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Abstract

Based on the classical ideas, Zhu discussed the properties and useful theories for Lp-mixed geominimal surface area; mean-
while, Ma defined dual Orlicz geominimal surface area. The previous studies provide a thought to us for the study of the dual
Orlicz mixed geominimal surface. In our paper, we have done the following work: attempting to use an integral form to define
the dual Orlicz mixed geominimal surface area, further studyding its related properties, and listing some inequalities includ-
ing Alexandrov-Fenchel type inequality, analogous cyclic inequality, Blaschke-Santaló type inequality, and affine isoperimetric
inequality in Orlicz space.
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1. Introduction

As early as the beginning of the 1970s, Petty defined early concept of the geominimal surface area
G(K) (see [24]):

ω
1
n
nG(K) = inf{nV1(K,Q)V(Q∗)

1
n : Q ∈ Kn}.

This definition is limited to K ∈ Kn, and Kn is the set of convex bodies in Rn. It’s shown that V1(K,Q)
stands for the mixed volume (see [12]). For more relevant detailed information, we can refer to the last
two pages of this article (see [8, 29, 30]).

In the 1990’s, the research of convex body theory has became more and more prosperous. Over the
last two decades, a large number of research achievements in this field have sprung up and had great
effects on other research fields. Lutwak, Yang and Zhang (See, for example, [10, 11, 13–15]) originated
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the Lp-Brunn-Minkowski-Firey theory. Subsequently, through the efforts of many scholars, the Lp-Brunn-
Minkowski theory (see [11]) has been put forward and some classical inequalities were proved, such as
affine isoperimetric inequality (see [13]). Here, we provide some reference data for relevant applications
(see, e.g., [23, 28, 32, 34, 36–38]).

Based on previous theoretical results and modeled on the definition of Petty, Lutwak proposed a
mature concept, Gp(K), as follows (see [11]): For K ∈ Kno ,

ω
p
n
nGp(K) = inf{nVp(K,Q)V(Q∗)

p
n : Q ∈ Kno },

here Kno is such a convex body as contains the origin in its interior and Vp(K,Q) stands for Lp-mixed
volume (see [11]).

Orlicz space is a more wide function space than the Lp space which we are familiar with. Since the
Orlicz space was proposed and named in 1932, the theoretical system of the Orlicz space is gradually
perfect under the unremitting efforts of many researchers. Meanwhile, many new research directions
have been developed, which make the research of Orlicz space more abundant (see [1, 4, 6, 16–18, 31, 35]).
While calculation of areas in Orlicz space is one of the hot research issues, the results of the study are still
weak. Finding effective ways is a key link in dealing with the issue of area calculation in Orlicz space. In
Orlicz space, we usually let Φ define the set of convex functions φ : [0,∞)→ [0,∞) that satisfy φ(0) = 0,
φ(1) = 1, and limt→∞φ(t) = +∞. From this, the original concept of the Orlicz geominimal surface area
shows that if K ∈ Kno and φ ∈ Φ, then (see [33])

Gφ(K) = inf{nVφ(K,Q) : Q ∈ Kno and V(Q∗) = ωn},

where Vφ(K,Q) represents the Orlicz mixed volume (see [20]).
In 2016, Ma and Wang defined the dual Orlicz geominimal surface area as follows (see [20]): For

K ∈ Sno ,

G̃−φ(K) = inf{nṼ−φ(K,Q) : Q ∈ Kno and V(Q∗) = ωn},

here Ṽ−φ(K,Q) represents the dual Orlicz mixed volume (see Section 2).
In addition, they came up with an important theory as follows: For K ∈ Sno and φ ∈ Φ, Ma and Wang

found a unique body K̃ ∈ Kno so that they get (see [20])

G̃−φ(K) = nṼ−φ(K, K̃) and V(K̃∗) = ωn. (1.1)

Afterwards they found K̃ = T̃φK, here K̃ is the dual Orlicz-Petty body. Thus, for K ∈ Sno , and φ ∈ Φ,
we get (see [20])

G̃−φ(K) = nṼ−φ(K, T̃φK) and V(T̃∗φK) = ωn. (1.2)

From (1.2) and (2.2), Ma and Wang get the following integral representation of G̃−φ(K). Obviously,
for K ∈ Sno and φ ∈ Φ, we get (see [20])

G̃−φ(K) =

∫
Sn−1

φ

(
ρK(u)

ρT̃φK

)
ρnK(u)dS(u).

If K ∈ Knc , then, for φ ∈ Φ, (see [20])

G̃−φ(K)G̃−φ(K
∗) 6 (nωn)

2, (1.3)

with equality if and only if K is an ellipsoid.
We are going to finish this article in three parts. First, Section 1 is some related background information

we introduced in the preface. Then, we list some definitions and results in Section 2, which will be applied
in proofs in Section 3. Finally, we give our main results and their proofs in Section 3.
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2. Notation and preliminaries

In Rn, Knc indicates that a kind of set full of convex bodies whose centroids lie at the origin. For any
body K, V(K) is its volume. Thus, ωn = V(B) is equivalent to the volume for unit ball. Additionally, star
bodies about the origins in Rn are denoted as Sno .

For K ∈ Rn, the radial function ρK(u) : Rn\0→ [0,∞) is defined by

ρK(u) = max{λ > 0 : λu ∈ K}, u ∈ Sn−1.

We call K star body if ρK is positive and continuous. Furthermore, if ρK(u)/ρL(u) is independent of
u ∈ Sn−1, we say the two star bodies K and L are dilates.

We also have some useful properties for ρK as follows: For λ > 0,

ρK(λx) = λ
−1ρK(x) and ρλK(x) = λρK(x).

If a set K ∈ Kno , then K∗, the polar body of K is defined by (see [3, 27])

K∗ = {x ∈ Rn : x · y 6 1,∀y ∈ K}.

For K ∈ Knc , the Blaschke-Santaló inequality states that (see [21, 22])

V(K)V(K∗) 6 ω2
n, (2.1)

with equality if and only if K is an ellipsoid.
Integral formula for the dual Orlicz mixed volume is mentioned in [20] as follows:

Ṽ−φ(K,L) =
1
n

∫
Sn−1

φ

(
ρK(u)

ρL(u)

)
ρnK(u)dS(u). (2.2)

Apparently, we have

Ṽ−φ(K,K) = V(K).

They also established the following dual Orlicz-Minkowski inequality: Suppose φ ∈ Φ. If K,L ∈ Sno ,
then (see [20])

Ṽ−φ(K,L) > V(K)φ
((

V(K)

V(L)

) 1
n
)

.

Here, we try to get the generalized isoperimetric inequality for the dual Orlicz geominimal surface
area.

Lemma 2.1. If φ ∈ Φ, for K ∈ Knc , then

G̃−φ(K) 6
nω2

n

V(K∗)
φ

((
ωn

V(K∗)

) 1
n
)

, (2.3)

with equality only if K is an ellipsoid.

Proof. If Q = λK, then V(Q∗) = ωn. Thus λ =
(
V(K∗)
(ωn)

) 1
n

. Motivated by definitions of G̃−φ(K) and

Ṽ−φ(K,Q), meanwhile the Blaschke-Santaló inequality (2.1), we identify that

G̃−φ(K) 6 nṼ−φ(K, λK) =
∫
Sn−1

φ

(
ρK(u)

ρλK(u)

)
ρnK(u)dS(u)

= nφ(1/λ)V(K) = nV(K)φ
((

ωn

V(K∗)

) 1
n
)

6
nω2

n

V(K∗)
φ

((
ωn

V(K∗)

) 1
n
)

.

Clearly the equality holds only when K is an ellipsoid.
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Compared with the inequality (2.3) and Ma’s Lp-affine isoperimetric inequality, if φ(t) = |t|p, and
p > 1, then they become the same as follows (see [19]):

G̃−p(K) 6 nω
(2n−p)/n
n V(K∗)−(n+p)/n,

with equality if and only if K is a ball centered at the origin.
Based on the above proof of the Lemma 2.1, and using the reverse Blaschke-Santaló inequality (see

[5, 25]),

V(K)V(K∗) >
4n

n!
,

with equality if and only if K is zonoids, we can get the following lemma.

Lemma 2.2. If φ ∈ Φ, for K ∈ Knc , then

G̃−φ(K) 6 nV(K)φ

((
4nωn

(n!)V(K)

) 1
n
)

.

The following Hölder’s integral inequality will be used (see [2, 7]).

Lemma 2.3. Let f0, f1, . . . , fk be Borel measurable functions on X. Suppose that p0,p1, . . . ,pk are nonzero numbers
with

∑k
i=1

1
pi

= 1. Then ∫
X

f0(u)f1(u) · · · fk(u)du 6
k∏
i=1

( ∫
X

f0(u)fi(u)
pidu

) 1
pi

,

with equality if and only if either there are constants b1,b2, . . . ,bk not all zero, such that

b1|f1(u)|
p1 = b2|f2(u)|

p2 = . . .bk|fk(u)|pk ,

or one of the functions is null.

3. Main results and proofs

Ma and Feng introduced the general concept of dual Lp-mixed geominimal surface area for star bodies,
and established some affine isoperimetric inequalities in [19]. On this basis, we give a definition for the
dual Orlicz mixed geominimal surface area in the same way. Here G̃−φ(K1, . . . ,Kn) used to express the
new concept named the dual Orlicz mixed geominimal surface area. For K1, . . . ,Kn ∈ Sno , we have:

Definition 3.1. If K1, . . . ,Kn ∈ Sno , then there exists a unique body (dual Orlicz-Petty body of Ki) T̃φK (i =
1, . . . ,n) with

G̃−φ(K1, . . . ,Kn) =
∫
Sn−1

[
φ

(
ρK1(u)

ρT̃1
(u)

)
ρnK1

(u) · · ·φ
(
ρKn(u)

ρT̃n(u)

)
ρnKn(u)

] 1
n

dS(u).

Suppose g̃−φ(Ki,u) = φ
(
ρKi(u)

ρT̃i
(u)

)
ρnKi(u), then the above formula can be expressed as follows:

G̃−φ(K1, . . . ,Kn) =
∫
Sn−1

[
g̃−φ(K1,u) · · · g̃−φ(Kn,u)

] 1
ndS(u). (3.1)

The classical dual Aleksandrov-Fenchel inequality for dual mixed volume states that if K1, . . . ,Kn ∈ Sno ,
then (see [3, 9, 26])

Ṽ(K1, . . . ,Kmn ) 6
m−1∏
i=0

Ṽ(K1, . . . ,Kn−m,Kn−i, . . . ,Kn−i︸ ︷︷ ︸
m

),

with equality if and only if Kn−m+1,Kn−m+2, . . . ,Kn are dilates.
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Now, we prove the Alexandrov-Fenchel type inequality for dual Orlicz mixed geominimal surface area
as follows.

Theorem 3.2. For K1, . . . ,Kn ∈ Sno , suppose 1 6 m < n, then

G̃−φ(K1, . . . ,Kn)m 6
m−1∏
i=0

G̃−φ(K1, . . . ,Kn−m,Kn−i, . . . ,Kn−i︸ ︷︷ ︸
m

),

with equality if the Kj are dilates for j = n−m+ 1, . . . ,n. For m = 1, equality holds trivially.
In particular, for m = n, we have

G̃−φ(K1, . . . ,Kn)n 6 G̃−φ(K1) · · · G̃−φ(Kn),

equality holds if the Ki are dilates.

Proof. Let Y0(u) = [g̃−φ(K1,u) · · · g̃−φ(Kn−m,u)]
1
n and Yi+1(u) = [g̃−φ(Kn−i,u)]

1
n , for i = 0, . . . ,m− 1,

from (3.1) and Lemma 2.3, we get

G̃−φ(K1, . . . ,Kn) =
∫
Sn−1

[g̃−φ(K1,u) · · · g̃−φ(Kn,u)]
1
ndS(u)

=

∫
Sn−1

Y0(u)Y1(u) · · · Ym(u)dS(u)

6
m−1∏
i=0

( ∫
Sn−1

Y0(u)Yi+1(u)
mdS(u)

) 1
m

=

m−1∏
i=0

G̃
1
m

−φ(K1, . . . ,Kn−m,Kn−i, . . . ,Kn−i︸ ︷︷ ︸
m

).

For every cij > 0 and all 0 6 i 6= j 6 m− 1, according to the condition of equality in Lemma 2.3, we get
the equality of the Theorem 3.2 holds if and only if Y0(u)Y

m
i+1(u) = c

m
ij Y0(u)Y

m
j+1(u) . This is equivalent to

φ

(
ρKn−i(u)

ρT̃φKn−i(u)

)
ρnKn−i(u) = cijφ

(
ρKn−j(u)

ρT̃φKn−j(u)

)
ρnKn−j(u);

one can observe taht the equality holds if Kn−i and Kn−j are dilates.

Next, we will introduce the concept of ith dual Orlicz mixed geominimal surface area and discuss
related inequalities about G̃−φ,i(K,L), which extend the dual Orlicz mixed geominimal surface area.

If K,L ∈ Sno with i ∈ R, then we define

G̃−φ,i(K,L) =
∫
Sn−1

g̃−φ(K,u)
n−i
n g̃−φ(L,u)

i
ndS(u). (3.2)

From (1.2), we get

G̃−φ(B) = nṼ−φ(B, T̃φB). (3.3)

Since

G̃−φ(B) = nωn = nṼ−φ(B,B), (3.4)

together (3.3), (3.4) with the uniqueness part of (1.1), we have

T̃φB = B.
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Let L = B and write

G̃−φ,i(K,B) = G̃−φ,i(K). (3.5)

Combining (3.2) and (3.5), and noticing that ρT̃φB = ρB = 1, we have

G̃−φ,i(K) =

∫
Sn−1

g̃−φ(K,u)
n−i
n dS(u).

Consequently, by (3.1), (3.2), and (3.5), we get

G̃−φ,0(K,B) = G̃−φ(K), G̃−φ,i(K,K) = G̃−φ(K), (3.6)
G̃−φ,0(K,L) = G̃−φ(K), G̃−φ,n(K,L) = G̃−φ(L), (3.7)

The following Theorem deals with the cyclic inequality for the ith dual Orlicz mixed geominimal
surface.

Theorem 3.3. For K,L ∈ Sno , if i, j,k ∈ R and i < j < k, then

G̃−φ,i(K,L)k−jG̃−φ,k(K,L)j−i > G̃−φ,j(K,L)k−i, (3.8)

equality holds if K and L are dilates.

Proof. From Definition 3.2 and Hölder’s integral inequality (see Lemma 2.3), we get

G̃−φ,i(K,L)
k−j
k−i G̃−φ,k(K,L)

j−i
k−i =

[ ∫
Sn−1

g̃−φ(K,u)
n−i
n g̃−φ(L,u)

i
ndS(u)

] k−j
k−i

×
[ ∫
Sn−1

g̃−φ(K,u)
n−k
n g̃−φ(L,u)

k
ndS(u)

] j−i
k−i

=

{∫
Sn−1

[
g̃−φ(K,u)

(n−i)(k−j)
n(k−i) g̃−φ(L,u)

i(k−j)
n(k−i)

]k−i
k−j

dS(u)
} k−j
k−i

×
{∫

Sn−1

[
g̃−φ(K,u)

(n−k)(j−i)
n(k−i) g̃−φ(L,u)

k(j−i)
n(k−i)

]k−i
j−i

dS(u)
} j−i
k−i

>
∫
Sn−1

g̃−φ(K,u)
n−j
n g̃−φ(L,u)

j
ndS(u) = G̃−φ,j(K,L).

We proved inequality (3.8). Apparently, the equality in (3.8) holds true if and only if for any u ∈ Sn−1,

g̃−φ(K,u)
n−i
n g̃−φ(L,u)

i
n

g̃−φ(K,u)
n−k
n g̃−φ(L,u)

k
n

is a constant. It also implies that for any u ∈ Sn−1, g̃−φ(K,u)/g̃−φ(L,u) is a constant. By the similar
argument as in the proof of Theorem 3.2, we conclude that equality in (3.8) holds if K and L are dilates.

If L = B, and combining with (3.5), a direct consequence of Theorem 3.3 is obtained:

Corollary 3.4. For K,L ∈ Sno , if i, j,k ∈ R and i < j < k, then

G̃−φ,i(K)
k−jG̃−φ,k(K)

j−i > G̃−φ,j(K)
k−i,

equality holds if K is a ball with centroid at the origin.
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Then, we obtain the Minkowski inequality for the dual ith Orlicz mixed geominimal surface area as
follows.

Theorem 3.5. If K,L ∈ Sno , for i ∈ R, then, for i < 0 or i > n,

G̃−φ,i(K,L)n > G̃−φ(K)
n−iG̃−φ(L)

i, (3.9)

and for 0 < i < n,

G̃−φ,i(K,L)n 6 G̃−φ(K)
n−iG̃−φ(L)

i. (3.10)

Equality of each inequality holds if K and L are dilates. For i = 0 or i = n, above inequalities are identical.

Proof.

(i). For i < 0, suppose (i, j,k) = (i, 0,n) in Theorem 3.3, we get

G̃−φ,i(K,L)nG̃−φ,n(K,L)−i > G̃−φ,0(K,L)n−i,

equality holds if K and L are dilates.
From (3.7), we have

G̃−φ,i(K,L)nG̃−φ(L)
−i > G̃−φ(K)

n−i,

i.e.,

G̃−φ,i(K,L)n > G̃−φ(K)
n−iG̃−φ(L)

i,

equality holds if K and L are dilates.

(ii). For i > n, let (i, j,k) = (0,n, i) in Theorem 3.3, we get

G̃−φ,0(K,L)i−nG̃−φ,i(K,L)n > G̃−φ,n(K,L)i,

with equality holds if K and L are dilates.
From (3.7), we have

G̃−φ(K)
i−nG̃−φ,i(K,L)n > G̃−φ(L)

i,

i.e.,

G̃−φ,i(K,L)n > G̃−φ(K)
n−iG̃−φ(L)

i,

equality holds if K and L are dilates.

(iii). For 0 < i < n, let (i, j,k) = (0, i,n) in Theorem 3.3, we get

G̃−φ,o(K,L)n−iG̃−φ,n(K,L)i > G̃−φ,i(K,L)n,

equality holds if K and L are dilates.
From (3.7), we have inequality (3.10).

(iv). For i = 0 (or i = n), by (3.7), inequality (3.10) (or (3.9)) is identical.

Taking L = B in Theorem 3.5, using (3.5) and G̃−φ(B) = nωn, we immediately obtain the following
corollary.
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Corollary 3.6. If K ∈ Sno , for i ∈ R, then, for i < 0 or i > n,

G̃−φ,i(K)
n > (nωn)

iG̃−φ(K)
n−i, (3.11)

and for 0 < i < n,

G̃−φ,i(K)
n 6 (nωn)

iG̃−φ(K)
n−i. (3.12)

Equality of each inequality holds true if K is a ball with centroid at the origin. For i = 0 or i = n, above inequalities
are identical.

Then, we prove the Blaschke-Santaló type inequality for dual Orlicz mixed geominimal surface area.

Theorem 3.7. If K,L ∈ Knc , for i ∈ R and 0 6 i 6 n, then

G̃−φ,i(K,L)G̃−φ,i(K
∗,L∗) 6 (nωn)

2.

For 0 < i < n, equality holds if K and L are ellipsoids with dilation of each other. For i = 0 (or i = n), the inequality
holds as an equality if K is an ellipsoid centered at the origin.

Proof. For 0 < i < n, by (3.10) and (1.3), we get

G̃−φ,i(K,L)nG̃−φ,i(K
∗,L∗)n 6 [G̃−φ(K)G̃−φ(K

∗)]n−i[G̃−φ(L)G̃−φ(L
∗)]i = (nωn)

2n.

That is,

G̃−φ,i(K,L)G̃−φ,i(K
∗,L∗) 6 (nωn)

2,

equality holds true if K and L are ellipsoids with dilation of each other.
For i = 0 (or i = n), it follows from (3.7), (3.10) (or (3.9)), and (1.3) that Theorem 3.7 is obvious, and

with equality true if K (or L) is an ellipsoid.

Theorem 3.8. If K,L ∈ Knc , for i ∈ R, then

(i) for 0 6 i 6 n,

G̃−φ,i(K)G̃−φ,i(K
∗) 6 (nωn)

2,

equality holds true if K is a ball;
(ii) for i > n,

G̃−φ,i(K)G̃−φ,i(K
∗) > (nωn)

2,

equality holds true if K is a ball.

Proof.

(i). By Theorem 3.7, letting L = B, we get

G̃−φ,i(K,B)G̃−φ,i(K
∗,B∗) 6 (nωn)

2,

by (3.5),

G̃−φ,i(K)G̃−φ,i(K
∗) 6 (nωn)

2,

equality holds true if K is a ball.
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(ii). For all i > n, by inequality (3.11), we have(
G̃−φ,i(K)

G̃−φ,i(B)

)n
>

(
G̃−φ(K)

G̃−φ(B)

)n−i
. (3.13)

From (3.13), G̃−φ(B) = nωn, and (1.3), we obtain(
G̃−φ,i(K)G̃−φ,i(K

∗)

G̃−φ,i(B)2

)n
>

(
G̃−φ(K)G̃−φ(K

∗)

G̃−φ(B)2

)n−i
> 1.

That is

G̃−φ,i(K)G̃−φ,i(K
∗) > (nωn)

2,

equality holds true if K is a ball.

Theorem 3.9. If K,L ∈ Knc , for i ∈ R, then

(i) for 0 6 i 6 n,

G̃−φ,i(K)

G̃−φ,i(B)
6

(
V(B)

V(K∗)
φ

((
ωn

V(K∗)

) 1
n
))n−i

n

,

equality holds true if K is a ball;
(ii) for i > n,

G̃−φ,i(K)

G̃−φ,i(B)
>

(
V(B)

V(K∗)
φ

((
ωn

V(K∗)

) 1
n
))n−i

n

,

equality holds true if K is a ball.

Proof.

(i). For i = 0 with (3.6) and Lemma 2.1, we have

G̃−φ(K)

G̃−φ(B)
6

nω2
n

V(K∗)φ

((
ωn
V(K∗)

) 1
n

)
nω2

n

V(B)φ

((
ωn
V(B)

) 1
n

) =
V(B)

V(K∗)
φ

((
ωn

V(K∗)

) 1
n
)

,

equality holds if K is a ball.
For i = n, by (3.5) and (3.7), the equality holds trivially.
For 0 < i < n, by (3.12) and Lemma 2.1, we get(

G̃−φ,i(K)

G̃−φ,i(B)

)n
6

(
G̃−φ(K)

G̃−φ(B)

)n−i
6

(
V(B)

V(K∗)
φ

((
ωn

V(K∗)

) 1
n
))n−i

,

equality holds true if K is a ball.

(ii). For i > n, by (3.11) and Lemma 2.1, we get(
G̃−φ,i(K)

G̃−φ,i(B)

)n
>

(
G̃−φ(K)

G̃−φ(B)

)n−i
>

(
V(B)

V(K∗)
φ

((
ωn

V(K∗)

) 1
n
))n−i

,

equality holds true if K is a ball. This proof is completed.
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From Lemma 2.2 and Corollary 3.6, and using the same argument as in the proof of Theorem 3.9, we
can also obtain the following results.

Theorem 3.10. If K,L ∈ Knc , for i ∈ R, then

(i) for 0 6 i 6 n,

G̃−φ,i(K)

G̃−φ,i(B)
6

(
V(K)

V(B)
φ

((
4nωn

(n!)V(K)

) 1
n
))n−i

n

;

(ii) for i > n,

G̃−φ,i(K)

G̃−φ,i(B)
>

(
V(K)

V(B)
φ

((
4nωn

(n!)V(K)

) 1
n
))n−i

n

.
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