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Abstract
In this paper, we introduce an iterative algorithm for finding the set of common fixed points of nonexpansive semigroups

by the generalized viscosity implicit rule in certain Banach spaces which has a uniformly Gâteaux differentiable norm and
admits the duality mapping jϕ, where ϕ is a gauge function. We prove strong convergence theorems of proposed algorithm
under appropriate conditions. As applications, we apply main result to solving the fixed point problems of countable family of
nonexpansive mappings and the problems of zeros of accretive operators. Furthermore, we give some numerical examples for
supporting our main results.
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1. Introduction

In this paper, we assume that E is a real Banach space with dual space E∗ and C is a nonempty subset
of E. Let T : C→ C be a mapping. We denote the set of all fixed points of T by F(T) = {x ∈ C : x = Tx}. A
mapping T : C→ C is called nonexpansive if for each x,y ∈ C such that

‖Tx− Ty‖ 6 ‖x− y‖.
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A mapping f : C→ C is called a contraction, if there exists a constant ρ ∈ (0, 1) and for each x,y ∈ C

‖f(x) − f(y)‖ 6 ρ‖x− y‖.

The viscosity approximation method has been successfully applied to various problems from calculus
of variations as minimal surface problems and plasticity theory and phase transition. Various applications
can be obtained in optimal control theory, singular perturbations, game theory, and partial differential
equations (see [4] and references therein). In recent years, viscosity approximation method for approx-
imating the set of (common) fixed points of nonlinear mappings have been investigated extensively by
many authors in Hilbert and Banach spaces (see [10, 11, 13, 19, 20, 23–25, 30] and the references therein).

Very recently, the implicit midpoint rule (IMR) has become a powerful numerical method for numer-
ically solving ordinary differential equations (in particular, the stiff equations) (see [5, 6, 14, 21, 22, 28])
and differential algebraic equations (see [32]).

Xu et al. [31] combined the Moudafi’s viscosity method [19] (see also [30]) with IMR for nonexpansive
mappings T and proposed the following viscosity implicit midpoint rule (VIMR) in Hilbert spaces H as
follows:

xn+1 = αnf(xn) + (1 −αn)T

(
xn + xn+1

2

)
, ∀n > 1, (1.1)

where {αn} is a real control condition in (0, 1). They also proved that VIMR converges strongly to a point
x∗ ∈ F(T) which also solves the variational inequality

〈(f− I)x∗, z− x∗〉 6 0, ∀z ∈ F(T), (1.2)

where I is the identity on H.
Later, Ke and Ma [17] improved the VIMR (1.1) by replacing the midpoint by any point of interval

[xn, xn+1]. They introduced the so-call generalized viscosity implicit midpoint rules to approximating the
fixed point of nonexpansive mapping T in Hilbert spaces H. They obtained the following result.

Theorem 1.1 (Theorem KM). Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let
T : C → C be a nonexpansive mapping with F(T) 6= ∅ and let f be a contraction on C with coefficient ρ ∈ (0, 1).
Let x1 ∈ C, and {xn} be a sequence generated by

xn+1 = αnf(xn) +βnxn + γnT(snxn + (1 − sn)xn+1), ∀n > 1, (1.3)

where {αn}, {βn}, {γn}, and {sn} are sequences in (0, 1) with αn + βn + γn = 1. Suppose that the following
conditions hold:

(C1) limn→∞ γn = 1;
(C2)

∑∞
n=1 αn =∞ and

∑∞
n=1 |αn+1 −αn| <∞;

(C3)
∑∞
n=1 |βn+1 −βn| <∞;

(C4) 0 < κ 6 sn 6 sn+1 < 1 for all n > 1.

Then {xn} converges strongly to a point x∗ ∈ F(T), which also solves (1.2).

The above results naturally bring us to the following questions.
Question 1: Can we obtain strong convergence result of Theorem 1.1 to higher spaces other than Hilbert
spaces? Such as a real reflexive strictly convex Banach space which has a uniformly Gâteaux differentiable
norm and admits the duality mapping jϕ, where ϕ is a gauge function.
Question 2: Can we remove the control condition (C1) in Theorem 1.1?
Question 3: Can we weaken the control conditions (C2) and (C3) in Theorem 1.1?
Question 4: Can we extend the generalized viscosity implicit midpoint rules (1.3) to finding the set of
common fixed points of a family of mappings? Such as one-parameter semigroups of nonexpansive
mappings.
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The main objective in this paper is to give an affirmative answer to above questions, we introduce
an iterative algorithm for finding the set of common fixed points of nonexpansive semigroups by the
generalized viscosity implicit rule in a real reflexive strictly convex Banach space which has a uniformly
Gâteaux differentiable norm and admits the duality mapping jϕ, where ϕ is a gauge function. Then, we
prove strong convergence theorems of proposed algorithm with different approach on control conditions.
As applications, we apply main results to solving the fixed point problems of family of nonexpansive
mappings and the problems of zeros of accretive operators. Furthermore, we also give some numerical
examples for support our main results.

2. Preliminaries

The continuous and strictly increasing function ϕ : [0,∞) → [0,∞) is said to be gauge function if
ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞. The duality mapping Jϕ : E → 2E

∗
associated with a gauge function

ϕ is defined by

Jϕ(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖ϕ(‖x‖), ‖f∗‖ = ϕ(‖x‖), ∀x ∈ E},

where 〈·, ·〉 denotes the generalized duality paring. In particular, the duality mapping with the gauge
function ϕ(t) = t, denoted by J is referred to as the normalized duality mapping. In this case ϕ(t) = tq−1,
q > 1, the duality mapping Jϕ = Jq is called generalized duality mapping. It follows from the definition that
Jϕ(x) =

ϕ(‖x‖)
‖x‖ J(x) for each x 6= 0, and Jq(x) = ‖x‖q−2J(x), q > 1 (see [9]).

Remark 2.1. For the gauge function ϕ, the function Φ : [0,∞) → [0,∞) defined by Φ(t) =
∫t

0 ϕ(τ)dτ is
continuous, convex, and strictly increasing function on [0,∞). Therefore, Φ has a continuous inverse
function Φ−1.

Remark 2.2. It is observe that if k ∈ [0, 1] then ϕ(ky) 6 ϕ(y). Then, we have

Φ(kt) =

∫kt
0
ϕ(τ)dτ = k

∫t
0
ϕ(ky)dy 6 k

∫t
0
ϕ(y)dy = kΦ(t).

Remark 2.3. If a Banach space E has a uniformly Gâteaux differentiable, then Jϕ is single-valued and also
denoted by jϕ.

Lemma 2.4 ([18]). Let E be a Banach space. Then for each x,y ∈ E, the following inequality holds:

Φ(‖x+ y‖) 6 Φ(‖x‖) + 〈y, jϕ(x+ y)〉, jϕ(x+ y) ∈ Jϕ(x+ y).

Definition 2.5. A one-parameter family S = {Tt}t>0 : C → C is said to be a nonexpansive semigroup if it
satisfies the following conditions:

(S1) T0x = x for x ∈ C;

(S2) Ts+t = TsTt for s, t > 0;

(S3) limt→0+ T(t)x = x for x ∈ C;

(S4) for each t > 0, Tt is nonexpansive, i.e.,

‖Ttx− Tty‖ 6 ‖x− y‖, ∀x,y ∈ C.

Remark 2.6. We denote by F(S) the set of all common fixed points of S, i.e., F(S) =
⋂
t>0 F(Tt).

Now, we give some examples of semigroup operator. The following classical examples were the main
sources for the development of semigroup theory (see [15]).
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Example 2.7. Let E be a real Banach space and let L(E) be the space of all bounded linear operators on E.
For A ∈ L(E), consider the initial value problem for a linear autonomous differential equation on [0,∞):

u ′(t) = Au(t), u(0) = x. (2.1)

Notice that the solution of problem (2.1) is given by

u(t) := Ttx for all t > 0.

Then, we can show that the operator Ttx is a semigroup on E.

Example 2.8. Let E := Lp(Rn), 1 6 p <∞. Consider the initial value problem for the heat equation:

∂u

∂t
= ∆u, for x ∈ Rn and t > 0,

u(x, 0) = f(x), for x ∈ Rn,
(2.2)

where ∆ =
∑n
i=1

∂2

∂x2
i

is the Laplacian operator on E. By using Fourier transform, we can write the solution
u(x, t) in the form of convolution integral as:

u(x, t) =
1√

(4πt)n

∫
Rn
e

−‖x−ξ‖2
4t f(ξ)dξ = (Kt ∗ f)(x),

where t > 0, f ∈ E, and Kt is the heat kernel given by Kt(x) = 1√
(4πt)n

e
−‖x‖2

4t . Then the solution of

problem (2.2) can be written as:

Ttf(x) := u(x, t) = (Kt ∗ f)(x).

We can show that the operator Ttf(x) is a semigroup on E.

Definition 2.9 ([1, 2, 8]). A continuous operator semigroup S = {Tt}t>0 : C → C is said to be uniformly
asymptotically regular (in short, u.a.r.) if for all s > 0 and any bounded subset B of C,

lim
t→∞ sup

x∈B
‖Ttx− TsTtx‖ = 0.

Example 2.10. Let C be a closed convex subset of a uniformly convex Banach space E. Let S = {Tt}t>0 :

C → C be a nonexpansive semigroup. Let {σt}t>0 defined by σtx = 1
t

∫t
0 Tsxds. Then, for each h > 0 and

any bounded subset B of C, we have

‖σtx− σhσtx‖ =
∥∥σtx− 1

h

∫h
0
Tsσtxds‖ = ‖

1
h

∫h
0
(σtx− Tsσtx)ds‖ 6

1
h

∫h
0
‖σtx− Tsσtx‖ds.

From Lemma 2.7 of [12], we have

lim
t→∞ sup

x∈B
‖σtx− σhσtx‖ 6

1
h

∫h
0

lim
t→∞ sup

x∈B
‖σtx− Tsσtx‖ds = 0,

i.e., {σt}t>0 is u.a.r..

Theorem 2.11 ([13]). Let C be a nonempty, closed, and convex subset of a real reflexive strictly convex Banach space
E, which has a uniformly Gâteaux differentiable norm and admits the duality mapping jϕ. Let S = {Tt}t>0 : C→ C

be a u.a.r. nonexpansive semigroup such that F(S) :=
⋂
t>0 F(Tt) 6= ∅ and f be a contraction on C with coefficient

ρ ∈ (0, 1). Suppose that {tn} is a real divergent sequence and {αn} is a real sequence in (0, 1) with limn→∞ αn = 0.
Then, the sequence {xn} defined by

xn = αnf(xn) + (1 −αn)Ttnxn, ∀n > 1,

converges strongly to a point p ∈ F(S), which also solves the variational inequality

〈f(p) − p, jϕ(z− p)〉 6 0, ∀z ∈ F(S).
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Lemma 2.12 ([26]). Let {xn} and {ln} be bounded sequences in a Banach space E and let {βn} be a sequence in [0, 1]
with 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1. Suppose xn+1 = (1 − βn)ln + βnxn for all integers n > 0
and lim supn→∞(‖ln+1 − ln‖− ‖xn+1 − xn‖) 6 0. Then, limn→∞ ‖ln − xn‖ = 0.

Lemma 2.13 ([29]). Assume that {an} is a nonnegative real sequence such that

an+1 6 (1 − θn)an + θnσn,

where {θn} is a sequence in (0, 1) and {σn} is a real sequence such that

(i)
∑∞
n=1 θn =∞;

(ii) lim supn→∞ σn 6 0 or
∑∞
n=1 |θnσn| <∞.

Then, limn→∞ an = 0.

3. Main results

Theorem 3.1. Let C be a nonempty, closed, and convex subset of a real reflexive strictly convex Banach space E,
which has a uniformly Gâteaux differentiable norm and admits the duality mapping jϕ. Let S = {Tt}t>0 : C → C

be a u.a.r. nonexpansive semigroup such that F(S) :=
⋂
t>0 F(Tt) 6= ∅ and f be a contraction on C with coefficient

ρ ∈ (0, 1). For given x1 ∈ C, let {xn} be a sequence generated by

xn+1 = αnf(xn) +βnxn + γnTtn
(
snxn + (1 − sn)xn+1

)
, ∀n > 1, (3.1)

where {αn}, {βn}, {γn}, {sn} ⊂ (0, 1) with αn + βn + γn = 1, and {tn} ⊂ (0,∞) satisfying the following condi-
tions:

(C1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞;

(C2) limn→∞ |βn+1 −βn| = 0 and 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1;
(C3) tn+1 = h+ tn for all h > 0 and limn→∞ tn =∞;
(C4) 0 < κ 6 sn 6 sn+1 < 1 for all n > 1.

Then, {xn} defined by (3.1) converges strongly to a point p ∈ F(S), which also solves the variational inequality

〈f(p) − p, jϕ(z− p)〉 6 0, ∀z ∈ F(S). (3.2)

Proof. First, we will show that {xn} generated by (3.1) is well defined. For each x,u ∈ C, define the
mapping Sn : C→ C by

Snx := αnf(x) +βnx+ γnTtn
(
snu+ (1 − sn)x

)
, ∀n > 1.

For each x,y ∈ C, we have

‖Snx− Sny‖ = ‖αn(f(x) − f(y)) +βn(x− y) + γn
[
Ttn
(
snu+ (1 − sn)x

)
− Ttn

(
snu+ (1 − sn)y

)]
‖

6 αn‖f(x) − f(y)‖+βn‖x− y‖+ γn‖Ttn
(
snu+ (1 − sn)x

)
− Ttn

(
snu+ (1 − sn)y

)
‖

6 αnρ‖x− y‖+βn‖x− y‖+ γn(1 − sn)‖x− y‖
= (1 − (1 − ρ)αn − γnκ)‖x− y‖ 6 (1 − (1 − ρ)αn)‖x− y‖,

this mean that Sn is a contraction. So Sn has a unique fixed point. Therefore, the sequence {xn} defined
by (3.1) is well-defined.

Next, we show that {xn} is bounded. For each p ∈ F(S), we have

‖xn+1 − p‖ = ‖αn(f(xn) − p) +βn(xn − p) + γn(Ttn
(
snxn + (1 − sn)xn+1

)
− p)‖

6 αn‖f(xn) − p‖+βn‖xn − p‖+ γn‖Ttn
(
snxn + (1 − sn)xn+1

)
− p‖
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6 αn‖f(xn) − p‖+βn‖xn − p‖+ γn‖sn(xn − p) + (1 − sn)(xn+1 − p)‖
6 αn‖f(xn) − f(p)‖+αn‖f(p) − p‖+βn‖xn − p‖+ rn(sn‖xn − p‖+ (1 − sn)‖xn+1 − p‖)
6 (αnρ+βn + γnsn)‖xn − p‖+αn‖f(p) − p‖+ γn(1 − sn)‖xn+1 − p‖,

which implies that

‖xn+1 − p‖ 6
αnρ+βn + γnsn

1 − γn(1 − sn)
‖xn − p‖+ αn

1 − γn(1 − sn)
‖f(p) − p‖

=

(
1 −

(1 − ρ)αn
1 − γn(1 − sn)

)
‖xn − p‖+ (1 − ρ)αn

1 − γn(1 − sn)

‖f(p) − p‖
1 − ρ

6 max
{
‖xn − p‖, ‖f(p) − p‖

1 − ρ

}
.

By induction, we have

‖xn − p‖ 6 max
{
‖x1 − p‖,

‖f(p) − p‖
1 − ρ

}
, ∀n > 1.

Hence, {xn} is bounded. Consequently, we deduce immediately that {f(xn)} and {Ttn(snxn+(1− sn)xn+1)}
are bounded.

Next, we show that limn→∞ ‖xn+1 − xn‖ = 0. Let zn = snxn + (1 − sn)xn+1 for all n > 1. Then, we
have

‖zn+1 − zn‖ = ‖sn+1xn+1 + (1 − sn+1)xn+2 − (snxn + (1 − sn)xn+1)‖
6 (1 − sn+1)‖xn+2 − xn+1‖+ sn‖xn+1 − xn‖.

Let yn = xn+1−βnxn
1−βn

for all n > 1. Then, we drive that

yn+1 − yn =
xn+2 −βn+1xn+1

1 −βn+1
−
xn+1 −βnxn

1 −βn

=
αn+1f(xn+1) + γn+1Ttn+1zn+1

1 −βn+1
−
αnf(xn) + γnTtnzn

1 −βn

=
αn+1

1 −βn+1
f(xn+1) −

αn

1 −βn
f(xn) + Ttn+1zn+1 − Ttnzn +

αn

1 −βn
Ttnzn −

αn+1

1 −βn+1
Ttn+1zn+1.

It follows that

‖yn+1 − yn‖ 6
αn+1

1 −βn+1
‖f(xn+1) − Ttn+1zn+1‖+

αn

1 −βn
‖Ttnzn − f(xn)‖+ ‖Ttn+1zn+1 − Ttn+1zn‖

+ ‖Ttn+1zn − Ttnzn‖

6
αn+1

1 −βn+1
‖f(xn+1) − Ttn+1zn+1‖+

αn

1 −βn
‖Ttnzn − f(xn)‖

+ (1 − sn+1)‖xn+2 − xn+1‖+ sn‖xn+1 − xn‖+ ‖Ttn+1zn − Ttnzn‖.

(3.3)

Now, we estimate ‖xn+2 − xn+1‖. Observe that

‖xn+2 − xn+1‖ = ‖αn+1f(xn+1) +βn+1xn+1 + γn+1Ttn+1zn+1 − (αnf(xn) +βnxn + γnTtnzn)‖
= ‖αn+1(f(xn+1) − f(xn)) + (αn+1 −αn)(f(xn) − Ttnzn) +βn+1(xn+1 − xn)

+ (βn+1 −βn)(xn − Ttnzn) + γn+1(Ttn+1zn+1 − Ttnzn)‖
6 αn+‖f(xn+1) − f(xn)‖+ |αn+1 −αn|‖f(xn) − Ttnzn‖+βn+1‖xn+1 − xn‖
+ |βn+1 −βn|‖xn − Ttnzn‖+ γn+1‖Ttn+1zn+1 − Ttn+1zn‖+ γn+1‖Ttn+1zn − Ttnzn‖
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6 (αn+1ρ+βn+1)‖xn+1 − xn‖+ |αn+1 −αn|‖f(xn) − Ttnzn‖
+ |βn+1 −βn|‖xn − Ttnzn‖
+ γn+1((1 − sn+1)‖xn+2 − xn+1‖+ sn‖xn+1 − xn‖) + γn+1‖Ttn+1zn − Ttnzn‖

6 (αn+1ρ+βn+1 + γn+1sn)‖xn+1 − xn‖+
(
|αn+1 −αn|+ |βn+1 −βn|

)
M1

+ γn+1(1 − sn+1)‖xn+2 − xn+1‖+ γn+1‖Ttn+1zn − Ttnzn‖,

where M1 = supn>1{‖f(xn)‖+ ‖Ttnzn‖, ‖xn‖+ ‖Ttnzn‖}. It follows that

‖xn+2 − xn+1‖

6
αn+1ρ+βn+1 + γn+1sn

1 − γn+1(1 − sn+1)
‖xn+1 − xn‖+

(
|αn+1 −αn|

1 − γn+1(1 − sn+1)
+

|βn+1 −βn|

1 − γn+1(1 − sn+1)

)
M1

+
γn+1

1 − γn+1(1 − sn+1)
‖Ttn+1zn − Ttnzn‖

=

(
1 −

(1 − ρ)αn+1

1 − γn+1(1 − sn+1)

)
‖xn+1 − xn‖+

(
|αn+1 −αn|

1 − γn+1(1 − sn+1)
+

|βn+1 −βn|

1 − γn+1(1 − sn+1)

)
M1

+
γn+1

1 − γn+1(1 − sn+1)
‖Ttn+1zn − Ttnzn‖.

(3.4)

Substituting (3.4) into (3.3), we get that

‖yn+1 − yn‖ 6
αn+1

1 −βn+1
‖f(xn+1) − Ttn+1zn+1‖+

αn

1 −βn
‖Ttnzn − f(xn)‖

+ (1 − sn+1)

{(
1 −

(1 − ρ)αn+1

1 − γn+1(1 − sn+1)

)
‖xn+1 − xn‖

+

(
|αn+1 −αn|

1 − γn+1(1 − sn+1)
+

|βn+1 −βn|

1 − γn+1(1 − sn+1)

)
M1

+
γn+1

1 − γn+1(1 − sn+1)
‖Ttn+1zn − Ttnzn‖

}
+ sn‖xn+1 − xn‖+ ‖Ttn+1zn − Ttnzn‖

6

(
1 −

(1 − ρ)αn+1(1 − sn+1)

1 − γn+1(1 − sn+1)

)
‖xn+1 − xn‖+

αn+1

1 −βn+1
‖f(xn+1) − Ttn+1zn+1‖

+
αn

1 −βn
‖Ttnzn − f(xn)‖+

(
|αn+1 −αn|

1 − γn+1(1 − sn+1)
+

|βn+1 −βn|

1 − γn+1(1 − sn+1)

)
M1

+
1

1 − γn+1(1 − sn+1)
‖Ttn+1zn − Ttnzn‖.

(3.5)

Since tn+1 = h+ tn for all h > 0, we have

lim
n→∞ ‖Ttn+1zn − Ttnzn‖ = lim

n→∞ ‖ThTtnzn − Ttnzn‖ 6 lim
n→∞ sup

x∈{zn}
‖ThTtnx− Ttnx‖ = 0.

Then from (3.5), we have

lim sup
n→∞ (‖yn+1 − yn‖− ‖xn+1 − xn‖) 6 0.

By Lemma 2.12, we have

lim
n→∞ ‖yn − xn‖ = 0.

Consequently, we have

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞(1 −βn)‖yn − xn‖ = 0
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and

lim
n→∞ ‖zn − xn‖ = lim

n→∞(1 − sn)‖xn+1 − xn‖ = 0. (3.6)

Next, we show that limn→∞ ‖xn − Thxn‖ = 0 for all h > 0. Since

‖xn+1 − Ttnxn‖ 6 αn‖f(xn) − Ttnzn‖+βn‖xn − Ttnzn‖+ γn‖Ttnzn − Ttnxn‖
6 αn‖f(xn) − Ttnxn‖+βn‖xn − xn+1‖+βn‖xn+1 − Ttnxn‖+ γn‖zn − xn‖,

and hence

‖xn+1 − Ttnxn‖ 6
αn

1 −βn
‖f(xn) − Ttnxn‖+

βn

1 −βn
‖xn+1 − xn‖+

γn

1 −βn
‖zn − xn‖ → 0 as n→∞.

Consequently,

‖zn − Ttnzn‖ 6 ‖zn − xn+1‖+ ‖xn+1 − Ttnzn‖
6 sn‖xn − xn+1‖+ ‖xn+1 − Ttnxn‖+ ‖Ttnxn − Ttnzn‖
6 sn‖xn − xn+1‖+ ‖xn+1 − Ttnxn‖+ ‖xn − zn‖ → 0 as n→∞.

Then, for all h > 0, we obtain that

‖zn − Thzn‖ 6 ‖zn − Ttnzn‖+ ‖Ttnzn − ThTtnzn‖+ ‖ThTtnzn − Thzn‖
6 2‖zn − Ttnzn‖+ sup

x∈{zn}
‖Ttnx− ThTtnx‖ → 0 as n→∞.

From (3.6), we also have

lim
n→∞ ‖xn − Thxn‖ = 0, ∀h > 0.

Let um = αmf(um) + (1 − αm)Ttmum, where {αm} and {tm} satisfy the condition of Theorem 2.11. From
these, we know that {um} converges strongly to p, where p ∈ F(S) is a unique solution of (3.2). Since

‖um − xn‖ϕ(‖um − xn‖) = αn〈f(um) − xn, jϕ(um − xn)〉+ (1 −αm)〈Ttmum − xn, jϕ(um − xn)〉
= αm〈f(um) − f(p) − um + p, jϕ(um − xn)〉+αm〈f(p) − p, jϕ(um − xn)〉
+αm〈um − xn, jϕ(um − xn)〉+ (1 −αm)〈Ttmum − Ttmxn, jϕ(um − xn)〉
+ (1 −αm)〈Ttmxn − xn, jϕ(um − xn)〉

6 ‖um − xn‖ϕ(‖um − xn‖) + ‖Ttmxn − xn‖ϕ(‖um − xn‖)
+αm(1 + ρ)ϕ(‖um − xn‖)‖um − p‖+αm〈f(p) − p, jϕ(um − xn)〉,

which implies that

〈f(p) − p, jϕ(xn − um)〉 6
(
‖Ttmxn − xn‖

αm
+ (1 + ρ)‖um − p‖

)
M2, (3.7)

where M2 = supn>1{ϕ(‖um − xn‖)}. Now, taking the upper limit as n→∞ and as m→∞, respectively
in (3.7), we obtain

lim sup
m→∞ lim sup

n→∞ 〈f(p) − p, jϕ(xn − um)〉 6 0. (3.8)

Since jϕ is norm-weak∗ uniformly continuous on bounded sets, as m→∞, then

〈f(p) − p, jϕ(xn − um)〉 → 〈f(p) − p, jϕ(xn − p)〉.
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Hence, for each ε > 0, there exists N > 1 such that if m > N, for all n > 1 we have

〈f(p) − p, jϕ(xn − p)〉 < 〈f(p) − p, jϕ(xn − um)〉+ ε. (3.9)

Thus taking upper limit as n→∞ and as m→∞ in both sides of (3.9), we get from (3.8) that

lim sup
n→∞ 〈f(p) − p, jϕ(xn − p)〉 6 ε.

Since ε > 0 is arbitrary, then we obtain

lim sup
n→∞ 〈f(p) − p, jϕ(xn − p)〉 6 0. (3.10)

Finally, we show that xn converges strongly to p. We have from Lemma 2.4 that

Φ(‖xn+1 − p‖) = Φ(‖αn(f(xn) − p) +βn(xn − p) + γn(Ttn(snxn + (1 − sn)xn+1) − p‖))
6 Φ(‖αn(f(xn) − f(p)) +βn(xn − p) + γn(Ttn(snxn + (1 − sn)xn+1) − p)‖)
+αn〈f(p) − p, jϕ(xn+1 − p)〉

6 αnΦ(‖f(xn) − f(p)‖) +βnΦ(‖xn − p‖) + γnΦ(‖Ttn(snxn + (1 − sn)xn+1) − p‖)
+αn〈f(p) − p, jϕ(xn+1 − p)〉

6 αnρΦ(‖xn − p‖) +βnΦ(‖xn − p‖) + γnΦ(‖sn(xn − p) + (1 − sn)(xn+1 − p)‖)
+αn〈f(p) − p, jϕ(xn+1 − p)〉

6 αnρΦ(‖xn − p‖) +βnΦ(‖xn − p‖) + γn
(
snΦ(‖xn − p‖) + (1 − sn)Φ(‖xn+1 − p‖)

)
+αn〈f(p) − p, jϕ(xn+1 − p)〉

= (αnρ+βn + γnsn)Φ(‖xn − p‖) + γn(1 − sn)Φ(‖xn+1 − p‖)
+αn〈f(p) − p, jϕ(xn+1 − p)〉,

which implies that

Φ(‖xn+1 − p‖) 6
αnρ+βn + γnsn

1 − γn(1 − sn)
Φ(‖xn − p‖) + αn

γn(1 − sn)
〈f(p) − p, jϕ(xn+1 − p)〉

=

(
1 −

(1 − ρ)αn
1 − γn(1 − sn)

)
Φ(‖xn − p‖) + αn

γn(1 − sn)
〈f(p) − p, jϕ(xn+1 − p)〉

= (1 − θn)Φ(‖xn − p‖) + θnσn,

where θn =
(1−ρ)αn

1−γn(1−sn)
and σn = 1

1−ρ〈f(p) − p, jϕ(xn+1 − p)〉. From (C1) and (3.10), we see that∑∞
n=1 θn =∞ and lim supn→∞ σn 6 0. We conclude by Lemma 2.13 that Φ(‖xn−p‖)→ 0 as n→∞. By

the property of Φ, we obtain that {xn} converges strongly to p as n→∞. This completes the proof.

Corollary 3.2. Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let S = {Tt}t>0 : C→ C

be a u.a.r. nonexpansive semigroup such that F(S) :=
⋂
t>0 F(Tt) 6= ∅ and f be a contraction on C with coefficient

ρ ∈ (0, 1). For given x1 ∈ C, let {xn} be a sequence generated by

xn+1 = αnf(xn) +βnxn + γnTtn
(
snxn + (1 − sn)xn+1

)
, ∀n > 1. (3.11)

Suppose that {αn}, {βn}, {γn}, {sn}, and {tn} be the same as in Theorem 3.1. Then, {xn} defined by (3.11) converges
strongly to a point p ∈ F(S), which also solves the variational inequality

〈f(p) − x∗, z− p〉 6 0, ∀z ∈ F(S).

4. Some applications

4.1. Convergence theorem for a family of mappings
Definition 4.1. Let C be a subset of a Banach space E. Let {Tn}∞n=1 : C→ C be a family of mappings such
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that
⋂∞
n=1 F(Tn) 6= ∅. We say that {Tn}∞n=1 satisfies the AKTT -condition ([3]) if

∞∑
n=1

sup
x∈C
‖Tn+1x− Tnx‖ <∞. (4.1)

Lemma 4.2 ([3]). Suppose that {Tn}∞n=1 satisfy the AKTT -condition. Then, for any x ∈ C, {Tnx}∞n=1 converges
strongly to some point of C. Further, let T : C → C defined by Tx = limn→∞ Tnx for all x ∈ C. Then,
limn→∞ supx∈C ‖Tx− Tnx‖ = 0.

In the sequel, we say that ({Tn}
∞
n=1, T) satisfies the AKTT -condition if {Tn}

∞
n=1 satisfies the AKTT -

condition and T is defined by (4.1) with
⋂∞
n=1 F(Tn) = F(T).

Theorem 4.3. Let C be a nonempty, closed, and convex subset of a real reflexive strictly convex Banach space E,
which has a uniformly Gâteaux differentiable norm and admits the duality mapping jϕ. Let {Tn}

∞
n=1 : C → C

be a sequence of nonexpansive mappings such that
⋂∞
n=1 F(Tn) 6= ∅ and f be a contraction on C with coefficient

ρ ∈ (0, 1). For given x1 ∈ C, let {xn} be a sequence generated by

xn+1 = αnf(xn) +βnxn + γnTn
(
snxn + (1 − sn)xn+1

)
, ∀n > 1. (4.2)

Suppose that {αn}, {βn}, {γn}, and {sn} be the same as in Theorem 3.1. Suppose in addition, ({Tn}∞n=1, T) satisfies
the AKTT -condition. Then, {xn} defined by (4.2) converges strongly to a point p ∈

⋂∞
n=1 F(Tn), which also solves

the variational inequality

〈f(p) − p, jϕ(z− p)〉 6 0, ∀z ∈
∞⋂
n=1

F(Tn).

Proof. Following the proof line as in Theorem 3.1, we can show that {xn} is bounded and limn→∞ ‖xn −
Tnxn‖ = 0. Since ({Tn}

∞
n=1, T) satisfies the AKTT -condition, we obtain from Lemma 4.2 that

‖Tn+1zn − Tnzn‖ = ‖Tn+1zn − Tzn‖+ ‖Tzn − Tnzn‖
6 sup
x∈{zn}

‖Tn+1x− Tx‖+ sup
x∈{zn}

‖Tx− Tnx‖ → 0 as n→∞.

On the other hand, we need to show that limn→∞ ‖xn − Txn‖ = 0. Again, since ({Tn}
∞
n=1, T) satisfies the

AKTT -condition, then we obtain that

‖xn − Txn‖ 6 ‖xn − Tnxn‖+ ‖Tnxn − Txn‖ 6 ‖xn − Tnxn‖+ sup
x∈{xn}

‖Tnx− Tx‖ → 0 as n→∞.

Some parts of the proof are also the same as the Theorem 3.1. Then, we can obtain the desired conclusion
easily. This completes the proof.

Example 4.4. Let C = E = R with the usual norm. For each n > 1, define Tn by

Tnx =

{
0, x = 0,
sin x+ 1

n2 , x 6= 0

for all x ∈ C. It is not hard to show that {Tn}∞n=1 is nonexpansive and satisfies the AKTT -condition with⋂∞
n=1 F(Tn) = F(T) = {0}, where Tx = limn→∞ Tnx for all x ∈ C.

4.2. The problem of finding zeros of accretive operators
Let A ⊂ E× E be an operator. We denote by D(A) and D(A) the domain of A and closure of D(A),

respectively. We say that A is said to be accretive if there exists jϕ(x1 − x2) ∈ Jϕ(x1 − x2) such that
〈y1 − y2, jϕ〉 > 0, where (xi,yi) ∈ A for i = 1, 2. We say that A is said to satisfy the range condition
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if D(A) = R(I+ λA) for all λ > 0, where R(I+ λA) is the range of I+ λA. It is well known that if A is
an accretive operator which satisfies the range condition, then we can defined a single-valued mapping
JAλ : R(I+ λA) → D(A) by Jλ = (I+ λA)−1, which is called the resolvent of A. We denote by A−10 the set
of zeros of A, i.e., A−10 = {x ∈ D(A) : 0 ∈ Ax}. It is well known that Jλ is nonexpansive and F(Jλ) = A−10
(see [27]). We also know the following [16]: For each λ,µ > 0 and x ∈ R(I+ λA)∩ R(I+ µA), it holds that

‖Jλx− Jµx‖ 6
|λ− µ|

λ
‖x− Jλx‖.

Lemma 4.5 ([3]). Let C be a nonempty, closed, and convex subset of a Banach space E. Let A ⊂ E× E be an
accretive operator such that A−10 6= ∅ which satisfies the condition D(A) ⊂ C ⊂

⋂
λ>0 R(I+ λA). Suppose that

{λn} ⊂ (0,∞) such that inf{λn : n ∈ N} > 0 and limn→∞ |λn+1 − λn| = 0. Then {Jλn} satisfies the AKTT-
condition. Consequently, for each x ∈ C, {Jλnx} converges strongly to some point of C. Moreover, let Jλ : C → C

defined by Jλx = limn→∞ Jλnx for all x ∈ C and F(Jλ) =
⋂∞
n=1 F(Jλn), where λn → λ as n → ∞. Then,

limn→∞ supx∈C ‖Jλx− Jλnx‖ = 0.

Theorem 4.6. Let C be a nonempty, closed, and convex subset of a real reflexive strictly convex Banach space E,
which has a uniformly Gâteaux differentiable norm and admits the duality mapping jϕ. Let A ⊂ E× E be an
accretive operator such that A−10 6= ∅ which satisfies the condition D(A) ⊂ C ⊂

⋂
λ>0 R(I + λA) and f be a

contraction on C with coefficient ρ ∈ (0, 1). For given x1 ∈ C, let {xn} be a sequence generated by

xn+1 = αnf(xn) +βnxn + γnJλn
(
snxn + (1 − sn)xn+1

)
, ∀n > 1, (4.3)

where {λn} is a real sequence in (0,∞) with inf{λn : n ∈ N} > 0 and limn→∞ |λn+1 − λn| = 0. Suppose that
{αn}, {βn}, {γn}, {sn} be the same as in Theorem 3.1. Then {xn} defined by (4.3) converges strongly to a point
p ∈ A−10, which also solves the variational inequality

〈f(p) − p, jϕ(z− p)〉 6 0, ∀z ∈ A−1(0).

Proof. Since ({Jλn}, Jλ) satisfies the AKTT -condition, by following the proof line in Theorem 4.3, we can
conclude the desired conclusion immediately.

5. Numerical examples

In this section, we present two numerical experiments to support the main result.

Example 5.1. Let E = C = R2, x =

(
x1
x2

)
∈ R2, and y =

(
y1
y2

)
∈ R2, where xi,yi ∈ R for i = 1, 2. Let

〈·, ·〉 : R2 ×R2 → R be the inner product defined by x · y = x1y1 + x2y2 and let ‖ · ‖ : R2 → R be the usual

norm defined by ‖x‖ =
√
x2

1 + x
2
2. Let f : R2 → R2 defined by f(x) = 1

4 x. For each t > 0, let Tt : R2 → R2

be a u.a.r. nonexpansive semigroup defined by

Ttx =

(
e−2t 0

0 1

)
x.

It is not hard to see that
⋂
t>0 F(Tt) = p =

(
0
x2

)
. Let tn = n

2 , sn = n
n+1 , αn = 1

50n+1 , βn = n
50n+1 , we have

γn = 49n
50n+1 . So our algorithm (3.1) has the following form:(

xn+1
1
xn+1

2

)
=

5n+ 1
200n+ 4

(
xn1
xn2

)
+

49n
50n+ 1

(
e−n 0

0 1

)[
n

n+ 1

(
xn1
xn2

)
+

1
n+ 1

(
xn+1

1
xn+1

2

)]
, ∀n > 1.

Choose x1 =

(
2
3

)
be the initial point. Then, we obtain the numerical results shown in Table 1 and

Figure 1.
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Table 1: Numerical results of Example 5.1.
n xn = (xn1 , xn2 )

T ‖xn − p‖
1 (2.00000000, 3.00000000)T 2.00000000
2 (0.49707287, 3.00000000)T 0.49707287
3 (0.05745620, 3.00000000)T 0.05745620
4 (0.00337702, 3.00000000)T 0.00337702
5 (0.00012027, 3.00000000)T 0.00012027
6 (3.18033e-06, 3.00000000)T 3.18033e-06
7 (7.26788e-08, 3.00000000)T 7.26788e-08
8 (1.55817e-09, 3.00000000)T 1.55817e-09
9 (3.25133e-11, 3.00000000)T 3.25133e-11
10 (6.70392e-13, 3.00000000)T 6.70392e-13

Figure 1: Behavior of convergence error values.

Example 5.2. Let E = C = R3, x =

x1
x2
x3

 ∈ R3, and y =

y1
y2
y3

 ∈ R3, where xi,yi ∈ R for i = 1, 2, 3. Let

〈·, ·〉 : R3 ×R3 → R be the inner product defined by x · y = x1y1 + x2y2 + x3y3 and let ‖ · ‖ : R3 → R be

the usual norm defined by ‖x‖ =
√
x2

1 + x
2
2 + x

2
3. Let f : R3 → R3 defined by f(x) = 1

2 x. For each t > 0, let

Tt : R3 → R3 be a u.a.r. nonexpansive semigroup defined by

Ttx = e−t

 cos
√

2t sin
√

2t 0
− sin

√
2t cos

√
2t 0

0 0 1

 x.

It is not hard to see that
⋂
t>0 F(Tt) = p =

0
0
0

. Let tn = 2n, sn = 1
2 , αn = 1

2n+1 , βn = n
2n+1 , we have

γn = n
2n+1 . So our algorithm (3.1) has the following form:xn+1

1
xn+1

2
xn+1

3

 =

0.5xn1
0.5xn2
0.5xn3

+
ne−2n

2n+ 1

 cos 2
√

2n sin 2
√

2n 0
− sin 2

√
2n cos 2

√
2n 0

0 0 1

[0.5xn1
0.5xn2
0.5xn3

+

0.5xn+1
1

0.5xn+1
2

0.5xn+1
3

], ∀n > 1.
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Choose x1 =

 1
−1
2

 be the initial point. Then, we obtain the numerical results shown in Table 2 and

Figures 2 and 3, respectively.

Table 2: Numerical results of Example 5.2.
n xn = (xn1 , xn2 , xn3 )

T ‖xn − p‖
1 (1.00000000, -1.00000000, 2.00000000)T 2.44948974
2 (0.45843057, -0.47840944, 1.06922917)T 1.25788918
3 (0.23280903, -0.23985213, 0.54051127)T 0.63551673
4 (0.11614084, -0.11996289, 0.27068651)T 0.31804241
5 (0.05808722, -0.05997330, 0.13537353)T 0.15905004
6 (0.02904268, -0.02998755, 0.06768886)T 0.07952680
7 (0.01452138, -0.01499369, 0.03384457)T 0.03976351
8 (0.00726069, -0.00749685, 0.01692230)T 0.01988176
9 (0.00363035, -0.00374843, 0.00846115)T 0.00994088
10 (0.00181517, -0.00187421, 0.00423057)T 0.00497044
...

...
...

...
...

20 (1.77263e-06, -1.83029e-06, 4.13142e-06)T 4.85395e-06

Figure 2: Behavior of convergence error values. Figure 3: Behavior of convergence values of {xn}.
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