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Abstract
A new family of distributions called the Muth family of distributions is introduced and studied. Five special submodels of

the proposed family are discussed. Some mathematical properties of the Muth family are studied. Explicit expressions for the
probability weighted, moments, mean deviation and order statistics are investigated. Maximum likelihood procedure is used to
estimate the unknown parameters. One real data set is employed to show the usefulness of the new family.
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1. Introduction

The most popular traditional distributions often do not characterize and do not predict most of the
interesting data sets. Generated family of continuous distributions is a new improvement for creating and
extending the usual classical distributions. The newly generated families have been broadly studied in
several areas as well as yield more flexibility in applications. Some well-established generators and other
recently are the beta-G by [10], gamma-G by [18], Transformed-Transformer (T-X) by [3], Weibull-G by
[4], exponentiated half-logistic-G by [6], the Type I half-logistic-G by [5], Garhy-G by [9], Kumaraswamy
Weibull-G by [13], exponentiated Weibull-G by [12], Topp-Leone -G by [2], Type II half logistic-G by [14],
generalized odd log-logistic by [7], and Odd Frechet-G by [11], among others.

Authors in [3] proposed T-X generated family of any continuous distribution with the following cdf

F (x) = 1 −

∫− log[G(x;ζ)]

0
r(t)dt. (1.1)

In this new paper, we introduce a new generated family of distributions using the Muth distribution
as a generator. This paper can be sorted as follows. In the next section, the Muth-generated (M-G) family
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is defined. Section 3 concerns with some general mathematical properties of the family. In Section 4, five
new special models of the generated family are considered. In Section 5, estimation of the parameters
of the family is implemented through maximum likelihood method. Simulation study is carried out to
estimate the model parameters of (MW) distribution in Section 6. An illustrative purpose on the basis of
real data is investigated, in Section 7. Finally, concluding remarks are handled in Section 8.

2. The new family

Muth in 1977 introduced a continuous probability distribution with application in reliability theory
[17]. A random variable X is said to have a Muth distribution with parameter α if cumulative distribution
function (cdf) is given by

F(t) = 1 − eαt−
1
α (e

αt−1), 0 < α 6 1.

The associated probability density function (pdf) is as follows

f(t) = (eαt −α)eαt−
1
α (e

αt−1), t > 0.

Our goal here is to introduce a new family of distributions based on Muth pdf and the T-X family
of [3]. The scope of the paper also includes study of the properties, estimation and applications of the
evolved family of the distributions.

On the basis of cdf (1.1), we use the Muth distribution as a generator to obtain Muth generated family
which is denoted by M-G. Hence the cdf of M-G family can be expressed as follows

F (x) = 1 −

∫− log[G(x;ζ)]

0
(eαt −α)eαt−

1
α (e

αt−1)dt = CG(x; ζ)−αe−
1
αG(x;ζ)−α , x ∈ R, (2.1)

where (0 < α 6 1) is a scale parameter, C = e
1/α and G (x; ζ) are the baseline cdf (with pdf g (x; ζ)) which

may depend on the parameter ζ. Therefore, the pdf of the Muth generated family is as follows

f (x) = Cg(x; ζ) (1 −αG(x; ζ)α)G(x; ζ)−2α−1e−
1
αG(x,ζ)−α , x ∈ R. (2.2)

Hereafter, we denote by X ∼M−G a random variable X has pdf (2.2).
The survival function and hazard rate function are, respectively, given by

F (x) = 1 −CG(x; ζ)−αe−
1
αG(x;ζ)−α , x ∈ R,

and

h(x) =
Cg(x; ζ) (1 −αG(x; ζ)α)G(x; ζ)−2α−1e−

1
αG(x;ζ)−α

1 −CG(x; ζ)−αe−
1
αG(x;ζ)−α

.

3. Some statistical properties

This section provides some statistical properties of M-G family of distributions.

3.1. Important representation

Using exponential expansion,

e−ax =

∞∑
i=0

(−1)iaixi

i!

in pdf (2.2), we can write
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f (x) = Cg(x; ζ)(1 −αG(x; ζ)α)
∞∑
i=0

(−1)iG(x; ζ)−α(i+2)−1

αii!
, x ∈ R.

We can write the above equation as

f(x) =

∞∑
i=0

ηig(x; ζ)
(
G(x; ζ)−α(i+2)−1 −αG(x; ζ)−α(i+1)−1

)
, x ∈ R,

where,

ηi =
Cα−i(−1)i

i!
.

By adding and subtracting one we can write equation as

f(x) =

∞∑
i=0

ηig(x; ζ)
(
(1 − [1 −G(x; ζ)])−α(i+2)−1 −α(1 − [1 −G(x; ζ)])−α(i+1)−1

)
.

For d, a positive real non integer and |z| < 1, we have the generalized binomial series

(1 − z)−d =

∞∑
j=0

(
d+ j− 1

j

)
zj, (3.1)

and

(1 − z)d =

∞∑
k=0

(−1)k
(
d

k

)
zk. (3.2)

Using the expansions (3.1) and (3.2) in the last pdf, we can write

f(x) =

∞∑
k=0

ηkg(x; ζ)G(x; ζ)k , x ∈ R, (3.3)

where,

ηk =

∞∑
i,j=0

ηi(−1)k
(
j

k

)[(
α(i+ 2) + j

j

)
−α

(
α(i+ 1) + j

j

)]
.

Also, the pdf f(x) of the M-G family can be expressed as follows

f(x) =

∞∑
k=0

Wk hk+1(x) ,

where, Wk = ηk/k+ 1, and ha(x) = ag(x; ζ)G(x; ζ)a−1. Equation (3.1) gives exponentiated-generated
(exp-G) with power parameter k.

Also, for h, an integer, an expansion for the [F(x)]his derived as follows

[F(x)]h =

∞∑
z=0

szG(x; ζ)z, (3.4)

where,

sz =

∞∑
i,u=0

Ch(−1)i+zhz

αzz!

(
u

z

)(
α(h+ i) + u− 1

u

)
.

Density and cumulative functions (3.3) and (3.4) can be used to derive several mathematical properties of
the M-G family.
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3.2. The probability weighted moments
Probability weighted moments (PWMs) of X cover the summarization and description of theoretical

probability distributions. The elementary use of these moments is in the estimation of the parameters for
a distribution whose inverse cannot be expressed explicitly. For a random variable X, the PWM, denoted
by τr,h, is defined by

τr,h = E[XrF(x)h] =

∫∞
−∞ xrf(x)(F(x))hdx. (3.5)

Inserting (3.3) and (3.4) into (3.5), the PWM of M-G family is obtained as follows

τr,h =

∫∞
−∞

∞∑
k,z=0

szηkx
rg(x; ζ)G(x; ζ)k+zdx.

Then,

τr,h =

∞∑
k,z=0

szηkτr,k+z.

3.3. Moments
The rth ordinary moment of X follows from (3.3) as

µ
′
r =

∫∞
−∞ xrf(x)dx =

∫∞
−∞

∞∑
k=0

ηkx
rg(x; ζ)G(x; ζ)kdx.

Another formula of rth moment of X is given by

µ
′
r =

∞∑
k=0

ηkτr,k ,

where, τr,kis the PWM.
Furthermore, the moment generating function of X can be expressed as

MX(t) =

∞∑
r=0

tr

r!
µ
′
r =

∞∑
r,k=0

tr

r!
ηkτr,k.

Additionally, the nth incomplete moment of a distribution play an important role in the applications.
Using (3.3), the nth incomplete moment of X is given by

Kn(y) =
∫y

0
xnf(x)dx =

∫y
0

∞∑
k=0

ηkx
ng(x; ζ)G(x; ζ)kdx.

3.4. The mean deviation
For a random variable X with pdf f(x) and cdf F(x), the mean deviation about the mean and mean

deviation about the median, are defined by

δ1 = 2µF(µ) − 2T(µ) and δ2 = µ− 2T(M) ,

where, µ = E(X), M = Median(X), and T(q) =
∫q
−∞ xf(x)dx which is the first incomplete moment.

3.5. Order statistics
Order statistics have been extensively applied in many fields of statistics, such as reliability and life

testing. Let X1,X2, . . . ,Xnbe independent and identically distributed (i.i.d) random variables with the
corresponding continuous distribution function F(x). Let X1:n < X2:n < · · · < Xn:n be the corresponding
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ordered statistics. The pdf of the sth order statistic is

fs:n(x) =
f(x)

B(s,n− s+ 1)

n−s∑
v=0

(−1)v
(
n− s
v

)
F(x)v+s−1,

where, B(., .) is the beta function. Inserting (3.1) and (3.3) in (3.4) and replacing h with v+ s− 1, the pdf
of the sth order statistic for M-G distribution is

fs:n(x) =
g(x; ζ)

B(s,n− s+ 1)

n−s∑
v=0

∞∑
k,z=0

ηkpz,vG(x; ζ)k+z, (3.6)

where pz,v = (−1)v
(
n− s
v

)
sz.

Further, the rth moment of sthorder statistic for M-G family is defined by

E(Xrs:n) =

∫∞
−∞ xrfs:n(x)dx . (3.7)

Inserting (3.6) in (3.7), leads to

E(Xrs:n) =
1

B(s,n− s+ 1)

n−s∑
v=0

∞∑
k,z=0

ηkpz,v

∫∞
−∞ xrg(x; ζ)G(x; ζ)k+zdx.

Then,

E(Xrs:n) =
1

B(s,n− s+ 1)

n−s∑
v=0

∞∑
k,z=0

ηkpz,vτr,k+z.

4. Special sub-models of the M-G family

In this section, we discuss some special submodels of the M-G family of distributions, namely, Muth
Uniform (MU), Muth Lomax (ML), Muth Rayleigh (MR), Muth exponential (ME), and Muth Weibull
(MW) distributions. We also illustrate the flexibility of the proposed family by sketching the graphs for
the pdf and hazard rate functions (hrf) of each special submodel mentioned above.

4.1. Muth uniform distribution
The Muth uniform (MU) model is defined from (2.1) by taking the cdf and pdf of the uniformly

distributed random variable

G(x; ζ) =
x

θ
and g(x; ζ) =

1
θ

, 0 < x < θ, where ζ = (θ)T .

Then, the cdf of MU random variable is defined by

FMU (x) = C
(x
θ

)−α
exp
{
−

(
1
α

)((x
θ

)−α)}
, 0 < x < θ, 0 < α 6 1.

The pdf and hrf of MU are given by

fMU (x) =
C

θ

(
1 −α

(x
θ

)α)(x
θ

)−2α−1
exp
{
−

(
1
α

)((x
θ

)−α)}
,

hMU (x) =

C
θ

(
1 −α

(
x
θ

)α) (x
θ

)−2α−1 exp
{
−
( 1
α

) ((
x
θ

)−α)}
1 −C

(
x
θ

)−α exp
{
−
( 1
α

) ((
x
θ

)−α)} .

Figure 1 sketchs the graphs for the pdf and hrf of the MU distribution for different parameter values.
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Figure 1: Pdf and hrf of MU distribution.

4.2. Muth Lomax distribution
A random variable X is said to have a Lomax distribution, if its cdf and pdf are given by G(x; ζ) =

1 − (1 + λx)−θand g(x; ζ) = θλ (1 + λx)−(θ+1) , whereζ = (θ, λ). Then, the cdf of the Muth Lomax (ML)
model is given by

FML (x) = C(1 − (1 + λx)−θ)−αe−
1
α (1−(1+λx)−θ)−α , x, θ, λ > 0 , 0 < α 6 1.

The pdf and hrf of ML distribution are expressed as

fML (x) = Cθλ (1 + λx)−(θ+1)
(

1 −α (1 − (1 + λx)−θ)α
)
(1 − (1 + λx)−θ)−2α−1e−

1
α (1−(1+λx)−θ)−α ,

hML (x) =
Cθλ (1 + λx)−(θ+1)

(
1 −α (1 − (1 + λx)−θ)α

)
(1 − (1 + λx)−θ)−2α−1e−

1
α (1−(1+λx)−θ)−α

1 −C(1 − (1 + λx)−θ)−αe−
1
α (1−(1+λx)−θ)−α

.

Figure 2 shows the pdf and hrf of the ML distribution for different parameter values.

Figure 2: Pdf and hrf of ML distribution.
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4.3. Muth Rayleigh distribution

The cdf and density function of the Rayleigh random variable are expressed as G(x; ζ) = 1 − e−βx
2

and g(x; ζ) = 2βxe−βx
2
, x,β > 0, whereζ = (β). Then, the cdf of the MR distribution has the following

form

FMR (x) = C(1 − e−βx
2
)−αe−

1
α (1−e−βx

2
)−α , x,β > 0 , 0 < α 6 1.

The pdf and hrf of the MR model are

fMR (x) = C2βxe−βx
2
(

1 −α (1 − e−βx
2
)α
)
(1 − e−βx

2
)−2α−1e−

1
α (1−e−βx

2
)−α ,

hMR (x) =
2Cβxe−βx

2
(

1 −α (1 − e−βx
2
)α
)
(1 − e−βx

2
)−2α−1e−

1
α (1−e−βx

2
)−α

1 −C(1 − e−βx
2
)−αe−

1
α (1−e−βx2

)−α
.

Figure 3 displays the plots for the pdf and hrf of the MR distribution for selected values of the model
parameters.

Figure 3: pdf and hrf of MR distribution.

4.4. Muth exponential distribution

The cdf and density function of the exponential random variable are expressed as G(x; ζ) = 1 − e−βx

and g(x; ζ) = βe−βx, x,β > 0, whereζ = (β). Then, the cdf of the ME distribution has the following form

FME (x) = C(1 − e−βx)−αe−
1
α (1−e−βx)−α , x, β > 0, 0 < α 6 1.

The pdf and hrf of the ME model are

fME (x) = Cβe
−βx

(
1 −α (1 − e−βx)α

)
(1 − e−βx)−2α−1e−

1
α (1−e−βx)−α ,

hME (x) =
Cβe−βx

(
1 −α (1 − e−βx)α

)
(1 − e−βx)−2α−1e−

1
α (1−e−βx)−α

1 −C(1 − e−βx)−αe−
1
α (1−e−βx)−α

.

Figure 4 displays the plots for the pdf and hrf of the ME distribution for selected values of the model
parameters.
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Figure 4: pdf and hrf of ME distribution.

4.5. Muth Weibull distribution
The cdf and density function of the Weibull random variable are expressed as G(x; ζ) = 1 − e−βx

γ

and g(x; ζ) = γβxγ−1e−βx
γ

, x,β,γ > 0, whereξ = (β,γ). Then, the cdf of the MW distribution has the
following form

FMW (x) = C(1 − e−βx
γ

)−αe−
1
α (1−e−βx

γ
)−α , x,β,γ > 0 , 0 < α 6 1.

The pdf and hrf of the MW model are

fMW (x) = Cγβxγ−1e−βx
γ
(

1 −α (1 − e−βx
γ
)α
)
(1 − e−βx

γ
)−2α−1e−

1
α (1−e−βx

γ
)−α ,

hMW (x) =
Cγβxγ−1e−βx

γ (
1 −α (1 − e−βx

γ
)α
)
(1 − e−βx

γ
)−2α−1e−

1
α (1−e−βx

γ
)−α

1 −C(1 − e−βx
γ
)−αe−

1
α (1−e−βxγ)−α

.

Figure 5 displays the plots for the pdf and hrf of the MW distribution for selected values of the model
parameters.

Figure 5: pdf and hrf of MW distribution.

5. Maximum likelihood method

We consider the estimation of the unknown parameters of M-G family from complete samples only by
the method of maximum likelihood. Let x1, x2, . . . , xn be the observed values from the M-G family with
the parameter vector Φ = (α, ζ)T . The log-likelihood function for Φ is given by
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lnL(Φ) =
n

α
+

n∑
i=1

ln [g(xi; ζ)] − (2α+ 1)
n∑
i=1

ln [G(xi; ζ)] +
n∑
i=1

ln [1 −αG(xi; ζ)α] −
1
α

n∑
i=1

[
G(xi; ζ)−α

]
.

The elements of the score function U(Φ) = (Uα, Uζk) are given by

Uα = −
n

α2 − 2
n∑
i=1

ln [G(xi; ζ)] −
n∑
i=1

G(xi; ζ)α(1 + lnG(xi; ζ))
1 −αG(xi; ζ)α

+
1
α2

n∑
i=1

G(xi; ζ)−α (1 +α lnG(xi; ζ)) ,

and

Uζk =

n∑
i=1

∂g(xi; ζ)/∂ζk
g(xi; ζ)

− (2α+ 1)
n∑
i=1

∂G(xi; ζ)/∂ζk
G(xi; ζ)

−α2
n∑
i=1

G(xi; ζ)α−1∂G(xi; ζ)/∂ζk
1 −αG(xi; ζ)α

+

n∑
i=1

[
G(xi; ζ)−α−1∂G(xi; ζ)/∂ζk

]
.

Setting Uα and Uζk equal to zero and solving these equations simultaneously yield the maximum like-
lihood estimator Φ̂ = (α̂, ζ̂)of Φ = (α, ζ)T . These equations cannot be solved analytically and statistical
software can be used to solve them numerically using iterative methods.

6. Simulation

It is very difficult to compare the theoretical performances of the different estimators (MLE) for the
MW distribution. Therefore, simulation is needed to compare the performances of the estimation mainly
with respect to their biases and mean square errors for different sample sizes. A numerical study is
performed using Mathematica 9 software. Different sample sizes are considered through the experiments
at sizes n = 20, 30, 50, 100, 200, 300. In addition, the different values of the parameters α, β, and γ.

The experiment will be repeated 1000 times. In each experiment, the estimates of the parameters will
be obtained by maximum likelihood method. The means, MSEs and biases for the different estimators
will be reported from these experiments.

Table 1: The parameter estimation from MW distribution using MLE.
n Set 1: α = 0.1 , β = 0.5 , γ = 2 Set 2: α = 0.1 , β = 0.5 , γ = 1.5

Par MLE Bias MSE MLE Bias MSE
α 0.10009 0.00009 2.18542×10−8 0.10009 0.00009 2.49495×10−8

20 β 0.52885 0.02885 0.01616 0.52838 0.02837 0.01493
γ 2.35045 0.35045 1.06892 1.73074 0.23074 0.55934
α 0.10009 0.00009 2.04174×10−8 0.10009 0.00009 1.87626×10−8

30 β 0.52298 0.02298 0.01014 0.51679 0.01679 0.01008
γ 2.23954 0.23954 0.67442 1.65002 0.15002 0.32692
α 0.10009 0.00009 1.35184×10−8 0.10010 0.00010 1.49952×10−8

50 β 0.51326 0.01326 0.00557 0.50793 0.00793 0.00522
γ 2.13706 0.13706 0.29636 1.57555 0.07555 0.13456
α 0.10009 0.00009 1.16819×10−8 0.10009 0.00009 1.08969×10−8

100 β 0.50590 0.00590 0.00272 0.50749 0.00749 0.00268
γ 2.05510 0.05510 0.12156 1.54784 0.04784 0.07201
α 0.10009 0.00009 1.00063×10−8 0.10009 0.00009 9.47676×10−9

200 β 0.50310 0.00310 0.00126 0.50087 0.00087 0.00118
γ 2.03514 0.03514 0.06203 1.51971 0.01971 0.03250
α 0.10009 0.00009 9.45489*10∧-9 0.10009 0.00009 9.54351×10−9

300 β 0.50109 0.00109 0.00084 0.50146 0.00146 0.00079
γ 2.00758 0.00758 0.03576 1.51373 0.01373 0.02271
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Table 2: Continued of Table 1.
n Set 3: α = 0.1 , β = 0.5 , γ = 2.5 Set 4: α = 0.1 , β = 0.5 , γ = 3

Par MLE Bias MSE MLE Bias MSE
α 0.10009 0.00009 2.13806×10−8 0.10009 0.00009 2.26347×10−8

20 β 0.52526 0.02526 0.01598 0.52575 0.02575 0.01605
γ 2.88654 0.38654 1.48808 3.52130 0.52130 3.28233
α 0.10009 0.00009 1.78784×10−8 0.10009 0.00009 1.63314×10−8

30 β 0.51851 0.01851 0.00930 0.51467 0.01467 0.00925
γ 2.78899 0.28899 0.95345 3.26266 0.26266 1.13238
α 0.10009 0.00009 1.46953×10−8 0.10009 0.00009 1.42012×10−8

50 β 0.50885 0.00885 0.00548 0.50721 0.00720 0.00537
γ 2.62278 0.12278 0.40563 3.14215 0.14215 0.59788
α 0.10009 0.00009 1.14768×10−8 0.10009 0.00009 1.13114×10−8

100 β 0.50370 0.00370 0.00244 0.50519 0.00519 0.00269
γ 2.56845 0.06845 0.18646 3.10045 0.10045 0.31007
α 0.10009 0.00009 9.71289×10−9 0.10009 0.00009 9.48756×10−9

200 β 0.50261 0.00261 0.00125 0.50430 0.00430 0.00121
γ 2.53616 0.03616 0.08773 3.05770 0.05770 0.13228
α 0.10009 0.00009 9.26478×10−9 0.10009 0.00009 9.2883×10−9

300 β 0.50162 0.00162 0.00083 0.50096 0.00096 0.00083
γ 2.52214 0.02214 0.05963 3.02670 0.02670 0.08808

Table 3: Continued of Table 1.
n Set 5: α = 0.1 , β = 0.7 , γ = 2 Set 6: α = 0.1 , β = 0.7 , γ = 1.5

Par MLE Bias MSE MLE Bias MSE
α 0.10009 0.00009 2.3686×10−8 0.10010 0.00010 2.45403×10−8

20 β 0.74089 0.04089 0.03260 0.73829 0.03829 0.03158
γ 2.24364 0.24364 0.81375 1.67011 0.17011 0.40653
α 0.10009 0.00009 1.61678×10−8 0.10009 0.00009 1.76236×10−8

30 β 0.71937 0.01937 0.01880 0.72135 0.02135 0.01935
γ 2.18115 0.18115 0.50164 1.63293 0.13293 0.25457
α 0.10009 0.00009 1.34529×10−8 0.10009 0.00009 1.40571×10−8

50 β 0.71340 0.01340 0.01058 0.71155 0.01155 0.01100
γ 2.09565 0.09565 0.22241 1.56544 0.06544 0.12047
α 0.10009 0.00009 1.15168×10−8 0.10009 0.00009 1.07646×10−8

100 β 0.70765 0.00765 0.00530 0.70608 0.00608 0.00579
γ 2.04850 0.04850 0.10132 1.53947 0.03947 0.05280
α 0.10009 0.00009 9.9711×10−9 0.10009 0.00009 9.88463×10−9

200 β 0.70320 0.00320 0.00234 0.70452 0.00452 0.00253
γ 2.02366 0.02366 0.04718 1.51997 0.01997 0.02705
α 0.10009 0.00009 9.37211×10−9 0.10009 0.00009 9.49605×10−9

300 β 0.70173 0.00173 0.00170 0.70170 0.00170 0.00164
γ 2.01799 0.01799 0.03385 1.51232 0.01232 0.01812
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Table 4: Continued of Table 1.
n Set 7: α = 0.1 , β = 0.7 , γ = 2.5 Set 8: α = 0.1 , β = 0.7 , γ = 3

Par MLE Bias MSE MLE Bias MSE
α 0.10009 0.00009 2.16284×10−8 0.10009 0.00009 2.15409×10−8

20 β 0.72999 0.02999 0.03208 0.73549 0.03549 0.03269
γ 2.78802 0.28802 1.20123 3.35507 0.35507 1.81402
α 0.10010 0.00010 1.95963×10−8 0.10009 0.00009 1.77599×10−8

30 β 0.72348 0.02348 0.01969 0.72194 0.02194 0.01908
γ 2.70308 0.20308 0.64998 3.24113 0.24113 0.92983
α 0.10009 0.00009 1.48897×10−8 0.10009 0.00009 1.34612×10−8

50 β 0.71357 0.01357 0.01018 0.71520 0.01520 0.01093
γ 2.61487 0.11487 0.35466 3.16956 0.16956 0.54674
α 0.10009 0.00009 1.13358×10−8 0.10009 0.00009 1.15164×10−8

100 β 0.71081 0.01081 0.00527 0.70453 0.00453 0.00517
γ 2.58545 0.08545 0.16481 3.08678 0.08678 0.23369
α 0.10009 0.00009 9.86193×10−9 0.10009 0.00009 9.79476×10−9

200 β 0.70473 0.00473 0.00251 0.70372 0.00372 0.00238
γ 2.54455 0.04455 0.07743 3.04451 0.04451 0.10685
α 0.10009 0.00009 9.56165×10−9 0.10009 0.00009 9.39515×10−9

300 β 0.70245 0.00245 0.00181 0.70333 0.00333 0.00163
γ 2.51537 0.01537 0.04910 3.02654 0.02654 0.06716

7. Real life applications

In this section, we use one real data set to illustrate the importance and flexibility of the MW distri-
bution. We compare the fits of the MW model with some models namely: the beta Weibull (BW) [15],
Mcdonald Weibull (McW) [8], and exponentiated Weibull (EW) [16] distributions.

The maximized log-likelihood (−2`), Akaike information criterion (AIC), the corrected Akaike in-
formation criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion
(HQIC), Anderson-Darling (A∗), and Cramér-Von Mises (W∗) statistics are used for model selection.

The data set is obtained from studies in [1] and represents failure times of 84 Aircraft Windshield. The
data are summarized in Table 5:

Table 5: The failure times aircraft windshield.
0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911,
2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,

Data Set 1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089,
2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278,
1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224,
3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663

For the data set, Table 6 gives the MLEs of the fitted models and their standard errors (SEs) in paren-
thesis. The values of goodness-of-fit statistics are listed in Table 7.

It is noted, from Table 7, that the MW distribution provides a better fit than other competitive fitted
models. It has the smallest values for goodness-of-fit statistics among all fitted models. Plots of the
histogram, fitted densities and estimated cdfs are shown in Figures 6 and 7, respectively. These figures
supported the conclusion drawn from the numerical values in Table 7.

Table 6: The MLEs and SEs for the data set.
Model Estimates (SEs)
MW(α, β, γ) 2.44×10−3 (0.0539) 0.151 (0.022) 1.863(0.118)
BW(a, b, λ, γ) 53.874 (2.717) 20.528 (0.278) 1.076(0.278) 0.231 (0.184)
McW(a, b, λ, γ, c) 51.321 (5.329) 19.762 (0.605) 1.119 (0.48) 0.23 (0.424) 1.525 (38.539)
EW(λ, γ,a) 7.017 (0.134) 0.144 (0.063) 1773 (0.827)
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Table 7: Goodness-of-Fit statistics for the data set.
Model −2` AIC CAIC BIC HQIC A∗ W∗

MW 266.952 272.952 273.252 272.724 275.883 0.78033 0.0653
BW 289.948 297.948 298.455 297.645 301.857 3.34711 0.48715

McW 283.983 293.983 294.752 293.604 298.869 3.33313 0.4847
EW 320.347 326.347 326.647 324.196 326.302 32.74879 7.04167

It is observed, from Table 7, that the MW distribution gives a better fit than other fitted models. Plots
of the histogram, fitted densities and estimated cdfs are displayed in Figures 6 and 7, respectively. Figure
8 displays the pp plots of the MW distribution and other competitive models.

Figure 6: Estimated pdfs for the data Set.

Figure 7: Estimated cdfs for the data set.
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Figure 8: pp plots of the MW model and other models for the data set.

8. Conclusion

In this paper we propose a new class of distributions called the Muth-G family. Five special submodels
are presented. We investigate several structural properties of the new distribution such as expansion for
the density and cumulative functions and explicit expressions for the ordinary and incomplete moments,
generating function, mean deviation, and order statistics. We estimate the parameters using maximum
likelihood method. We perform a Monte Carlo simulation study for one particular case to assess the finite
sample behavior of the maximum likelihood estimators. Applications to real data prove empirically the
importance and potentiality of the suggested family.
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