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Abstract

In this paper, the application of adaptive generalized polynomial chaos (gPC) to quantify the uncertainty for non-linear
random difference equations is analyzed. It is proved in detail that, under certain assumptions, the stochastic Galerkin projection
technique converges algebraically in mean square to the solution process of the random recursive equation. The effect of the
numerical errors on the convergence is also studied. A full numerical experiment illustrates our theoretical findings and gives
useful insights to reduce the accumulation of numerical errors in practice.
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1. Introduction

The generalized polynomial chaos (gPC) technique [11, 12] and general Galerkin methods have been
widely used to quantify computationally the uncertainty for classical and fractional continuous stochastic
systems (random ordinary and partial differential equations) [7-9, 13]. From the numerical experiments,
it is usually stated that the convergence of the stochastic Galerkin projection is exponential or algebraic
(spectral convergence). Some theoretical analyses have been carried out to prove this rate of convergence
in continuous models [5, 10, 11]. To the best of our knowledge, the theoretical convergence analysis of
the stochastic Galerkin projection in random difference equations has not been done. Moreover, we will
work with a slight modification of the classical gPC, called adaptive gPC [2, 3]. By using a Gram-Schmidt
procedure from the canonical bases of the random inputs, orthogonal polynomials not belonging to the
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Askey-Wiener scheme are constructed. This gives more generality to the distributions of the random
inputs. We will establish conditions under which the stochastic Galerkin projection constructed via adap-
tive gPC converges algebraically to the solution process of the random difference equation in the mean
square sense. In addition, an analysis of how numerical errors could invalidate the theoretical results in
practical experiments is performed.

The structure of the paper is the following. In Section 2, we describe the method of adaptive gPC and
the application of the stochastic Galerkin projection technique to non-linear random difference equations.
In Section 3, we prove a theoretical result on the algebraic convergence of the stochastic Galerkin projection
to the solution process of the non-linear random difference equation. In addition, an analysis of how
numerical errors could invalidate the convergence is done. In Section 4, a full illustrative example is
included to support the theoretical results. Finally, in Section 5 conclusions are drawn.

2. Adaptive gPC

In this section we will revise the computational method of adaptive gPC from [2]. Using [5], we will
recall when adaptive gPC converges for square integrable random vectors. Finally, we will formulate
the problem of uncertainty quantification for non-linear random difference equations via the stochastic
Galerkin projection technique.

2.1. Method

Let (Q,J,IP) be an underlying complete probability space, where Q is the set of all outcomes w
equipped with a o-algebra of events I and a probability measure IP. We will work in the Hilbert space
(L2(Q), (,)) of random vectors 1 : Q — RY with finite second order moment: [ulliziq) = VEIUP] < oo,
where E stands for the expectation operator.

Assume u can be written as a function of random input parameters: uw = g((y,...,(s), where ¢y, ..., Cs ¢
Q — R are random variables and g : D¢, . ¢.) € R® — R is a Borel measurable function on the support
D(¢y,...ce) of the random vector ¢ = ((y, ..., (s). It is assumed that (y, ..., (s are independent, absolutely
continuous (not necessarily identically distributed), and with finite moments. Denote by f;, the density
function of ¢, 1 <1 <s. Let fg = f¢, x --- x f¢, be the joint density function of C.

We describe the procedure from [2] to cornputationally approximate u by means of orthonormal poly-
nomials evaluated at ¢. Let € ={1, ¢4, ..., (7'} be the canonical basis of the polynomials in {; up to degree
p. Using a Gram-Schmidt procedure we obtain an orthonormal basis =¥ = {$p}§(¢i), d1(&i), .-, d);((’,i)}
with respect to (,), for 1 < i < s. The simple tensor product from [2] generates an orthonormal basis
=P ={$1(Q),..., dp(Q)} with respect to (, ), where ¢1 = 1and P = (p +5)!/(p!s!). If we increase p and P up
to infinity, we obtain an orthonormal sequence of polynomials, {¢:(()}2,, with respect to (,). Formally,
u=3 2, idi(¢) in L%(Q), where the Fourier coefficients are given by iy = E[ud;(0)].

In [5, Th. 3.6], it is proved that, if the moment problem is uniquely solvable for each (;, 1 < i <s, then
the convergence of the series holds in L?(Q). For the sake of completeness, it is said that the moment
problem is uniquely solvable if the distribution is determinate by the sequence of its moments. By [5,
Th. 3.4], bounded random variables have a uniquely solvable moment problem.

2.2. Application to non-linear random difference equations

Consider a system of non-linear difference equations

u(m+1) =R({, ..., s, u(m)), (2.1)

where u(m) : O — RY is a random vector for each step m (i.e., a time-discrete stochastic process) and
..... ¢.) X R9 — IR9 is a Borel measurable function. The initial condition is u(0) = ug, where ug € R4
is a deterministic vector.

We describe a method based on adaptive gPC to intuitively approximate u(m) in L?(Q) for each
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m > 0. Formally,
=Y w(m)il0), (22)
i=1

where 1;(m) = E[u(m)¢;()]. Thus, for a fixed P, we look for a solution to (2.1) of the form

P
=) af(m)éi(Q), (2.3)
i=1

which, intuitively, should approximate u(m) in an L?(Q) sense. We impose 47 (m + 1) = R(g,aP(m)),
that is, Zl LW (m+1)¢i(Q) = (C Zl L0 (m)di(C )). We perform the inner product with each ¢ (C),

k=1,...,P, and use the orthonormahty of =P (stochastic Galerkin projection technique):

P
aP(m+1) = (Z )mw (2.4)

This gives a deterministic system of difference equations for {i.7 (m)}’"_,;, which can be solved numerically.
Thus, the approximation 4.7 (m) is numerically computable.

3. Convergence of adaptive gPC for non-linear random difference equations

In this section, we will establish hypotheses on (2.1) under which (2.3) converges to u(m) when
P — oo in the mean square sense. We will also see how the numerical errors in the computer may affect
the theoretical convergence.

3.1. Theoretical convergence

Letu = g({y,...,(s) be the random vector from Section 2. Let (3, ..., (s be independent and absolutely
continuous random variables with finite moments, not necessarily identically distributed. We will assume
that ¢y, ..., (s are bounded, with bounded density function f,. Let P = Z!;l 1;¢$i(C), where 1i; is the
Fourier coefficient defined by Ehtd;()]. As discussed in Section 2, ¥ — 1 as P — oo in L?(Q). In
what follows, we analyze the rate of convergence of i to u depending on the smoothness of g, by using
some ideas from [4, Lemma 2.1]. Concerning notation, we will denote by L2, the weighted L? space. The
polynomials from =P are orthonormal in L%C (IR3).

Let ] C R be a compact interval that contains the support of (y,...,(s. Let I = J° be the multidimen-
sional compact rectangle that contains the support of {. Consider the sequence of Legendre polynomials
{Li}$2; on J, where the degree of L; is i — 1. These polynomials are orthogonal in L2(]) (the weight is 1).
Define the sequence of multivariate Legendre polynomials {1);}{* ; on I by using a simple tensor product,
which is orthogonal in L?(I).

Since i — was P — oo in L2(Q), we have g(x) = Y 2 idi(x) in L%C(I). On the other hand,

if g € L2(I), then g(x) = Y 32, wiwbi(x) in L2(I), where g = [;g0x)Pi(x) dx/||1bin2m is the Fourier
coefficient associated to the multivariate Legendre basis.

Let 7tpg(x) = Z];:l idi(x), fgg(x) = Y e piq Uidi(x) (with convergence in L%C(I)), ipg(x) =
Zle 1;Pi(x), and ﬁ#g(x) = ) iopi1 Wi(x) (with convergence in L2(I)). We have g = tpg + ﬁ#g =
ftpg + A g. Notice that || - HL%C(I) < C|| - [lz(ry, for certain C > 0, by the assumed boundedness of f¢.

Therefore,
Clmpglitay = |\7_T1%9||%f&(1) = ||(tpg — 7tpg) + 7tp QH%Q(I) = ||ﬁP9—ﬁP9||if<(1) + ||7~f§9||%fc(1) > ||7~T§9||%fc(1)

where Pythagoras’s Theorem has been applied, because 7tpg — 7tpg is a multivariate polynomial of degree
P—1, and ¢pi1,dpyo, ... are orthogonal to the space of multivariate polynomials of degree P —1 in
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L%C (I). By [1, Th. 2.3], if g € H(I) (i.e., g is in the Sobolev space of functions in L?(I) whose weak partial
derivatives of order o belong to Lz(I)), then ||77[]J59||L2(I) < CoP~7glltio(1)- As a consequence, if g € H(I),
then [u—aP|2q) = Hﬁ%gHLf < CllAggllizry < CoPlgll1e(r)- In particular, if g € C*(I), then, for
every o > 0, there is a constant C > 0 such that

lu—1"[l120) < CoP™° 3.1

for all P > 1, i.e., there is algebraic convergence.

Consider the non-linear system of random difference equations (2.1). Take the series from adaptive
gPC (2.2). Denote the partial sums of the series in (2.2) by P (m) = Zle {i;(m)$i(¢). Consider the
Galerkin projection (2.3). The goal is to demonstrate that (2.3) converges to u(m) when P — oo, under
certain assumptions. Some ideas for the proof are taken from [10].

Theorem 3.1. Consider the system of random difference equations w(m-+1) = R({, u(m)), where ¢ = ({4, ..., Cs)
Q — R?® is a random vector, u(m) : Q — RY is a random vector, R is a Borel measurable function, and the initial
condition w(0) = g is a deterministic constant in R9. Let (y,..., (s be independent and absolutely continuous
random variables with finite moments, not necessarily identically distributed. Assume that (y,..., (s are bounded,
with bounded density function f¢,. Let ] C R be a compact interval that contains the support of Cy,...,Cs. Let
I = J® be the multidimensional compact rectangle that contains the support of (. Let gm be the solution of the sys-
tem of difference equations for u(m), i.e., wW(m) = gm (). Assume that g, € C*®(I). Suppose that R is Lipschitz
on I x RY: there exists a constant K > 0 such that ||[R(C,v1) — R({,Vv2)|l12(q) < Kl|[vi —valli2(q) for every pair of
random vectors vi,vo € L2(Q).

Then the Galerkin projection (.7 (m) defined by (2.3) converges to u(m) as P — oo in L2(Q). Moreover, the
convergence is algebraic.

Proof. We have that (2.2) holds in L?(Q), and we put this equality in the recursive equation (2.1):

[e¢]

D twi(m+1D)di(0) = (c,zul )

i=1

Fix P > 1. Performing the inner product with each ¢x(C), k =1,...,P, and using the orthonormality of
{$i(0)}52,, we obtain Tix(m+1) = (R(, Y72, T (m)di(C)), dx(C)). From (2.4), we derive that

e (m+1) —ag(m+1) = (C D w(m ) —R(¢, 0" (m)), px(C)).

By Cauchy-Schwarz inequality, orthonormality of {¢x ()} _;, the Lipschitz condition, the triangular in-
equality, and the well-known inequality (a + b)? < 2(a® + b?), we derive

2 2

(t(m+1) —af (m+1))? (c Dt (m)dil ) R(¢, 0P (m)) <K ) wi(m)di(¢) — 6P (m)
12(Q) i=1 12(Q)

~ 2
< (Hu m)—aP(m), o+ wmd) )

i=P+1 L2(Q)

00 2

21 ~P ~P 2 7. -
<2k |a aPm||, , +2K i:;lul(m)obl(o

L2(Q)
Summing at both sides for 1 < k < P and considering that

P
D ((m+1)—f (m+1)? = @7 (m+1) =P (m+ 1) o,
k=1
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by orthonormality of {¢1()}}_; and Pythagoras’s Theorem, we deduce that

2

2 (o]
[a” (m+ 1) =P (m+ DI, ) < 2PK? [[6° (m) — 0 (m) i) TR D mm)di(@)
i=P+1 LZ(Q)

This may be viewed as a recurrence (with inequality) for [[it”(m) — ﬂP(m)Hiz( o), With initial condition
given by ||itP(0) — 0P (0) ||i2( Q) = |luo — uOH%Z( o) = 0. Going backwards in the recursive expression, one
gets that

(2PK?)i+1
12(Q)

> tw(m—i)di(Q)

i=P+1

[6”(m+1) =0 (m+ D2 o) <

[u(m—j) =P (m—j)|[72 o (2PKZ)
(Q)

Let 0 > (m+1)/2. Since gm € C*(I), by (3.1) there exists a constant Cyn,c > 0 such that ||[u(m —j) —
1" (m—j)lli2(q) € Cm,oP~ 9 forall j =0,..., m. Thereby,

+1
1P (m+1) — 0P (m+ 1)) o ZO < (m+1) 3% (2PKH)™
By (3.1) again, [u(m+1) —a”(m+1)2, ) < D2, ,P~(20=m~1) for certain constant Dy, ¢ > 0. By the

triangular inequality,

[u(m+1) —aP(m+1) HL2 ) < (lu(m+1) - WP (m+1)| )+ 0" (m+1) =P (m+1)|20
<2u(m+1) —aP (m+1)HLz(Q)+2Hu (m+1)—aP(m+1) HLZ(Q) (3.2)
D%IG C%IU 2 +1 E%IG
ey + 2(m 4 1) R (2PKY) ™ = o

Since 0 > (m +1)/2 is arbitrary, we conclude that the Galerkin projection P (m) converges algebraically

to u(m). O

The hypothesis of boundedness for (i, ..., (s allowed comparing (2.2) with the multivariate Legen-
dre basis via [1, Th. 2.3]. From a mathematical standpoint, this condition is a restriction. However, in
practical applications, this assumption is not so strict. If a random input has an unbounded distribution,
then one may truncate it to adapt to Theorem 3.1. In this regard, it is important to point out that ap-
plying Chebyshev-Markov inequalities or the inverse cumulative distribution function (quantile function)
allows us to determine appropriate finite intervals where the truncated distribution captures most of the
probabilistic information of the corresponding unbounded random variable. Moreover, in some models,
for instance epidemic models, we deal with random proportions, which are bounded in [0,1] (see the
numerical example from Section 4).

3.2. Numerical convergence

We have proved that, under certain hypotheses, the Galerkin projection @.” (m) converges algebraically
to u(m) as P — oo in L?(Q). In practice, one must take into account the computational errors associated

to =¥ and @' (m), i = 1,...,P. Thus, in reality, one works with 0" (m) = S ﬁf IO () STTOT (),
where 0" em’r(m) = 0P (m ) + €P(m) takes into account the errors when computing the coefficients, and
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[d$(Q) — di(Ql2(q) < i is the error from the Gram-Schmidt procedure (which affects the error

e”(m)). The rate of convergence (3.2) becomes
[e(m) — @™ (m) |2 () < ul(m) —a"( ||L2 )+ 187 (m) —a" et m)| 2 g
< Co‘ P cr+ Hu ﬁP,error(m)HLz(Q)

If the numerical error [|[0” (m) — 4™ (m)||;2(q) is large, then there might be no algebraic convergence.
To analyze a little bit further the error term ||0” (m) — "™ (m) ||z o) from an intuitive point of view,
let us assume for simplicity that n; = 0 and that ef (m)=cfori=1,...,P. Then

~ P error (

”ﬁp(m) —u m)”%z(g) = e’P,

by Pythagoras’s Theorem. Thus,
[u(m) — ™o (m) |2, ) < 2C5 P27 4 2€*P = b(P).

This bound b(P) takes its minimum at P = QUC%,m /€2)1/(20+1)  Hence, if there is a large error € in the
computation of the coefficients of the Galerkin projection, to ensure a small error it is better not to take a
large P.

To summarize, from a theoretical point of view it is better to take a large P, so that the approximation
done by the Galerkin projection t¥ (m) resembles the real solution u(m); however, a excessively large P
may increase the computational errors and invalidate the results obtained.

4. Numerical experiments

We will show a numerical example to illustrate the theoretical results. Consider the non-linear random
difference equation u(m +1) = Cu(m)(T —u(m)), where T > 0 is a constant,  is a random variable and
u(m) is a random variable for each time step m. This recursive equation is called logistic.

From a modeling point of view, T could represent the total population and u(m) the number of
infected individuals at time m. It is assumed that infections last for one time step. The number of
infections u(m + 1) depends on the number of contacts between infected individuals u(m) and susceptible
individuals T —u(m), at a random rate (. Notice that, for this model to make sense, we must ensure that
u(m) € [0, T] for every m > 0. If we suppose that 0 < ¢ < 4/T, then Cu(m)(T —u(m)) < ((u(m)+T—
u(m))/2)2=CT?/4=T (by the AM-GM inequality), so that the number of infected persons lies in [0, T].

Let us see that the hypotheses of Theorem 3.1 hold. We have q = s = 1. Take ( as an absolutely
continuous random variable with finite moments, bounded and with bounded density function f;. We
take I = [0,4/T]. If we denote the solution of the recursive equation by u(m) = gm(¢), then clearly
gm € C*®(I), because when we go backwards in the logistic equation, the computations consist of sums
and products. Let R((, u) = Cu(T —u)lp1j(u), for u € R, which is Lipschitz on R. By Theorem 3.1, the
Galerkin projection 1" (m) tends algebraically to 1(m) as P — co in L?(Q).

For the numerical example, we use the software Mathematica®. We take T = 100 and uy = 3.
We consider the following two distributions for the random rate: { ~ Triangular(0.02,0.03) and ¢ ~
Exponential(3)|(0,031,0.035- In both cases, ¢ < 0.04 = 4/T. In Figure 1, we show the numerical results
obtained for 0 < m < 30 and P = 4,5,6. We have estimated E[P (m)] (average number of infected indi-
viduals) and a confidence interval with the rule |E )] £/ VP (m)], by utilizing E[P (m)] = uf (m)
and V[P (m)] = ZF 2(11 (m))? [11, p. 67]. It is curious that the results obtained for P = 4 and P = 5
are similar, which indicates that the convergence starts being achieved, but for P = 6 disastrous errors
appear (from the time step m > 8). We have analyzed numerically where those catastrophic errors come
from: when performing the orthonormalization procedure in Mathematica with the built-in function
Orthogonalize, there is a loss of orthogonality [6], which increases as the length P of the basis grows.



J. Calatayud, J.-C. Cortés, M. Jornet, J. Nonlinear Sci. Appl., 11 (2018), 1077-1084 1083

This example shows that one has to choose the correct order P, in the sense that a large P is theoretically
better, but could make the numerical errors accumulate. In this example, the best choice for uncertainty
quantification is P = 5.

individuals
100f

L |
80 |
7 |
60

40/

individuals

Figure 1: Mean value estimates and confidence intervals (in dashed lines). Up: Triangular distribution. Down: Truncated
exponential distribution. P = 4 is denoted by O in green color, P = 5 is denoted by O in blue color, and P = 6 is denoted by ¢ in
red color. Notice that similar results are presented for P = 4 and P = 5, which agrees with the theoretical convergence. However,
for P = 6, the accumulation of numerical errors invalidates the results (from m > 8).

5. Conclusions

The gPC technique has been widely used to quantify the uncertainty for continuous stochastic systems
(random ordinary and partial differential equations). However, applications of gPC to random difference
equations have not been performed with such an emphasis. In this paper, we have studied the application
of a novel variation of gPC, called adaptive gPC, to non-linear random difference equations. We have
proved in detail that, under certain assumptions, the stochastic Galerkin projection technique converges
algebraically in mean square to the solution process of the random recursive equation. We have also
analyzed how numerical errors could invalidate in practice the theoretical approximations. An example
has been included in the end to illustrate the theoretical aspects of the paper.
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