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Abstract

In this paper, we introduce an iterative algorithm for finding the set of common fixed points of nonexpansive semigroups
by the generalized viscosity implicit rule in certain Banach spaces which has a uniformly Gateaux differentiable norm and
admits the duality mapping j,, where ¢ is a gauge function. We prove strong convergence theorems of proposed algorithm
under appropriate conditions. As applications, we apply main result to solving the fixed point problems of countable family of
nonexpansive mappings and the problems of zeros of accretive operators. Furthermore, we give some numerical examples for
supporting our main results.
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1. Introduction

In this paper, we assume that E is a real Banach space with dual space E* and C is a nonempty subset
of E. Let T: C — C be a mapping. We denote the set of all fixed points of T by F(T) ={x € C:x =Tx}. A
mapping T : C — C is called nonexpansive if for each x,y € C such that

ITx =Tyl < Ix =yl
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A mapping f : C — C is called a contraction, if there exists a constant p € (0,1) and for each x,y € C

1<) = F)Il < plx —yl-

The viscosity approximation method has been successfully applied to various problems from calculus
of variations as minimal surface problems and plasticity theory and phase transition. Various applications
can be obtained in optimal control theory, singular perturbations, game theory, and partial differential
equations (see [4] and references therein). In recent years, viscosity approximation method for approx-
imating the set of (common) fixed points of nonlinear mappings have been investigated extensively by
many authors in Hilbert and Banach spaces (see [10, 11, 13, 19, 20, 23-25, 30] and the references therein).

Very recently, the implicit midpoint rule (IMR) has become a powerful numerical method for numer-
ically solving ordinary differential equations (in particular, the stiff equations) (see [5, 6, 14, 21, 22, 28])
and differential algebraic equations (see [32]).

Xu et al. [31] combined the Moudafi’s viscosity method [19] (see also [30]) with IMR for nonexpansive
mappings T and proposed the following viscosity implicit midpoint rule (VIMR) in Hilbert spaces H as

follows:
Xn +Xn+1

2

where {«,,} is a real control condition in (0, 1). They also proved that VIMR converges strongly to a point
x* € F(T) which also solves the variational inequality

Xri1 = anf(xn) + (1 an)T( ) 1, (L.1)

((f—Dx*,z—x") <0, Vze F(T), (1.2)

where [ is the identity on H.

Later, Ke and Ma [17] improved the VIMR (1.1) by replacing the midpoint by any point of interval
[Xn,Xn+1]. They introduced the so-call generalized viscosity implicit midpoint rules to approximating the
tixed point of nonexpansive mapping T in Hilbert spaces H. They obtained the following result.

Theorem 1.1 (Theorem KM). Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let
T : C — C be a nonexpansive mapping with F(T) # 0 and let f be a contraction on C with coefficient p € (0,1).
Let x1 € C, and {xn} be a sequence generated by

Xnt1 = Xnf(Xn) + Brnxn +YnT(snxn + (1 —=sn)xn41), M 2>1, (1.3)

where {otn }, {Pn}, {yn), and {sn} are sequences in (0,1) with &n + Bn +vn = 1. Suppose that the following
conditions hold:

€1 limpsoyn =1

(C2) Z?zl on = 00 and Z:f:]_ |(Xn+1 — Xnl| < 00;

(C3) > o1 Bns1—Bnl < oo;

(C4) 0<k<sn<spp1<lforalln>1.

Then {xn} converges strongly to a point x* € F(T), which also solves (1.2).

The above results naturally bring us to the following questions.

Question 1: Can we obtain strong convergence result of Theorem 1.1 to higher spaces other than Hilbert
spaces? Such as a real reflexive strictly convex Banach space which has a uniformly Gateaux differentiable
norm and admits the duality mapping j,, where ¢ is a gauge function.

Question 2: Can we remove the control condition (C1) in Theorem 1.1?
Question 3: Can we weaken the control conditions (C2) and (C3) in Theorem 1.1?

Question 4: Can we extend the generalized viscosity implicit midpoint rules (1.3) to finding the set of
common fixed points of a family of mappings? Such as one-parameter semigroups of nonexpansive

mappings.
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The main objective in this paper is to give an affirmative answer to above questions, we introduce
an iterative algorithm for finding the set of common fixed points of nonexpansive semigroups by the
generalized viscosity implicit rule in a real reflexive strictly convex Banach space which has a uniformly
Gateaux differentiable norm and admits the duality mapping j,, where ¢ is a gauge function. Then, we
prove strong convergence theorems of proposed algorithm with different approach on control conditions.
As applications, we apply main results to solving the fixed point problems of family of nonexpansive
mappings and the problems of zeros of accretive operators. Furthermore, we also give some numerical
examples for support our main results.

2. Preliminaries

The continuous and strictly increasing function ¢ : [0,00) — [0,00) is said to be gauge function if
©(0) = 0and @(t) — oo as t — co. The duality mapping J, : E — 2F" associated with a gauge function
¢ is defined by

Jo(x) ={f* € B2 {x, 1) = [Ix[[@([IxI]), [f*[] = @(lIx[]), ¥x € E},

where (-,-) denotes the generalized duality paring. In particular, the duality mapping with the gauge
function @(t) = t, denoted by ] is referred to as the normalized duality mapping. In this case @(t) = t971,
q > 1, the duality mapping J, = ] is called generalized duality mapping. It follows from the definition that

Jo(x) = %""”)](x) for each x # 0, and J4(x) = Ix]|972](x), q > 1 (see [9]).

Remark 2.1. For the gauge function ¢, the function @ : [0,00) — [0,00) defined by ®@(t) = fg @(t)dT is
continuous, convex, and strictly increasing function on [0,00). Therefore, ® has a continuous inverse
function @ 1.

Remark 2.2. Tt is observe that if k € [0, 1] then ¢(ky) < @(y). Then, we have

kt t

o (kt) =j o(t)dt = kL o(ky)dy < kjo oly)dy = ka(t).

0

Remark 2.3. If a Banach space E has a uniformly Gateaux differentiable, then J¢ is single-valued and also
denoted by j .

Lemma 2.4 ([18]). Let E be a Banach space. Then for each x,y € E, the following inequality holds:

O([x+yll) < (X[ + (Y, je(x+Y)), jelx+y) €Je(x+y).

Definition 2.5. A one-parameter family 8 = {T}t>0 : C — C is said to be a nonexpansive semigroup if it
satisfies the following conditions:

(51) Tox = x for x € C;
(S2) Ts4t =TsTi fors, t > 0;
(S3) limy_,o+ T(t)x = x for x € C;
(54) for each t > 0, Ty is nonexpansive, i.e.,
[Tex = Teyl] < [Ix—yll, vx,y € C.

Remark 2.6. We denote by F(§) the set of all common fixed points of §, i.e., F(§) = ﬂt>0 F(Ty).

Now, we give some examples of semigroup operator. The following classical examples were the main
sources for the development of semigroup theory (see [15]).
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Example 2.7. Let E be a real Banach space and let £(E) be the space of all bounded linear operators on E.
For A € L£(E), consider the initial value problem for a linear autonomous differential equation on [0, co):

u/(t) = Au(t), u(0) =x. (2.1)
Notice that the solution of problem (2.1) is given by

u(t):=Tyxforallt >0
Then, we can show that the operator Tyx is a semigroup on E.

Example 2.8. Let E := LP(R"), 1 < p < oo. Consider the initial value problem for the heat equation:

0
ailtl =Au, forxcR"“andt>0, (2.2)

u(x,0) = f(x), forx e R™,

where A=Y e is the Laplacian operator on E. By using Fourier transform, we can write the solution

i=1 a
u(x,t) in the form of convolution integral as:
wix t) —1J e R (£)dE = (Ko + H)(x)
7 (47‘[‘t)“ N t ’
il
where t > 0, f € E, and K is the heat kernel given by K¢(x) = 1 e%. Then the solution of

\/ (47tt)m

problem (2.2) can be written as:
Tef(x) ;== u(x, t) = (K¢ x 1) (x).
We can show that the operator T;f(x) is a semigroup on E.

Definition 2.9 ([1, 2, 8]). A continuous operator semigroup 8§ = {T¢}t>0 : C — C is said to be uniformly
asymptotically reqular (in short, u.a.r.) if for all s > 0 and any bounded subset B of C,

lim sup || Tex — T Tex|| = 0.

t—o0 <€B

Example 2.10. Let C be a closed convex subset of a uniformly convex Banach space E. Let § = {T}¢>0 :

C — C be a nonexpansive semigroup. Let {o¢}t~o defined by o¢x = % fg Tsxds. Then, for each h > 0 and
any bounded subset B of C, we have

1" 1" 1"
o= onorx] = Jovx— - | Teowds] =17 | (oux—Teowdsl < - | flowe—Tuoue]ds.
From Lemma 2.7 of [12], we have
1 h
lim sup [[o¢x — o oex| < J lim sup |lotx — Tsoex|/ds =0,
t—>ooXeB h

ie., {Ot}t>0 is v.a.r.

Theorem 2.11 ([13]). Let C be a nonempty, closed, and convex subset of a real reflexive strictly convex Banach space
E, which has a uniformly Gateaux differentiable norm and admits the duality mapping j,. Let § = {Ti}i>0: C — C
be a w.a.r. nonexpansive semigroup such that F(8) = (5o F(Tt) # 0 and f be a contraction on C with coefficient

€ (0,1). Suppose that {ty } is a real divergent sequence and {otn } is a real sequence in (0,1) with limn 00 &tn = 0.
Then, the sequence {xn } defined by

Xn = otnf(xn) + (1 - (Xn)Ttanz n>1,
converges strongly to a point p € F(§), which also solves the variational inequality

(flp) =P, je(z—p)) <0, Vze F(8).
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Lemma 2.12 ([26]). Let {xn}and {l,,} be bounded sequences in a Banach space € and let {3} be a sequence in [0, 1]
with 0 < liminf, o Bn < limsup, ,  Bn < 1. Suppose xny1 = (1 — Bn)ln + Bnxn for all integers 1 > 0
and limsup,,_,  (lng1 — bl = [[Xng1 —xn|)) <O. Then, limy, o0 [l — xn|| = 0.

Lemma 2.13 ([29]). Assume that {ay} is a nonnegative real sequence such that
ani1 < (1—0n)an +6n0n,

where {0} is a sequence in (0,1) and {on} is a real sequence such that
(i) X1 On =00
(ii) limsup,, .. on <0o0r ) ¥ ;10nh0n| < co.

Then, limp oo an = 0.

3. Main results

Theorem 3.1. Let C be a nonempty, closed, and convex subset of a real reflexive strictly convex Banach space E,
which has a uniformly Giteaux differentiable norm and admits the duality mapping j,. Let 8 = {T}t>0: C — C
be a w.a.r. nonexpansive semigroup such that F(8) := (V5o F(Tt) # 0 and f be a contraction on C with coefficient
p € (0,1). For given x1 € C, let {xn} be a sequence generated by

Xn4+1 = nf(Xn) + Brnxn +vnTt, (snxTl +(1— sn)an), vn>1, (3.1)

where {atn }, {Bn}, {vnt, {sn} C (0,1) with &n + Pn +vn = 1, and {tn} C (0, 00) satisfying the following condi-
tions:

(C1) limn_yoo dn =0and Y 57 1 otn = 00;

(C2) limp 50 [Briy1 — Bnl =0and 0 < liminf,, o Bn < limsup,, ,  Pn <1;

(C3) tny1 =h+ty forallh > 0and limy o tn = 00;

(C4) 0<k<sn<snp1<lforalln>1.

Then, {xn} defined by (3.1) converges strongly to a point p € F(8), which also solves the variational inequality

(flp) = p,iplz—p)) <0, Vz e F(8). (3.2)

Proof. First, we will show that {x,} generated by (3.1) is well defined. For each x,u € C, define the
mapping S, : C = C by

Snx = onf(x) + Bnux+vnTt, (snu+ (1— sn)x), vn > 1.
For each x,y € C, we have

[Snx — Sny|l = lon (F(x) = f(y)) + Brn(x —Y) + Yn [Ten (snu+ (1 —sn)x) = Te, (snu+ (1 —sq)y) |||
< an[[f(x) = FY) |+ Brllx =yl +vnllTe, (snu+ (1 =sn)x) = Te, (snu+ (1 —sn)y) |l
< onplx =yl + Bnllx =yl +¥n(1—sn)lx —yl|
=([1=(1=ploan —ynx)[x—yl[[ < (1= (1 —=plan)|[x—yl,
this mean that Sy, is a contraction. So S, has a unique fixed point. Therefore, the sequence {x,,} defined

by (3.1) is well-defined.
Next, we show that {x,,} is bounded. For each p € F(8), we have

[Xnt1 =Pl = llan(f(xn) =P) + Br(xn —P) +Vn(Tt, (Snxn +(1— Sn)xn+1) =l
< o |[f(xn) =Pl + Bnllxn =PIl +vnlTe, (San +(1— Sn)XnH) —pll
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< otn|[f(xn) =Pl + BnllXn =Pl +¥nllsn(xn —p) + (1 = sn) (Xne1 —P)||
< o [[f(xn) = F(P)|| + onl[f(P) =Pl + Bnllxn — Pl + Tnlsnllxn — Pl + (1 = sn)[xn+1 —Pl)
< (onp + Bn +vnsn)lxn —pll + anl[f(p) =Pl +vn (1 —sn)lxns1 —pll,

which implies that

—pl|l+ —-—F"———||f(p) —
I —vn(l—sy Pn Pt g I vl

(- _(A=pan B (1—p)an  |If(p) —pll
_<1 1—vyn(l— ))HX p||+1*'Yn(1*Sn) 1-p

f(
< max { o ~ | ”f”}

[Xn41—pl <

By induction, we have

f
oo =] < max { o = pl, P, 1,

Hence, {xn }is bounded. Consequently, we deduce immediately that {f(xn)} and {T¢, (snXn+(1—sn)Xn+1)}
are bounded.

Next, we show that limn o0 [|[Xn+1 —Xn|| = 0. Let zn = snxn + (1 —sn)xn41 for all m > 1. Then, we
have

”Zn+1 - ZnH = Hsn+1Xn+1 +(1— 3n+1)xn+2 — (Snxn+(1— 3n)"n+1)”
< (1—- Sn+1)HXn+2 _XnJrlH + SnHXnJrl - XTLH'

Let yn = % for all n > 1. Then, we drive that

_ Xn42— Brnt1Xn+1 _ Xn+41— BrnXxn

A R 1—Bn
_ o 41f(Xni1) +Vn+1Ttn+1Zn+1 B anf(xn) +vnTe, zn
1—Bnt1 1—Bn
Kn+1 Xn Xn Kn+1
=" ¢ - T, —T _om T _Ontl 1 ,
T~ (1) — 7= ™ (n) + TenaZnrn = Tenzn + 77— B I T g tneaZni

It follows that

Xn+1 (06
[yn+1 —ynll < ﬁ”ﬂxnﬂ) — T Znial + 1 _T[;n [Tenzn = Tl + (I Tes Zn1 — Te Znl|
n
+ HTthrlzn - TthTL” (3 3)
K41 x '
< [f(xnr1) = Tep i Zn 1l + 75— [ Teazn — flxn) |
1-— Bn+1 1-— Bn

+(1— Sn—l—l)”XﬂJrZ - Xn—b—l” + SnHXn+1 *Xn” + HTthZn - TthTLH'

Now, we estimate ||xn+2 —Xn+1||. Observe that

Xn+2 = Xnt1|l = [|ant1f(xnt1) + Brnt1Xns1 + Ynr1Te, Znt1 — (0 f(xn) + Brxn +Yn T, zn)||
= [loen1(f(xn+1) — f(xn)) + (an1 — on) (F(xn) — Tt zn) + P11 (X1 —xn)
+ (Brg1 = Br)(xn — Tenzn) + Y1 (Te, Zns1 — Tenzn) ||
< o [[f(xns1) = Fxn) || +lan1 — anl[[f(xn) = Te, zn || 4+ Brsilxns1 — x|

+ |Bn+l - Bnmxn - Tthn” +Yn+l||Ttn+1Zn+l - TthZnH +Yn+1”Ttn+1Zn - TthnH
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< (anJrlp + BnJrl)”anrl - XnH + |(Xn+l - O£n|Hf(Xn) - Tthn”

+1Bn+1 — Bnlllxn — T, znll

Y1 (1= sny) [ Xnt2 = Xns1ll + snllXns1 —Xnl) + Yne1 | T Zn — Tenzn ||
< (ang1Pp + Bt +Ynrrsn) Xns1 — x|l + (|(Xn+1 — |+ Bry1 — Bn|)M1

+Yn+1(1 — Sn+1) ||Xn+2 —Xn+1 H +Yn+1 ||Ttn+1ZT1 - TthTlHr

where My = sup, o ({[[f(xn) | + [|Te znll, [[Xn | + I Te, zn [} It follows that

[Xn+2 = Xn41l]
1P + Pl +VYnt1Sn

|‘xn+1 — (Xn| |Bn+1 - Bn| )
< X —Xn | + + M
Ty (1 —snsq)  ens1 =l <1—vnHu—an) T ym(—smn )™M
‘Yn+1
Tozn—T
T Y1) | oo~ T (3.4

(1—p)otnt1 ) < |otn41 — &nl IBrnt1— Bnl >
=(1-— Xn+1 — X =+ =+ M1
( 1—vns1(1—sny1) Pense nl 1—vni1(1=sny1)  T—vnp1(l—snq1)
Yn+1

1—vns1(1—sny1)

Substituting (3.4) into (3.3), we get that

[Ttpszn — Teaznll-

(0,8 0,8
[ynst —Unll < o= [[f(xns1) — Tenpaznst | + o Tenzn — Fxn)|
1— BnJrl 1— Bn
(1—p)ani1 >
+(1—s {(1— X —x
( n+1) 1_Yn+1(1_5n+1) ” nl TLH

+ ( |(Xn+1_‘xn| + |Bn+1_Bn| ))Ml

1—vYns1(I=sng1) 1—=vni1(1—sn41

Yn+1
+ Te o zn— T,z }
1_Yn+1(1_3n+1)“ frm o

+ snl[Xny1 —xnll + ”Ttn+lzn — T, znl
< <1_ (1—p)oni1(l—sni1) Kn41
= 1 _Yn+1(1 - 5n+1) 1—PBnt1

Kn |(Xn+l - (Xn| |Bn+1 - Bn| )
+ T, zn — f(xn) || + < + M
1_BnH o ( )H 1—=Yns1(I=sns1)  1—=vny1(1—5n41) !
1

T —T .
" 1 —vni1(1—=sny1) H basafm tuZn

Since t,41 = h+1t, for all h > 0, we have

(3.5)

)wﬁl—mm+ 1FGenst) — Tepy2nsn]

Jim [Te 20 = Teaznll = m [[TaTe,zn = Te,zn || < lim Sup T Tex = Te x| = 0.
n

Then from (3.5), we have

limsup(HynH *ynH - ||Xn—|—1 *XTLH) <0.
n—oo

By Lemma 2.12, we have
lim |[yn —xn| =0.

n—oo

Consequently, we have

nlglgo [Xn41—xnl| = T}E}(}o(l —Br)[yn —xnl| =0
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and
lim |[zn —xn|| = lim (1 —sn)|[Xn+1 —xn| =0. (3.6)
n—oo n—oo

Next, we show that limn _, ||Xn — ThXxn|| = 0 for all h > 0. Since

Xnt1— T xnll < an[f(xn) = T, znll + Bnllxn — T znll + Vnll T zn — Te Xn |

<o [[f(xn) = Tepxnll + Bnllxn —Xnp1ll + Brllxns1 — T Xnll + Ynllzn —xnll,

and hence
Kn Bn Yn
Xnt1 — Texn |l < T p If(xn) — Te xn |l + ﬁHan —xnll + 18 |zn —Xn|| = 0 as n — oo.
n n n
Consequently,
[zn = Tenznll < llzn = Xnall + [[Xni1 — Te, zn|]

<
< snllxn =1l + X1 = Te Xn |l + [ Teaxn — Te, znl
< snllxn —Xn41l] + IXnt1 — Te Xnll + [[Xn —zn|| — 0 as n — oo.

Then, for all h > 0, we obtain that

lzn — Thznll < llzn — Teaznll + 1 Tenzn — TaTe zn |l + [ThTe, 20 — Thza |l

<
<2|zn =T, zn|| + sup || Te,x — ThTe, x| = 0asn — oo.
x€{zn}

From (3.6), we also have
lim ||xn —Thxn|| =0, Yh >0.
n—o00

Let um = otmf(um) + (1 — am ) Ty, Um, where {&r,} and {t;} satisfy the condition of Theorem 2.11. From
these, we know that {u,} converges strongly to p, where p € F(§) is a unique solution of (3.2). Since

Hum _XnH(P(Hum - XnH) = o‘n<f(um) _anj(p(um - Xn)) +(1— (xm)<Ttmum _Xn/j(p(um - Xn))
= ot (f(um) — f(p) —um +P,je(Um —xn)) + am(f(p) —Pje(um —Xn))
+ otm (Um — X, J o (Um —Xn)) + (1 — & ) (T, Wm — Tt Xm, o (Wm — X))
+ (1 —otm ) (T, Xn — Xn,j o (Wm —Xn))
< Jum —xnlle([um —xnll) + [T, xn —Xnll@([um —xnl])

+om (14 p)e([[um = xn|)[um =Pl + am(f(p) =p,j o (Wm —xn)),
which implies that

[T, Xn —xn|

2=l (14 gl — )Mz 67

(f(p) —Pie(xn —um)) < (

where My = sup,, - {@(|[um —xn|[)}. Now, taking the upper limit as n — oo and as m — oo, respectively
in (3.7), we obtain

lim sup lim sup(f(p) —p,jp (Xn —um)) < 0. (3.8)

m—00 n—oo

Since j, is norm-weak™ uniformly continuous on bounded sets, as m — oo, then

(f(p) =P, i (xn —um)) = (f(P) =P, i (xn —P))-
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Hence, for each € > 0, there exists N > 1 such that if m > N, for all n > 1 we have

<f(‘p) _p/jtp(xn _p)> < <f(‘p) _p/jtp(xn _um)> + €. 3.9)

Thus taking upper limit as n — oo and as m — oo in both sides of (3.9), we get from (3.8) that

limsup(f(p) —p,jo(xn —Pp)) < e.

n—o0

Since € > 0 is arbitrary, then we obtain

limsup(f(p) —p,jo (xn —p)) <O0. (3.10)

n—oo

Finally, we show that x;, converges strongly to p. We have from Lemma 2.4 that

(D(||Xn+1_p|| O([Joen (f(xn) =P) + Brn(xn —P) + Yn (T, (snxn + (1 =sn)xny1) —Pl))

O ([Joen (flxn) — ( N+ Bnxn —P) +Vn(Te, (Snxn + (1 —sn)xni1) =PI

+‘Xn<( ) — PfJ (Xn+1—P)>

O([[f(xn) = f(P)) + Bn@([xn =PI +Vn @[Tz, (snxn + (1 = sn)xni1) —pll)

+‘Xn< (p) — prj(P(Xn+l_p)>

< anp®([xn —pl) + Bn@([xn =PI + Yn@([sn(xn —P) + (1 = sn) (xn+1 —P)I)
+°‘n<f(P)—P/j<p(Xn+l—P)>

< @np®([fxn — Pl + Br®(xn — Pl + Y (50 ®([xn — Pl + (1= )@ ([xn 11— pI})
+an(f(p) =P i (xni1—P))

= (onp+Bn +¥Ynsn)@([[xn —pl) + Yn(l—sn)@([xni1 —Ppl)
+O‘n<f(P)_Prj<p(Xn+l—P)>’

which implies that

n P+ Pn 4+ Ynsn on .
O([[xn1—plD) < T <D(Hxn—PH)+Yin(l_sn)ﬁ‘(p)—p,Jcp(xn+1—p)>
_ (1—9)0671 . Xn . . .
—(1—1_%1(1_8“))@(“7‘71 pH)—i_yin(l—sn)(f(p) Pre(Xn+1—P))

=(1- en)q)(HXn —P”) +0non,

where 0, = ——Pln jand on = ﬁ(f(p) —P,je(xnt1 —p)). From (C1) and (3.10), we see that

1—yn(I—sn
Y 1 0n =o00and limsup,_,  on < 0. We conclude by Lemma 2.13 that ®(|[x, —p||) = 0 as n — oco. By
the property of @, we obtain that {x,} converges strongly to p as n — oco. This completes the proof. [

Corollary 3.2. Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let § = {T¢}¢>0: C — C
be a w.a.r. nonexpansive semigroup such that F(8) := (5o F(Tt) # 0 and f be a contraction on C with coefficient
€ (0,1). For given x1 € C, let {xn} be a sequence generated by

Xnt1 = &nf(xn) + Bnxn +¥nTe, (Snxn +(1— sn)XnJrl)r vn > 1. (3.11)

Suppose that {0}, {Bn}, {Yn), {sn}, and {tn} be the same as in Theorem 3.1. Then, {xn} defined by (3.11) converges
strongly to a point p € F(8), which also solves the variational inequality

(f(p) —x",z—p) <0, Vz € F(8).

4. Some applications

4.1. Convergence theorem for a family of mappings
Definition 4.1. Let C be a subset of a Banach space E. Let {T;,}7_; : C — C be a family of mappings such
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that N7_; F(Tn) # 0. We say that {T,}?°_; satisfies the AKTT-condition ([3]) if

D sup [Tagrx — Tux| < oo. (4.1)
n=1x€C

Lemma 4.2 ([3]). Suppose that {T,}>_; satisfy the AKTT-condition. Then, for any x € C, {Tax}%_; converges

strongly to some point of C. Further, let T : C — C defined by Tx = limn_o Tnx for all x € C. Then,
limp 00 SUpy c [Tx = Tax| = 0.

In the sequel, we say that ({T.}_;, T) satisfies the AKTT-condition if {T,,}}°_; satisfies the AKTT-

n=1’

condition and T is defined by (4.1) with (o, F(Tn) = F(T).

Theorem 4.3. Let C be a nonempty, closed, and convex subset of a real reflexive strictly convex Banach space E,
which has a uniformly Gateaux differentiable norm and admits the duality mapping j,. Let {Tq}S ; : C — C
be a sequence of nonexpansive mappings such that (\o_1 F(Tn) # 0 and f be a contraction on C with coefficient
p € (0,1). For given x1 € C, let {xn} be a sequence generated by

Xn41 = &nf(xn) + Bnxn +¥nTh (Snxn +(1— Sn)xn+1)/ Vn > 1. (4.2)

Suppose that {on}, {Bn}, {yn}, and {sn} be the same as in Theorem 3.1. Suppose in addition, ({Tn}_,, T) satisfies

n=1s
the AKTT-condition. Then, {xn} defined by (4.2) converges strongly to a point p € (1 F(Tn), which also solves
the variational inequality

(f(p) =P ie(z—p)) <0, Vz € [ F(Tn).

n=1

Proof. Following the proof line as in Theorem 3.1, we can show that {x,} is bounded and limn _, ||xn —

Taxnl|| = 0. Since ({Tn }5°_, T) satisfies the AKTT-condition, we obtain from Lemma 4.2 that

Tht1zn — Tnzn| = |Ths1zn — Tza || + | Tzn — Taza ||
< sup ||[Tapix—Tx||+ sup [[Tx—Tax|| =0 as n — oo.
xE{zn} x€{zn}

On the other hand, we need to show that lim,_, ||[xn — Txn|| = 0. Again, since ({T,,}%°_;, T) satisfies the
AKTT-condition, then we obtain that

Ixn — Txn|| < [[xn — Tnxn |l + [[Taxn — Txn|| < [[¥n — Tnxnl| + sup [[Tax—Tx|| = 0 as n — oo.
xE{xn}

Some parts of the proof are also the same as the Theorem 3.1. Then, we can obtain the desired conclusion
easily. This completes the proof. O

Example 4.4. Let C = E = R with the usual norm. For each n > 1, define T,, by

0, x =0,
Tax =< " 1
sinx + —, x#0

for all x € C. It is not hard to show that {T;,}%°_; is nonexpansive and satisfies the AKTT-condition with
N>_; F(Tn) = F(T) = {0}, where Tx = lim;; o Tnx for all x € C.

n=1

4.2. The problem of finding zeros of accretive operators

Let A C E x E be an operator. We denote by D(A) and D(A) the domain of A and closure of D(A),
respectively. We say that A is said to be accretive if there exists jo(x1 —x2) € Jp(x1 —x2) such that
(Y1 —Y2,je) = 0, where (xi,yi) € A for i = 1,2. We say that A is said to satisfy the range condition
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if D(A) = R(I+AA) for all A > 0, where R(I +AA) is the range of I + AA. It is well known that if A is
an accretive operator which satisfies the range condition, then we can defined a single-valued mapping
J{ :R(I+AA) = D(A) by Ja = (I+AA) "1, which is called the resolvent of A. We denote by A~10 the set
of zeros of A, i.e.,, A710 = {x € D(A): 0 € Ax}. It is well known that J, is nonexpansive and F(J,) = A~10
(see [27]). We also know the following [16]: For each A, u > 0 and x € R(I+AA) N R(I+ pA), it holds that

A —u
A

Lemma 4.5 ([3]). Let C be a nonempty, closed, and convex subset of a Banach space E. Let A C E x E be an
accretive operator such that A=10 # () which satisfies the condition D(A) C C C (= R(I+ AA). Suppose that
{An} C (0,00) such that inf{An : n € IN} > 0 and limn ;0 [An4+1 —Anl = 0. Then {], } satisfies the AKTT-
condition. Consequently, for each x € C, {Jx, x} converges strongly to some point of C. Moreover, let J : C — C
defined by Jax = limn 0 Ja X for all x € C and F(Ja) = Nnq F(JA,), where Ay — A as n — oco. Then,
limp 00 SUP, cc [[Jax = Ja, X[ = 0.

ITax = Jux|| < [ —=Jax|-

Theorem 4.6. Let C be a nonempty, closed, and convex subset of a real reflexive strictly convex Banach space E,
which has a uniformly Gateaux differentiable norm and admits the duality mapping j,. Let A C E x E be an
accretive operator such that A=10 # () which satisfies the condition D(A) C C C Ma=o R(I+AA) and f be a
contraction on C with coefficient p € (0,1). For given x; € C, let {xn} be a sequence generated by

Xn1 = Gnf(xn) + Bnxn +¥YnJa, (Snxn + (1 —sn)xny1), M >1, (4.3)

where {An} is a real sequence in (0,00) with inf{(A, : m € IN} > 0 and limn 00 [Any1 — An| = 0. Suppose that
{ant, {Bn), {vn), {sn} be the same as in Theorem 3.1. Then {xn} defined by (4.3) converges strongly to a point
p € A0, which also solves the variational inequality

(f(P)—P,jp(z—p)) <0, Yze A71(0).

Proof. Since ({Ja, },]Ja) satisfies the AKTT-condition, by following the proof line in Theorem 4.3, we can
conclude the desired conclusion immediately. O

5. Numerical examples

In this section, we present two numerical experiments to support the main result.

Example 5.1. Let E = C = R?, x = <21> € R?> andy = (gl> € R?, where x;,y; € R fori = 1,2. Let
2 2

(-,-) : R? x R? — R be the inner product defined by x -y = x1y; + x2yz and let || - || : R? — R be the usual
norm defined by ||x| = y/x3 +x3. Let f : R — R? defined by f(x) = ix. For each t > 0, let T : R? — R?
be a u.a.r. nonexpansive semigroup defined by

e 2t 0
Ttx—< 0 1 )x.

. 0
It is not hard to see that ﬂt>0 F(Ty)=p = <x2>' Lettn = 7, sn = 59, 0n = ﬁ' Bn = somy7, We have

Yn = 5612%. So our algorithm (3.1) has the following form:

X{lJrl Sn+1 (x7 491 e 0 no(xp 1 X 11
T 200n +4 p—— — > 1.
<x;+1) 200n+4\¢) TBomr1\ 0 1) [nr1 ) T a1 ) | vn

Choose x1 = @

) be the initial point. Then, we obtain the numerical results shown in Table 1 and

Figure 1.
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Table 1: Numerical results of Example 5.1.

n X" = (xp,x)T l[xn — Pl

1 | (2.00000000, 3.00000000)T 2.00000000

2 | (0.49707287, 3.00000000)T 0.49707287

3 | (0.05745620, 3.00000000)T 0.05745620

4 | (0.00337702, 3.00000000)T 0.00337702

5 | (0.00012027, 3.00000000)T 0.00012027

6 | (3.18033e-06, 3.00000000)T 3.18033e-06

7 | (7.26788e-08, 3.00000000)T 7.26788e-08

8 | (1.55817e-09, 3.OOOOOOOO)T 1.55817e-09

9 | (3.25133e-11, 3.00000000)T 3.25133e-11

10 | (6.70392e-13, 3.OOOOOOOO)T 6.70392e-13
1sf |
&
g |
wAp o 1

05 % |
0 L W e s S
i 2z =& W4 5 & % LR

Number of iterations

Figure 1: Behavior of convergence error values.

X1 Y1

Example 5.2. Let E = C = R3 x = (xz) € R3, and y= (yz) € R3, where xi,yi € Rfori=1,2,3. Let
X3 Ys3

(,") : R¥ x R® - R be the inner product defined by x-y = x1y1 + XYz + x3ysz and let || - || : R?® — R be

the usual norm defined by ||x|| = /X2 +x3 +x3. Let f : R® — R® defined by f(x) = ix. For each t > 0, let
T; : R® - R3 be a u.a.r. nonexpansive semigroup defined by

cosv2t sinv2t 0
Tix=e ' | —sinv2t cosv2t 0] x.

0 0 1
0
It is not hard to see that ﬂt>0F(Tt) =p=10]. Let t, =2n, s, = %, oXn = ﬁ, Pn = ﬁ, we have
0

Yn = zn57- So our algorithm (3.1) has the following form:

X 0.5x] _on [ c0s2v2n  sin2v2n 0 0.5x] 0.5x] 1
) = [osxg | £ 26 —sin2v2n cos2v2n 0 [ 0.5x3 | + [ 0.5x+*1 ] vn>1
2 . 2 . 2 . 2 7 = .

n1 05xp) 2t 0 o 1) L\osa) \osat

X3
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1

Choose x; = | —1 | be the initial point. Then, we obtain the numerical results shown in Table 2 and
2

Figures 2 and 3, respectively.

Table 2: Numerical results of Example 5.2.

n X = O )T xn Pl
1 | (1.00000000, -1.00000000, 2.00000000)" | 2.44948974
2 | (0.45843057, -0.47840944, 1 .06922917)T 1.25788918
3 | (0.23280903, -0.23985213, 0.54051 127)T 0.63551673
4 | (0.11614084, -0.11996289, 0.27068651)T 0.31804241
5 | (0.05808722, -0.05997330, 0.1’3»537353)T 0.15905004
6 | (0.02904268, -0.02998755, 0.06768886)T 0.07952680
7 | (0.01452138, -0.01499369, 0.03384457)T 0.03976351
8 | (0.00726069, -0.00749685, 0.01692230)" | 0.01988176
9 | (0.00363035, -0.00374843, 0.008461 15)T 0.00994088
10 | (0.00181517, -0.00187421, 0.00423057)T 0.00497044
20 | (1.77263e-06, -1.83029¢e-06, 4.13142e-06)T 4.85395e-06

]
'
N

[
n

Values of x

0.5

1l %,-p || (Errars)
n

=]
in

b *o. ! 08 0.6 04 02 0

Values of x |

Number of iterations

Figure 2: Behavior of convergence error values. Figure 3: Behavior of convergence values of {x™}.
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