
obtained by Theorem 3.2. Indeed, we assume that variance budget B = σ2

0T , where T is an expected
investment horizon and σ0 is the investment period. K is a strike price. We easily obtain the price of timer
call option as the following

C0 = EQ
[
max{Sτ −K, 0}

]
= C(S0,K, T ,σ0, 0), (3.6)

where
C(S0,K, T ,σ0, r) = S0Φ(d1) −Ke

∫T
0 r(s)dsΦ(d2). (3.7)

Here

d1 =
1
σ0T

[
log(

S0

K
) +

∫T
0
r(s)ds+

1
2
σ2

0T
]

and d2 =
1
σ0T

[
log(

S0

K
) +

∫T
0
r(s)ds−

1
2
σ2

0T
]
.

Equation (3.7) is the price of European call option. The price of timer call option (3.6) yields to equation
(3.7) with r(t) = 0%.

4. Numerical analysis

In this section, we present numerical examples to illustrate our results. We chose the time point
ti = i∆t for i = 1, 2, . . ., where ∆t = T/n. First, the transition of the following diffusion process

dVt = (α(t) −βVt)dt+ σv
√
VtdB

(1)
t

follows a noncentral chi-squared distribution (see [6]). More precisely, given Vu for 0 < u < t,

Vt =
σ2
v(1 − eβ(t−u))

4β
χ2
d

(
4βeβ(t−u)

σ2
v

(1 − eβ(t−u))Vu

)
,

where the degree of freedom is d = 4α(t)/σ2
v. The total variance can be approximated by using a

trapezoidal rule, i.e., ∫ i∆t
0

Vsds ≈ ∆t

V0 + V(i∆t)

2
+

i−1∑
j=1

V(j∆t)

 .

We chose the first time when the variance budget is exhausted by the following

τ = inf

t : ∆t
V0 + V(i∆t)

2
+

i−1∑
j=1

V(j∆t)

 > B

 .

Now, we set the following parameters. Let S0 = 100, ρ = −0.3, V0 = 0.09, α(t) = 0.17 + 0.002t, β = 2,
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σv = 1, σ0 = 0.22(or 0.25), T = 0.96(or 2.9), B = σ2
0 = 0.046 (or 0.181). Figures 1 and 2 point the analytical

values and simulation values of the price for time call option when strike price is K = 90, 100, 110. The
analytical values are computed by equation (3.2), and simulation values are obtained by the asymptotically
optimal rule (see [7]). The symbol ”∗” and ”+” denote the analytical values and simulation values,
respectively. From Figures 1 and 2, we can see that the formula of time option pricing performs well.

Figure 1: Analytical values and simulation values of price for timer call option with B=0.046.

Figure 2: Analytical values and simulation values of price for timer call option with B=0.181.

5. Conclusion

In this paper, we study the timer options pricing for stochastic volatility models with changing coeffi-
cients under time-varying interest rate. The partial differential equation boundary value problem is given
by using ∆-hedging approach and replicating a timer option. According to the joint distribution of the
variance process and the random maturity under the risk neutral probability measure, the explicit for-
mula of timer option pricing is proposed which can be applied to the financial market directly. Numerical
analysis is conducted to show the performance of timer option pricing proposed.
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