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Abstract
Our aim in this paper is to prove the cylindrical Carleman’s formula for subharmonic functions in a truncated cylinder.

As an application, we prove that if the positive part of a harmonic function in a cylinder satisfies a slowly growing condition,
then its negative part can also be dominated by a similar slowly growing condition, which improves some classical results about
harmonic functions in a cylinder.
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1. Introduction

Let R be the set of all real numbers. The boundary and the closure of a set E in n-dimensional
Euclidean space Rn (n > 2) are denoted by ∂E and E respectively.

Let ∆n be the Laplace operator and Ω be a bounded domain in Rn−1 with smooth boundary ∂Ω.
Consider the Dirichlet problem (see [11, p. 41])

(∆n−1 + λ)ϕ = 0 on Ω,

ϕ = 0 on ∂Ω.

We denote the least positive eigenvalue of this boundary value problem by λ and the normalized positive
eigenfunction corresponding to λ by ϕ, ∫

Ω

ϕ2(X)dΩ = 1,

where X ∈ Ω and dΩ is the (n− 1)-dimensional volume element.
The set

Ω×R = {P = (X,y) ∈ Rn;X ∈ Ω,y ∈ R}

in Rn is simply denoted by Tn(Ω). We call it a cylinder (see [5–7, 12]). In the following, we denote the sets
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Ω× I and ∂Ω× I with an interval I on R by Tn(Ω; I) and Sn(Ω; I) respectively. Hence Sn(Ω; R) denoted
simply by Sn(Ω) is ∂Tn(Ω).

In order to make the subsequent consideration simpler, we put a rather strong assumption on Ω

throughout this paper: if n > 3, then Ω is a C2,α-domain (0 < α < 1) in Rn−1 surrounded by a finite
number of mutually disjoint closed hypersurfaces (e.g. see [2, p. 88-89] for the definition of C2,α-domain).

Let GΩ(P,Q) be the cylindrical Green function of Tn(Ω) (P,Q ∈ Tn(Ω)). Then the cylindrical Poisson
kernel in Tn(Ω) is defined by

PIΩ(P,Q) =
1
cn

∂GΩ(P,Q)

∂nQ
,

where ∂/∂nQ denotes the differentiation at Q ∈ Sn(Ω) along the inward normal into Tn(Ω) for any
P ∈ Tn(Ω). Here, c2 = 2 and cn = (n− 2)wn when n > 3, where wn is the surface area of the unit sphere
in Rn. It follows from our assumption on Ω that PIΩ(P,Q) is continuous on Sn(Ω) (see [2, Theorem
6.15]).

The cylindrical Poisson integral PIΩ[g](P) of g relative to Tn(Ω) is defined as follows

PIΩ[g](P) =

∫
Sn(Ω)

PIΩ(P,Q)g(Q)dσQ,

where g(Q) is a locally integrable function on Sn(Ω) and dσQ is the surface area element on Sn(Ω).
Let h(P) be a function on Tn(Ω), we use the stand notations h+ = max{h, 0} and h− = −min{h, 0}.

The integral ∫
Ω

h(P)ϕ(X)dΩ

of h(P) is denoted by Nh(y) when it exists, where P = (X,y). The finite or infinite limits

lim
y→+∞ e−

√
λyNh(y) and lim

y→−∞ e
√
λyNh(y)

are denoted by U√λ(h) and V√λ(h) respectively, when they exist.
Recently, Qiao (see [8]) proved Carleman’s formula of harmonic functions by using the second Green’s

formula. As for the Carleman’s formulas of harmonic functions in a half-space, smooth cone and their
applications, we refer the interested readers to the papers of Armitage (see [1]), Kuran (see [3]) and Ronkin
(see [4, 9, 10]).

Our first aim in this paper is to prove cylindrical Carleman’s formula of subharmonic functions in a
truncated cylinder.

Theorem 1.1. Let 0 < r < R < +∞ and define

Ψ(y) = e
√
λy

(
1

e2
√
λy

−
1

e2
√
λR

)
,

where r< |y|<R. If u(X,y) is a subharmonic function in two domains containing Tn(Ω,(r,R)) and Tn(Ω,(−R,−r))
respectively, then we have∫

Tn(Ω,(r,R))
F(X,y)∆nu(X,y)dw =

2
√
λ

e
√
λR
Nu(R) +

∫
Sn(Ω,(r,R))

u(X ′,y ′)Ψ(y ′)
∂ϕ(X ′)

∂nX ′
dσQ + d1(r) +

d2(r)

e2
√
λR

(1.1)

and∫
Tn(Ω,(−R,−r))

F(X,y)∆nu(X,y)dw

=
2
√
λ

e
√
λR
Nu(−R) +

∫
Sn(Ω,(−R,−r))

u(X ′,y ′)Ψ(−y ′)
∂ϕ(X ′)

∂nX ′
dσQ + d3(−r) +

d4(−r)

e2
√
λR

,
(1.2)



L. Qiao, J. Nonlinear Sci. Appl., 11 (2018), 947–952 949

respectively, where dw denotes the elements of the Euclidean volume in Rn,

F(X,y) = Ψ(y)ϕ(X),

d1(r) =

∫
Ω

−
ϕ(X)

e
√
λr

(√
λu(X, r) +

∂u(X, r)
∂n

)
dΩ,

d2(r) =

∫
Ω

e
√
λrϕ(X)

(
∂u(X, r)
∂n

−
√
λu(X, r)

)
dΩ,

d3(−r) =

∫
Ω

−
ϕ(X)

e
√
λr

(√
λu(X,−r) +

∂u(X,−r)
∂n

)
dΩ,

and

d4(−r) =

∫
Ω

e
√
λrϕ(X)

(
∂u(X,−r)

∂n
−
√
λu(X,−r)

)
dΩ.

As an application of Theorem 1.1, we give the integral representation of harmonic functions on Tn(Ω).
To do this, we denote AΩ the class of f(X,y) ((X,y) ∈ Tn(Ω)) satisfying∫+∞

−∞ e−
√
λ|y|

(∫
Ω

|f(P)|pϕ(X)dΩ

)
dy < +∞ (1.3)

and BΩ the class of g(Q) (Q = (X ′,y ′) ∈ Sn(Ω)) such that∫+∞
−∞ e−

√
λ|y ′|

(∫
∂Ω

|g(Q)|p
∂ϕ(X ′)

∂nX ′
dσX ′

)
dy ′ < +∞, (1.4)

where 1 6 p < ∞. We denote by CΩ the class of all continuous h(X,y) ((X,y) ∈ Tn(Ω)) harmonic on
Tn(Ω) with h+(X,y) ∈ AΩ ((X,y) ∈ Tn(Ω)) and h+(Q) ∈ BΩ (Q = (X ′,y ′) ∈ Sn(Ω)).

As an application of Theorem 1.1, we have the following result with weaker integral boundary condi-
tions, which is due to Qiao (see [8]) in the case p = 1.

Theorem 1.2. If h ∈ CΩ, then h ∈ BΩ.

2. Lemmas

Lemma 2.1 (see [12, Theroem 6]). Let g(Q) (Q = (X ′,y ′)) be a continuous function on Sn(Ω) satisfying∫+∞
−∞ e−

√
λ|y ′|

(∫
∂Ω

|g(Q)|dσX ′

)
dy ′ < +∞, (2.1)

where dσX ′ is the surface area element of ∂Ω at X ′ ∈ ∂Ω. Then the cylindrical Poisson integral PIΩ[g](P) is a
solution of the Dirichlet problem on Tn(Ω) with g and satisfies

U√λ(PIΩ[g]) = 0 (2.2)

and
V√λ(PIΩ[g]) = 0. (2.3)

Lemma 2.2 (see [5, Corollary 3]). Let h(P) (> 0) be a harmonic function on Tn(Ω) vanishing continuously on
Sn(Ω), then h(P) admits the following representation

h(P) =
(
U√λ(h)e

√
λy + V√λ(h)e

−
√
λy
)
ϕ(X)

for any P = (X,y) ∈ Tn(Ω).
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3. Proof of Theorems

3.1. Proof of Theorem 1.1
To prove (1.1). It is achieved by a similar argument in [8, Theorem 1.4]. From the definition of F(X,y),

we know that F(X,y) is harmonic on Tn(Ω) and vanishes continuously on Sn(Ω).
By applying the second Green’s formula to u(X,y) and F(X,y) on Tn(Ω; (r,R)), we see that

I(X,y) =:

∫
Tn(Ω;(r,R))

(
u(X,y)

∂F(X,y)
∂n

−F(X,y)
∂u(X,y)
∂n

)
dw

=

∫
Tn(Ω;(r,R))

F(X,y)∆nu(X,y)dw,
(3.1)

where ∂/∂n denotes the differentiation along the inward normal into Tn(Ω; (r,R)). Put

I(X,y) = I1(X,y) + I2(X,y) + I3(X,y), (3.2)

where

I1(X,y) =
∫
Ω

(
u(X,R)

∂F(X,y)
∂n

∣∣∣∣
y=R

−F(X,R)
∂u(X,y)
∂n

∣∣∣∣
y=R

)
dΩ,

I2(X,y) =
∫
Ω

(
u(X, r)

∂F(X,y)
∂n

∣∣∣∣
y=r

−F(X, r)
∂u(X,y)
∂n

∣∣∣∣
y=r

)
dΩ

and

I3(X,y) =
∫
Sn(Ω;(r,R)))

(
u(X ′,y ′)

∂F(X ′,y ′)
∂n

−F(X ′,y ′)
∂u(X ′,y ′)

∂n

)
dσQ.

It is easy to see that

F(X,R) = 0,
∂F(X,y)
∂n

∣∣∣∣
y=R

=
2
√
λ

e
√
λR
ϕ(X), (3.3)

∂F(X,y)
∂n

∣∣∣∣
y=r

= −
√
λe
√
λr

(
1

e2
√
λr

+
1

e2
√
λR

)
ϕ(X), (3.4)

F(X,y) = 0 and
∂F(X ′,y ′)

∂n
= Ψ(y ′)

∂ϕ(X ′)

∂nX ′
. (3.5)

Thus (1.1) follows from (3.1), (3.2), (3.3), (3.4) and (3.5). We omit the proof of (1.2), since it can be
proved similarly.

3.2. Proof of Theorem 1.2
In order to make the proof simpler we prove only the case p = 1, since the proof of the case p > 1 is

similar by using Hölder inequality. We apply (1.1) and (1.2) with R > r = 1 to h = h+−h− in Tn(Ω; (1,R))
and Tn(Ω; (−R,−1)) respectively, and then obtain that

m+(R) +

∫
Sn(Ω,(1,R))

h+(Q)Ψ(y ′)
∂ϕ(X ′)

∂nX ′
dσQ + d1(1) +

d2(1)

e2
√
λR

= m−(R) +

∫
Sn(Ω,(1,R))

h−(Q)Ψ(y ′)
∂ϕ(X ′)

∂nX ′
dσQ

(3.6)
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and

m+(−R) +

∫
Sn(Ω,(−R,−1))

h+(Q)Ψ(−y ′)
∂ϕ(X ′)

∂nX ′
dσQ + d3(−1) +

d4(−1)

e2
√
λR

= m−(−R) +

∫
Sn(Ω,(−R,−1))

h−(Q)Ψ(−y ′)
∂ϕ(X ′)

∂nX ′
dσQ,

(3.7)

respectively, where Q = (X ′,y ′),

m±(R) =
2
√
λ

e
√
λR
Nh±(R) and m±(−R) =

2
√
λ

e
√
λR
Nh±(−R).

Without loss of generality we can assume R > 2, we have from (3.6) and (3.7)

m−(R)+

(
1 −

1

e
√
λR

) ∫ R
2

1
e−
√
λy ′
(∫
∂Ω

h−(Q)
∂ϕ(X ′)

∂nX ′
dσX ′

)
dy ′

6 m−(R) +

∫
Sn(Ω,(1,R))

h−(Q)Ψ(y ′)
∂ϕ(X ′)

∂nX ′
dσQ

6 m+(R) +

∫R
1
e−
√
λy ′
(∫
∂Ω

h+(Q)
∂ϕ(X ′)

∂nX ′
dσX ′

)
dy ′ + |d1(1)|+ |d2(1)|

(3.8)

and

m−(−R)+

(
1 −

1

e
√
λR

) ∫−1

−R
2

e
√
λy ′
(∫
∂Ω

h−(Q)
∂ϕ(X ′)

∂nX ′
dσX ′

)
dy ′

6 m−(−R) +

∫
Sn(Ω,(−R,−1))

h−(Q)Ψ(−y ′)
∂ϕ(X ′)

∂nX ′
dσQ

6 m+(−R) +

∫−1

−R
e
√
λy ′
(∫
∂Ω

h+(Q)
∂ϕ(X ′)

∂nX ′
dσX ′

)
dy ′ + |d3(−1)|+ |d4(−1)|,

(3.9)

respectively.
Since h ∈ CΩ, we obtain from (1.3)∫+∞

1
m+(R)dR = 2

√
λ

∫+∞
1

e−
√
λyNh+(y)dy < +∞

and ∫+∞
1

m+(−R)dR = 2
√
λ

∫−1

−∞ e
√
λyNh+(y)dy < +∞,

which give that

lim
R→+∞m+(R) < +∞ (3.10)

and

lim
R→+∞m+(−R) < +∞, (3.11)

respectively.
Combining (1.3), (3.8), (3.9), (3.10) and (3.11), we can conclude that∫+∞

e−
√
λy ′
(∫
∂Ω

h−(Q)
∂ϕ(X ′)

∂nX ′
dσX ′

)
dy ′ < +∞
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and ∫
−∞ e

√
λy ′
(∫
∂Ω

h−(Q)
∂ϕ(X ′)

∂nX ′
dσX ′

)
dy ′ < +∞,

which give that ∫+∞
−∞ e−

√
λ|y ′|

(∫
∂Ω

h−(Q)
∂ϕ(X ′)

∂nX ′
dσX ′

)
dy ′ < +∞.

Hence Theorem 1.2 is proved from |h| = h+ − h−.
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[3] Ü. Kuran, Harmonic majorizations in half-balls and half-spaces, Proc. London Math. Soc., 21 (1970), 614–636. 1
[4] B. Y. Levin, Entire and subharmonic functions, Adv. Soviet Math., Amer. Math. Soc., Providence, RI, (1992). 1
[5] I. Miyamoto, Harmonic functions in a cylinder which vanish on the boundary, Japan. J. Math., 22 (1996), 241–255. 1, 2.2
[6] I. Miyamoto, H. Yoshida, Harmonic functions in a cylinder with normal derivatives vanishing on the boundary, Ann.

Polon. Math., 74 (2000), 229–235.
[7] I. Miyamoto, H. Yoshida, On a covering property of minimally thin sets at infinity in a cylinder, Math. Montisnigri,

20/21 (2007/08), 35–54. 1
[8] L. Qiao, Asymptotic behavior of Poisson integrals in a cylinder and its application to the representation of harmonic func-

tions, Bull. Sci. Math., 144 (2018), 39–54. 1, 1, 3.1
[9] A. Y. Rashkovskiı̌, L. I. Ronkin, Subharmonic functions of finite order in a cone. III. Functions of completely regular

growth, J. Math. Sci., 77 (1995), 2929–2940. 1
[10] L. I. Ronkin, Functions of completely regular growth, Kluwer Academic Publishers Group, Dordrecht, (1992). 1
[11] G. V. Rozenblyum, M. Z. Solomyak, M. A. Shubin, Spectral theory of differential operators, Itogi Nauki i Tekhniki,

Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, (1989). 1
[12] H. Yoshida, Harmonic majorization of a subharmonic function on a cone or on a cylinder, Pacific J. Math., 148 (1991),

369–395. 1, 2.1

https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s2-23.1.137
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s2-23.1.137
https://www.springer.com/us/book/9783642963797
https://www.springer.com/us/book/9783642963797
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s3-21.4.614
https://bookstore.ams.org/advsov-11/
https://www.jstage.jst.go.jp/article/math1924/22/2/22_2_241/_article/-char/en
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/annales-polonici-mathematici/all/74/0/111493/harmonic-functions-in-a-cylinder-with-normal-derivatives-vanishing-on-the-boundary
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/annales-polonici-mathematici/all/74/0/111493/harmonic-functions-in-a-cylinder-with-normal-derivatives-vanishing-on-the-boundary
https://mathscinet.ams.org/mathscinet-getitem?mr=2503840
https://mathscinet.ams.org/mathscinet-getitem?mr=2503840
https://www.sciencedirect.com/science/article/pii/S0007449718300137?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0007449718300137?via%3Dihub
https://link.springer.com/article/10.1007%2FBF02362677
https://link.springer.com/article/10.1007%2FBF02362677
https://link.springer.com/book/10.1007%2F978-94-011-2418-8
https://mathscinet.ams.org/mathscinet-getitem?mr=1033500
https://mathscinet.ams.org/mathscinet-getitem?mr=1033500
https://projecteuclid.org/euclid.pjm/1102644692
https://projecteuclid.org/euclid.pjm/1102644692

	Introduction
	Lemmas
	Proof of Theorems
	Proof of Theorem 1.1
	Proof of Theorem 1.2


