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Abstract

In this paper, the demiclosed principle of monotone α-nonexpansive mapping is showed in a uniformly convex Banach
space with the partial order “6”. With the help of such a demiclosed principle, the strong convergence of Mann iteration
of monotone α-nonexpansive mapping T are proved without some compact conditions such as semi-compactness of T , and
the weakly convergent conclusions of such an iteration are studied without the conditions such as Opial’s condition. These
convergent theorems are obtained under the iterative coefficient satisfying the condition,

+∞∑
k=1

min{αk, (1 −αk)} = +∞,

which contains αk = 1
k+1 as a special case.
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1. Introduction

In 1953, Mann [16] introduced the following iteration for finding a fixed point of a nonexpansive
mapping T ,

xk+1 = αkxn + (1 −αk)Txn for each positive integer k, (1.1)

which was referred to as Mann iteration, where αk ∈ [0, 1] with some proper conditions. Subsequently,
many mathematical workers paid their attentions to the strong and weak convergence of such an iteration
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and its modified version for many different mappings in the past several decades. For more details, see
Opial [19] for nonexpansive mappings, Suzuki [27] for nonexpansive semigroups, Song [22] and Jung
[10] for nonexpansive mappings sequence, Liu [15] for strongly accretive mappings, George and Nse [6]
for hemi-contractive mappings, Kim et al. [11] for strictly hemi-contractive mappings, Okeke and Kim
[18] for random Picard-Mann hybrid iterations, Berinde [3] and George and Shaini [7] for Zamfirescu
operators, Gu and Lu [9] for nonlinear variational inclusions, and Zhou et al. [33], Song and Wang [25],
Zhang and Su [31], and Zhou [32] for strict pseudo-contractions and the reference therein.

For a Banach space E endowed with the partial order “6”, Bachar and Khamsi [2] introduced the
concept of a monotone nonexpansive mapping. Let T be a mapping with domain D(T) and range R(T) in
E. T : D(T)→ R(T) is said to be monotone nonexpansive if for all x,y ∈ D(T) with x 6 y,

Tx 6 Ty and ‖Tx− Ty‖ 6 ‖x− y‖.

Clearly, a monotone nonexpansive mapping may be discontinuous. Recently, Dehaish and Khamsi [4]
showed weak convergence of the Mann iteration for monotone nonexpansive mappings in a uniformly
convex Banach space with Opial’s condition. Narghirad et al. [17] studied iteration approximation and
fixed point theory for α-nonexpansive mappings in CAT(0) spaces. Very recently, Song et al. [24] first
discussed the properties of monotone α-nonexpansive mappings. T : D(T) → R(T) is said to be monotone
α-nonexpansive if for all x,y ∈ D(T) with x 6 y,

Tx 6 Ty and ‖Tx− Ty‖2 6 α‖Tx− y‖2 +α‖x− Ty‖2 + (1 − 2α)‖x− y‖2.

Still in a uniformly convex Banach space with Opial’s condition, Song et. al. [24] showed weak conver-
gence of Mann iteration for monotone α-nonexpansive mappings under the iteration coefficient satisfying
the conditions,

lim sup
k→∞ αk(1 −αk) > 0 or lim inf

k→∞ αk(1 −αk) > 0,

which excludes αk = 0 or 1
k+1 for all positive integers k.

It is well-known that the Mann iteration is called Picard iteration if αk = 0 in Mann iteration (1.1). In
1971, Pazy [20] proved the equivalence relation between strong convergence of Picard iteration and the
existence of fixed point for nonexpansive mappings in Hilbert spaces, which is referred to as Pazy’s Fixed
Point Theorem. Under the frame of Hilbert space, strong convergences of Picard iteration were showed
by Kohsaka and Takahashi [13] for a nonspreading mapping, and by Takahashi [28] for a hybrid mapping,
and Takahashi and Yao [30] for a TJ-mapping, and Lin and Wang [14] for an (a,b)-monotone mapping.
In a uniformly convex Banach space with the partial order “6”, Pazy’s Fixed Point Theorem was proved
by Song et al. [23] for a monotone nonexpansive mapping, and by Song and Chen [21] for a monotone
α-nonexpansive mapping. Naturally, we may have the following question:

May the natural sequence { 1
k+1 } ensure strong or weak convergence of Mann iteration for a monotone

α-nonexpansive mapping?
In this paper, we give an affirmative answer in a uniformly convex Banach space with the partial order

“6” with respective to a normal cone P. More precisely, the weakly and strongly convergent conclusions
of Mann iteration are showed for a monotone α-nonexpansive mapping under the iterative coefficient
satisfying the condition,

+∞∑
k=1

min{αk, (1 −αk)} = +∞.

Clearly, the above condition contains αk = 1
k+1 as a special case. In particular, the weak convergence

of Mann iteration does not require that Banach space satisfies Opial’s condition, and the strong conver-
gence of such an iteration is proved for monotone α-nonexpansive mapping T without some compact
conditions such as semi-compact of T . Furthermore, we also obtain the demiclosed principle of monotone
α-nonexpansive mapping T in a uniformly convex Banach space E with the partial order “6”.
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2. Preliminaries and basic results

Throughout this paper, let E be a real Banach space with the norm ‖ · ‖ and the partial order “6”. Let
F(T) = {x ∈ E : Tx = x} stand for the set of all fixed points of a mapping T .

Let P be a nonempty, closed, convex cone of E. We define the partial order “6” with respect to P as
follows: for all x,y ∈ E,

x 6 y if and only if y− x ∈ P.

The partial order “>” is given by x > y if and on if y 6 x. Then it is obvious that

x = y if and on if x 6 y and x > y.

Clearly, for all t with 0 6 t 6 1 and all x,y ∈ E, the fact that x 6 y means that

x 6 tx+ (1 − t)y 6 y.

Lemma 2.1 ([26]). Let E be a Banach space with the partial order “6”. Assume that {xk} and {yk} are two sequences
on E such that

xk 6 yk for each positive integer k.

If {xk} and {yk} weakly converge to x and y, respectively, then

x 6 y.

Definition 2.2 ([2, 24]). Let K be a nonempty closed convex subset of an ordered Banach space (E,6). A
mapping T : K→ E is said to be:

(1) monotone ([2]) if Tx 6 Ty for all x,y ∈ K with x 6 y;

(2) monotone nonexpansive ([2]) if T is monotone and

‖Tx− Ty‖ 6 ‖x− y‖

for all x,y ∈ K with x 6 y.

(3) monotone α-nonexpansive ([24]) if T is monotone and for some α < 1,

‖Tx− Ty‖2 6 α‖Tx− y‖2 +α‖Ty− x‖2 + (1 − 2α)‖x− y‖2

for all x,y ∈ K with x 6 y;

(4) monotone quasi-nonexpansive ([24]) if F(T) 6= ∅ and

‖Tx− p‖ 6 ‖x− p‖

for all p ∈ F(T) and all x ∈ K with x 6 p or x > p.

Lemma 2.3 ([24, Lemma 2.1]). Let K be a nonempty closed convex subset of an ordered Banach space (E,6) and
T : K→ K be a monotone α-nonexpansive mapping. Then

(1) T is monotone quasi-nonexpansive;
(2) for all x,y ∈ K with x 6 y (or y 6 x),

‖Tx− Ty‖2 6 ‖x− y‖2 +
2α

1 −α
‖Tx− x‖2 +

2|α|
1 −α

‖Tx− x‖(‖x− y‖+ ‖Tx− Ty‖).

Definition 2.4. Let E ba a Banach space.
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(i) A function δE : [0, 2]→ [0, 1] is said to be the modulus of convexity of E if

δE(ε) = inf{1 −
‖x+ y‖

2
; ‖x‖ 6 1, ‖y‖ 6 1, ‖x− y‖ > ε};

(ii) E is called uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2].

The following properties of the modulus of convexity of a Banach space E may be found in the
references [1, 8, 12].

Lemma 2.5 ([1, Corollary 2.3.11]). Let E be a uniformly convex Banach space with the modulus of convexity
δE(·). Then for r > 0 and x,y ∈ E with ‖x‖ 6 r, ‖y‖ 6 r,

‖λx+ (1 − λ)y‖ 6 r
[

1 − 2 min{λ, 1 − λ}δE

(
‖x− y‖
r

)]
for all λ ∈ (0, 1).

In particular, taking λ = 1
2 , ∥∥∥x+ y

2

∥∥∥ 6 r

[
1 − δE

(
‖x− y‖
r

)]
.

The following conclusion is well known. For the more detail, see the references [5, 12, 29].

Lemma 2.6. Let C be a nonempty closed convex subset of a reflexive Banach space E. Assume that f : C →
(−∞,+∞) is a proper convex lower semi-continuous and coercive function (i.e., lim‖x‖→∞ f(x) = ∞). Then there
exists x ∈ C such that

f(x) = inf
y∈C

f(y).

3. Main results

In this section, we first show the demi-closed principle for monotone α-nonexpansive mapping.

Theorem 3.1. Let K be a nonempty and closed convex subset of a uniformly convex Banach space E with the partial
order “6”, and let T : K → K be a monotone α-nonexpansive mapping. Assume that the norm ‖ · ‖ is monotonic,
i.e.,

‖x‖ 6 ‖y‖ for all x,y ∈ E with 0 6 x 6 y.

If a sequence {xk} ⊂ K weakly converges to x with xk 6 Txk 6 x (or xk > Txk > x) and

lim
k→∞ ‖xk − Txk‖ = 0,

then x = Tx.

Proof. Without loss of generality, we may assume that xk 6 Txk 6 x for all positive integers k. Let

C = {y ∈ K; xk 6 y for all positive integers k}. Then, C =
∞⋂

k=1
Ck, where Ck = {y ∈ K; xk 6 y}. Clearly,

Ck is nonempty, closed convex for all positive integers k, and hence, C ⊂ K is nonempty closed convex
(x ∈ C). It follows from the weak convergence of {xk} that {xk} is bounded, which together with the fact
that lim

k→∞ ‖xk − Txk‖ = 0 implies the boundedness of {Txk}. So, we may define a function ϕ : C→ [0,+∞)

as follows
ϕ(y) = lim sup

k→∞ ‖xk − y‖ for all y ∈ C.

It is obvious that ϕ is a proper convex, continuous, and coercive function. It follows from Lemma 2.6 that
there exists z ∈ C such that

ϕ(z) = lim sup
k→∞ ‖xk − z‖ = inf

y∈C
ϕ(y) = r,
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and by the definition of C, we have

xk 6 z for all positive integers k.

From Lemma 2.1, it follows that xk 6 x 6 z, and hence,

0 6 x− xk 6 z− xk for all positive integers k,

which implies that
‖x− xk‖ 6 ‖z− xk‖ and so, ϕ(x) 6 ϕ(z).

Therefore, we have
ϕ(x) = ϕ(z) = lim sup

k→∞ ‖xk − x‖ = inf
y∈C

ϕ(y) = r.

By the monotonicity of T , we have also, xk 6 Txk 6 Tx, and hence, Tx ∈ C. Thus
x+ Tx

2
∈ C by the

convexity of C, and so,

r = ϕ(x) 6 ϕ
(x+ Tx

2

)
and r = ϕ(x) 6 ϕ(Tx). (3.1)

From Lemma 2.3, it follows that

‖Txk − Tx‖2 6 ‖xk − x‖2 +
2α

1 −α
‖Txk − xk‖2 +

2|α|
1 −α

‖Txk − xk‖(‖xk − x‖+ ‖Txk − Tx‖),

and hence, we have (lim sup
k→∞ ‖Txk − Tx‖)2 6 (lim sup

k→∞ ‖xk − x‖)2, i.e.,

lim sup
k→∞ ‖Txk − Tx‖ 6 lim sup

k→∞ ‖xk − x‖ = ϕ(x).

Thus, using the inequality ‖xk − Tx‖ 6 ‖xk − Txk‖+ ‖Txk − Tx‖, we obtain that

ϕ(Tx) = lim sup
k→∞ ‖xk − Tx‖ 6 lim sup

k→∞ ‖Txk − Tx‖ 6 lim sup
k→∞ ‖xk − x‖ = ϕ(x) = r. (3.2)

So, using the inequality ‖xk − x+Tx
2 ‖ 6 1

2‖xk − x‖+ 1
2‖xk − Tx‖, we also have

ϕ(
x+ Tx

2
) 6

1
2

lim sup
k→∞ ‖xk − x‖+ 1

2
lim sup
k→∞ ‖xk − Tx‖ 6 lim sup

k→∞ ‖xk − x‖ = ϕ(x) = r. (3.3)

Combining (3.1), (3.2), and (3.3), we get

ϕ(x) = ϕ(Tx) = ϕ(
x+ Tx

2
) = r > 0.

Now we show x = Tx. In fact, suppose r = 0. Then lim
k→∞ ‖xk − Tx‖ = lim

k→∞ ‖xk − x‖ = 0, which implies

x = Tx. If r > 0, then from the definition of the upper limit “lim sup”, it follows that for all ε > 0, there is
a positive integer l such that

‖xk − Tx‖ < r+ ε and ‖xk − x‖ < r+ ε for all positive integers k > l.

So by Lemma 2.5, we have∥∥∥xk −
x+ Tx

2

∥∥∥ =
∥∥∥1

2
(xk − x) +

1
2
(xk − Tx)

∥∥∥ 6 (r+ ε)

(
1 − δE

(
‖x− Tx‖
r+ ε

))
.
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We may restrict that ε < 1 without loss of generality. Then the above inequality can be rewritten as follow:∥∥∥xk −
x+ Tx

2

∥∥∥ 6 (r+ ε)

(
1 − δE

(
‖x− Tx‖
r+ 1

))
,

and hence,

r = ϕ
(x+ Tx

2

)
= lim sup

k→∞
∥∥∥xk −

x+ Tx

2

∥∥∥ 6 (r+ ε)

(
1 − δE

(
‖x− Tx‖
r+ 1

))
.

Therefore, we have

rδE

(
‖x− Tx‖
r+ 1

)
6 (r+ ε)δE

(
‖x− Tx‖
r+ 1

)
6 r+ ε− r = ε.

Since ε is arbitrary, we have

δE

(
‖x− Tx‖
r+ 1

)
= 0,

and hence, x = Tx. The desired conclusion follows.
When xk > Txk > x for all positive integers k, we only need set

C = {y ∈ K; xk > y for all positive integers k}.

The remainder of proof is same, so we omit it.

In the sequel, we will use the fixed point set with the partial orders Fx6(T) and Fx>(T) given by

Fx6(T) = {p ∈ F(T) : p 6 x} for some x ∈ K

and
Fx>(T) = {p ∈ F(T) : p > x} for some x ∈ K,

respectively. Next we study the convergence of the Mann iteration of a monotone α-nonexpansive map-
ping T in an ordered uniformly convex Banach space (E,6) by means of the proof technique of Song and
Chen [21]. For an initial point x1 ∈ K ⊂ E, the sequence {xn} given by the Mann iteration is

xk+1 = αkxk + (1 −αk)Txk. (3.4)

Theorem 3.2. Let K be a nonempty, closed convex subset of a uniformly convex Banach space E with a partial order
“6”, and let T : K → K be a monotone α-nonexpansive mapping. Assume that the norm ‖ · ‖ is monotonic and
the sequence {xk} defined by the Mann iteration (3.4) with x1 6 Tx1 and Fx1

> (T) 6= ∅. If the iteration coefficients
{αk} ⊂ (0, 1) satisfy

+∞∑
k=1

γk = +∞, γk = min{αk, (1 −αk)} for all positive integers k,

then {xk} weakly converges to some fixed point x ∈ Fx1
> (T) and x > xk for all k.

Proof. Choose p ∈ Fx1
> (T). We show by mathematical induction that p > xk+1 > xk for all positive integers

k. From the monotonicity of T along with the fact that x1 6 p, it follows that

x1 6 Tx1 6 Tp = p,

and so, by the definition of Mann iteration (3.4) (x2 = γ1x1 + (1 −α1)Tx1), we have

x1 6 x2 6 Tx1 6 p.
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Suppose that xk 6 p. Then Txk 6 Tp = p, and hence, from the definition of Mann iteration (3.4), it
follows that

xk 6 xk+1 6 Txk 6 p,

as claimed. That is, we obtain that the sequence {xk} is increasing with respect to the partial order “6”
and p is a upper bound with respect to the partial order “6”.

It follows from Lemma 2.3 that

‖Txk − p‖ 6 ‖xk − p‖ for all positive integers k,

and hence, we have

‖xk+1 − p‖ 6 αk‖xk − p‖+ (1 −αn)‖Txk − p‖
6 αk‖xk − p‖+ (1 −αk)‖xk − p‖ = ‖xk − p‖ 6 · · · 6 ‖x1 − p‖.

Then the sequence {‖xk−p‖} is nonincreasing and bounded for all p ∈ Fx1
> (T), and so, the limit lim

k→∞ ‖xk−
p‖ exists. Furthermore, both sequences {xk} and {Txk} are bounded with respect to the norm “‖ · ‖”. Since
E is uniformly convex, the boundedness of {xk} implies that {xk} is weakly sequentially compact. Then
there exists a subsequence {xkl

} such that {xkl
} weakly converge to some point x. For each fixed k, there

exists large enough kl such that xk 6 xkl
. From Lemma 2.1, it follows that xk 6 x. Since k is arbitrary,

xk 6 x for all positive integers k.
We claim that {xk} weakly converges to x. Suppose not. Then there is a subsequence {xkj

} of {xk} such
that {xkj

} weakly converge to y 6= x. For each fixed kl, there is large enough kj such that xkl
6 xkj

. Then
by Lemma 2.1, we have xkl

6 y. Since {xkl
} weakly converges to x, then x 6 y. Using the same proof

technique, we also have y 6 x. Thus x = y, which is a contradiction. So the claim is proved.
Now we show x ∈ Fx1

> (T). In fact, suppose lim
k→∞ ‖xk − p‖ = 0. Then we must have x = p since {xk}

weakly converges to x. Next we assume that

lim
k→∞ ‖xk − p‖ = t > 0.

Then there exist two positive numbers a,b and some positive integer N such that

0 < a 6 ‖xk − p‖ 6 b for all k > N.

On the other hand, it follows from Lemma 2.5 (r = ‖xk − p‖ and λ = αk for each k > N) that for each
positive integer k > N,

‖xk+1 − p‖ = ‖αk(xk − p) + (1 −αk)(Txk − p)‖

6 ‖xk − p‖
(

1 − 2 min{αk, 1 −αk}δE

(
‖xk − Txk‖
‖xk − p‖

))
6 ‖xk − p‖

(
1 − 2γkδE

(
‖xk − Txk‖

b

))
,

which implies that

aγkδE

(
‖xk − Txk‖

b

)
6 2‖xk − p‖γkδE

(
‖xk − Txk‖

b

)
6 ‖xk − p‖− ‖xk+1 − p‖.

Then, we have

n∑
k=N+1

aγkδE

(
‖xk − Txk‖

b

)
6

n∑
k=N+1

(‖xk − p‖− ‖xk+1 − p‖) = ‖xN+1 − p‖− ‖xn − p‖,
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and hence,
+∞∑

k=N+1

aγkδE

(
‖xk − Txk‖

b

)
6 lim

n→+∞(‖xN+1 − p‖− ‖xn − p‖) < +∞.

Therefore, we must have

lim inf
k→∞ δE

(
‖xk − Txk‖

b

)
= 0. (3.5)

Suppose not, lim inf
k→∞ δE

(
‖xk−Txk‖

b

)
> 0. Then there exists s > 0 and some positive integer n such that

δE

(
‖xk − Txk‖

b

)
> s > 0 for all k > n,

and so, we have

aγkδE

(
‖xk − Txk‖

b

)
> asγk.

By the condition that
+∞∑
k=1

aγk = +∞, we have
+∞∑
k=1

γkδE

(
‖xk−Txk‖

b

)
= +∞, which is a contradiction. So,

the equation (3.5) holds. It follows from the properties of the modulus of convexity δE(·) that

lim inf
k→∞ ‖xk − Txk‖ = 0,

and so, there exists a subsequence {xki
} of {xk} such that lim

i→∞ ‖xki
− Txki

‖ = 0. It is obvious that {xki
}

weakly converges to x since {xk} weakly converges to x. Thus, from Theorem 3.1, it follows that x = Tx,
i.e., x ∈ Fx1

> (T). The desired conclusion follows.

Using the same proof technique, we easily obtain the following theorem.

Theorem 3.3. Let K be a nonempty, closed convex subset of a uniformly convex Banach space E with a partial order
“6”, and let T : K→ K be a monotone α-nonexpansive mapping. Assume that the norm ‖ · ‖ is monotonic and the
sequence {xk} defined by the Mann iteration (3.4) with Tx1 6 x1 and Fx1

6 (T) 6= ∅. If the iteration coefficients {αk}

satisfy
+∞∑
k=1

γk = +∞, γk = min{αk, (1 −αk)} for all positive integers k,

then {xk} weakly converges to some fixed point x ∈ Fx1
6 (T) and x 6 xk for all k.

It is well known that the cone P is normal if and only if there exists a equivalent norm ‖ · ‖1 which is
monotonic. So the following corollary is obvious.

Corollary 3.4. Let E be a uniformly convex Banach space with the partial order “6” with respect to the normal
cone P, and let K be a nonempty closed convex subset of E, and let T : K → K be a monotone α-nonexpansive
mapping. Assume that the sequence {xk} defined by the Mann iteration (3.4) with Tx1 6 x1 and Fx1

6 (T) 6= ∅ (or
Tx1 > x1 and Fx1

> (T) 6= ∅). If the iteration coefficients {αk} satisfy

+∞∑
k=1

γk = +∞, γk = min{αk, (1 −αk)} for all positive integers k,

then {xk} weakly converges to some fixed point x ∈ F(T).

Let the intersection of the domain D(T) of monotone α-nonexpansive mapping T and the cone P is
nonempty, i.e., D(T) ∩ P 6= ∅. The following strongly convergent theorems may be obtained by means of
the proof technique of Song and Chen [21].
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Theorem 3.5. Let K be a nonempty, closed convex subset of a uniformly convex Banach space E with a partial order
“6”, and let T : K→ K be a monotone α-nonexpansive mapping. Assume that the norm ‖ · ‖ is monotonic and the
sequence {xk} defined by the Mann iteration (3.4) with 0 6 x1 6 Tx1 and Fx1

> (T) 6= ∅. If the iteration coefficients
{αk} ⊂ (0, 1) satisfy

+∞∑
k=1

γk = +∞, γk = min{αk, (1 −αk)} for all positive integers k,

then {xk} strongly converges to some fixed point x ∈ Fx1
> (T) and x > xk for all k.

Proof. It follows from Theorem 3.2 that {xk} weakly converges to some fixed point x ∈ Fx1
> (T) and

0 6 x1 6 xk 6 xk+1 6 x for all positive integers k.

Then from the monotonicity of the norm, it follows that

0 6 ‖x1‖ 6 ‖xk‖ 6 ‖xk+1‖ 6 ‖x‖ for all positive integers k,

and hence, the real number sequence {‖xk‖} is monotone increasing and bounded. Then the limit
lim
k→∞ ‖xk‖ exists and

lim
k→∞ ‖xk‖ 6 ‖x‖.

On the other hand, by the weakly lower semi-continuity of the norm, we have

‖x‖ 6 lim inf
x→∞ ‖xk‖ = lim

k→∞ ‖xk‖ 6 ‖x‖,
and so,

lim
k→∞ ‖xk‖ = ‖x‖.

It is well-known that each uniformly convex Banach space has the Kadec-Klee property, i.e.,

weak- lim
n→∞ xn = x and lim

n→∞ ‖xn‖ = ‖x‖ implies lim
n→∞ xn = x.

Consequently, lim
k→∞ xk = x. This completes the proof.

Theorem 3.6. Let K be a nonempty, closed convex subset of a uniformly convex Banach space E with a partial order
“6”, and let T : K→ K be a monotone α-nonexpansive mapping. Assume that the norm ‖ · ‖ is monotonic and the
sequence {xk} defined by the Mann iteration (3.4) with 0 > x1 > Tx1 and Fx1

6 (T) 6= ∅. If the iteration coefficients
{αk} ⊂ (0, 1) satisfy

+∞∑
k=1

γk = +∞, γk = min{αk, (1 −αk)} for all positive integers k,

then {xk} strongly converges to some fixed point x ∈ Fx1
6 (T) and x 6 xk for all k.

Proof. It follows from Theorem 3.3 that {xk} weakly converges to some fixed point x ∈ Fx1
6 (T) and

0 > x1 > xk > xk+1 > x for all positive integers k.

Then
0 6 −x1 6 −xk 6 −xk+1 6 −x for all positive integers k.

and hence, from the monotonicity of the norm, it follows that

0 6 ‖x1‖ 6 ‖xk‖ 6 ‖xk+1‖ 6 ‖x‖ for all positive integers k.

The remainder of the proof is the same as Theorem 3.5, so we omit it.
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Corollary 3.7. Let E be a uniformly convex Banach space with the partial order “6” with respect to the normal
cone P, and let T : P → P be a monotone α-nonexpansive mapping. Assume that the sequence {xk} defined by the
Mann iteration (3.4) with x1 = 0 and F(T) 6= ∅. If the iteration coefficients {αk} satisfy

+∞∑
k=1

γk = +∞, γk = min{αk, (1 −αk)} for all positive integers k,

then {xk} strongly converges to some fixed point x ∈ F(T).

Proof. It is obvious that F(T) = F0
>(T) = F

x1
> (T). Since x1 = 0 and T(P) ⊂ P, then

x1 = 0 6 T0 = Tx1.

Then the conclusion directly follows from Theorem 3.5.
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