On the oscillation for n th-order nonlinear neutral delay dynamic equations on time scales

Yaru Zhou ${ }^{\text {a }}$, Zhanhe Chen ${ }^{\text {a,*, }}$, Taixiang Sun ${ }^{\text {b }}$
${ }^{a}$ College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi, 530004, P. R. China.
${ }^{b}$ Department of Mathematics, Guangxi College of Finance and Economics, Nanning, Guangxi 530003, P. R. China.

Communicated by M. Bohner

Abstract

In this paper, we investigate the solution's oscillation of n th-order nonlinear dynamic equation $$
\left[a_{n}(t)\left(\left(a_{n-1}(t)\left(\cdots\left(a_{1}(t)(x(t)-p(t) x(\tau(t)))^{\Delta}\right)^{\alpha_{1}}\right)^{\Delta} \cdots\right)^{\Delta}\right)^{\alpha_{n}}\right]^{\Delta}+f(t, x(\delta(t)))=0
$$

on a time scale \mathbb{T} with $n \geqslant 2$. We give some conditions for the oscillation of the above equation.
Keywords: Oscillation, dynamic equation, time scale.
2010 MSC: 34N05, 34K11, 39A21.
(c)2018 All rights reserved.

1. Introduction

In this paper, we study the nth-order nonlinear neutral delay dynamic equation

$$
\begin{equation*}
\left[a_{n}(t)\left(\left(a_{n-1}(t)\left(\cdots\left(a_{1}(t)(x(t)-p(t) x(\tau(t)))^{\Delta}\right)^{\alpha_{1}}\right)^{\Delta} \cdots\right)^{\Delta}\right)^{\alpha_{n}}\right]^{\Delta}+f(t, x(\delta(t)))=0 \tag{1.1}
\end{equation*}
$$

on a time scale \mathbb{T} satisfying inf $\mathbb{T}=t_{0}$ and $\sup \mathbb{T}=\infty$, where $n \geqslant 2$ and $\alpha_{k}(1 \leqslant k \leqslant n)$ are quotients of odd positive integers. Throughout this paper, we assume the following conditions are satisfied:
$(H 1) a_{k}(t) \in C_{r d}(\mathbb{T},(0, \infty)), p(t) \in C_{r d}(\mathbb{T}, \mathbb{R}), \lim _{t \rightarrow \infty} p(t)=p_{0}$, where $\left|p_{0}\right|<1$, and

$$
\int_{t_{0}}^{\infty}\left(\frac{1}{a_{k}(t)}\right)^{\frac{1}{\alpha_{k}}} \Delta t=\infty(1 \leqslant k \leqslant n)
$$

(H2) $\tau, \delta \in C_{r d}(\mathbb{T}, \mathbb{T}), \tau(t) \leqslant t$, and $\lim _{t \rightarrow \infty} \tau(t)=\lim _{t \rightarrow \infty} \delta(t)=\infty$;

[^0](H3) $f \in C(\mathbb{T} \times \mathbb{R}, \mathbb{R}), u f(t, u)>0$ and there exists $q(t) \in C_{r d}(\mathbb{T},(0, \infty))$ such that $|f(t, u)| \geqslant q(t)|u|$ for all $u \neq 0$ and $t \in \mathbb{T}$.
We write
\[

S_{k}(t, x(t))=\left\{$$
\begin{array}{lll}
x(t)-p(t) x(\tau(t)), & \text { if } k=0, \\
a_{k}(t)\left(S_{k-1}^{\Delta}(t, x(t))\right)^{\alpha_{k}}, & \text { if } & 1 \leqslant k \leqslant n .
\end{array}
$$\right.
\]

Then (1.1) reduces to the equation

$$
\begin{equation*}
S_{n}^{\Delta}(t, x(t))+f(t, x(\delta(t)))=0 \tag{1.2}
\end{equation*}
$$

In last few decades, there are lots of research concerning oscillation of second and third order delay dynamic equations and we can find in [3-7,10]. Recently, the number of papers, such as [1,2, 8, 9, 11], are concerned with the oscillation of higher order dynamic equations. Sun et al. [8] studied the oscillation for higher order dynamic equation

$$
\left\{a_{n}(t)\left[\left(a_{n-1}(t)\left(\cdots\left(a_{1}(t) x^{\Delta}(t)\right)^{\Delta} \cdots\right)^{\Delta}\right)^{\Delta}\right]^{\alpha}\right\}^{\Delta}+p(t) x^{\beta}(t)=0
$$

Zhang and Wang [11] considered the asymptotic and oscillation of n th-order nonlinear dynamic equation

$$
\left(r(t) \Phi_{\gamma}\left(x^{\Delta^{n-1}}(t)\right)\right)^{\Delta}+\sum_{i=0}^{k} q_{i}(t) \Phi_{\alpha_{i}}\left(x\left(\delta_{i}(t)\right)\right)=0
$$

The purpose of this paper is to extend the existing results to more general n th-order dynamic equations, and give some oscillation criteria.

2. Auxiliary results

Lemma 2.1. Let $x(t)$ be an eventually positive solution of (1.1). If there exists a constant $l \geqslant 0$ such that $\lim _{t \rightarrow \infty} S_{0}(t)=l$, then $\lim _{t \rightarrow \infty} x(t)=\frac{l}{1-p_{0}}$.
Proof. Suppose that $x(t)$ is an eventually positive solution of (1.1). According to (H1) and (H2), there exist $\mathrm{T}_{1} \in\left[\mathrm{t}_{0}, \infty\right)_{\mathbb{T}}$ and $\left|\mathrm{p}_{0}\right|<\mathrm{p}_{1}<1$ such that $\chi(\mathrm{t}), \chi(\tau(\mathrm{t}))>0$ and $|\mathrm{p}(\mathrm{t})| \leqslant \mathrm{p}_{1}$ for $\mathrm{t} \in\left[\mathrm{T}_{1}, \infty\right)_{\mathbb{T}}$. We claim that $x(t)$ is bounded on $\left[t_{0}, \infty\right)_{\mathbb{T}}$. If not, then there exists $\left\{t_{n}\right\}_{n=1}^{\infty} \subset\left[T_{1}, \infty\right)_{\mathbb{T}}$ with $t_{n} \rightarrow \infty$ as $n \rightarrow \infty$ such that

$$
x\left(t_{n}\right)=\max _{t_{0} \leqslant t \leqslant t_{n}} x(t), \quad \lim _{t \rightarrow \infty} x\left(t_{n}\right)=\infty .
$$

Noting that $\tau(\mathrm{t}) \leqslant \mathrm{t}$, so $x\left(\tau\left(\mathrm{t}_{\mathrm{n}}\right)\right) \leqslant \chi\left(\mathrm{t}_{\mathrm{n}}\right)$. Then we have

$$
S_{0}\left(t_{n}\right)=x\left(t_{n}\right)-p\left(t_{n}\right) x\left(\tau\left(t_{n}\right)\right) \geqslant\left(1-p_{1}\right) x\left(t_{n}\right) \rightarrow \infty
$$

as $n \rightarrow \infty$, which contradicts the fact $\lim _{t \rightarrow \infty} S_{0}(t)=l$. Therefore, $x(t)$ is bounded. Let $\lim _{\sup }^{t \rightarrow \infty}$ $x(t)=$ x_{1} and $\liminf _{t \rightarrow \infty} x(t)=x_{2}$. If $0 \leqslant p_{0}<1$, we have

$$
x_{1}-p_{0} x_{2} \leqslant l \leqslant x_{2}-p_{0} x_{1},
$$

which implies that $x_{1} \leqslant x_{2}$. If $-1 \leqslant p_{0}<0$, we have

$$
x_{1}-p_{0} x_{1} \leqslant l \leqslant x_{2}-p_{0} x_{2},
$$

which also implies that $x_{1} \leqslant x_{2}$. Therefore, $\lim _{t \rightarrow \infty} x(t)$ exists and $\lim _{t \rightarrow \infty} x(t)=\frac{l}{1-p_{0}}$.
Lemma 2.2. If $S_{n}^{\Delta}(\mathrm{t}, \mathrm{x}(\mathrm{t}))<0$ and $\chi(\mathrm{t})>0$ for $\mathrm{t} \geqslant \mathrm{t}_{0}$, then there exists an integer $\mathrm{m} \in[0, \mathrm{n}]$ with $\mathrm{m}+\mathrm{n}$ even such that

$$
\begin{equation*}
(-1)^{m+i} S_{i}(t, x(t))>0 \text { for } t \geqslant t_{0} \text { and } m \leqslant \mathfrak{i} \leqslant n \text {, } \tag{2.1}
\end{equation*}
$$

and if $\mathrm{m}>1$, then there exists $\mathrm{T} \geqslant \mathrm{t}_{0}$ such that

$$
\begin{equation*}
S_{i}(\mathrm{t}, \mathrm{x}(\mathrm{t}))>0 \text { for } \mathrm{t} \geqslant \mathrm{~T} \text { and } 1 \leqslant \mathfrak{i} \leqslant \mathrm{~m}-1 . \tag{2.2}
\end{equation*}
$$

Proof. First, we show that $S_{n}(t, x(t))>0$ for $t \geqslant t_{0}$. If not, then there exists some $T_{1} \geqslant t_{0}$ such that $S_{n}\left(T_{1}, x\left(T_{1}\right)\right)<0$. Noting that $S_{n}^{\Delta}(t, x(t))<0$, it follows $S_{n}(t, x(t))$ is strictly decreasing on $\left[t_{0}, \infty\right)_{\mathbb{T}}$. Therefore, $S_{n}(t, x(t))<S_{n}\left(T_{1}, x\left(T_{1}\right)\right)<0$ for $t \geqslant T_{1}$. Then, from (H1), we have

$$
S_{n-1}(t, x(t))=S_{n-1}\left(T_{1}, x\left(T_{1}\right)\right)+\int_{T_{1}}^{t}\left(\frac{S_{n}(s, x(s))}{a_{n}(s)}\right)^{\frac{1}{\alpha_{n}}} \Delta s \leqslant S_{n-1}\left(T_{1}, x\left(T_{1}\right)\right)+\int_{T_{1}}^{t}\left(\frac{S_{n}\left(T_{1}, x\left(T_{1}\right)\right)}{a_{n}(s)}\right)^{\frac{1}{\alpha_{n}}} \Delta s
$$

Thus $\lim _{t \rightarrow \infty} S_{n-1}(t, x(t))=-\infty$. By induction we can obtain $\lim _{t \rightarrow \infty} S_{0}(t)=-\infty$, which is a contradiction to $S_{0}(t)>0$. Thus $S_{n}(t, x(t))>0$. Then we have the following two cases:
(i) $S_{i}(t)>0$ for any $0 \leqslant i \leqslant n-1$;
(ii) $\mathrm{S}_{\mathfrak{j}}(\mathrm{t})<0$ for some $0<\mathfrak{j}<\mathfrak{n}-1$.

From case (ii), there exists a smallest integer $m \in[0, n]$ with $m+n$ even such that $(-1)^{m+i} S_{i}(t, x(t))>$ 0 for $t \geqslant t_{0}$ and $m \leqslant i \leqslant n$.

If $m>1$, then $S_{m-1}^{\Delta}(t, x(t))=\left(\frac{S_{m}(t, x(t))}{a_{m}(t)}\right)^{\frac{1}{\alpha_{m}}}>0$ for $t \geqslant t_{0}$. So we have two cases: either $S_{m-1}(t, x(t)) \geqslant S_{m-1}\left(t_{1}, x\left(t_{1}\right)\right)>0, t \geqslant t_{1}$ for some $t_{1} \geqslant t_{0}$ or $S_{m-1}(t, x(t))<0$ for all $t \geqslant t_{0}$. For the first case, similar to the case of $S_{n}(t, x(t))<S_{n}\left(T_{1}, x\left(T_{1}\right)\right)<0$ for $t \geqslant T_{1}$, we can show that $\lim _{t \rightarrow \infty} S_{\mathfrak{i}}(\mathrm{t}, \mathrm{x}(\mathrm{t}))=\infty$ for $0 \leqslant \mathrm{i} \leqslant \mathrm{m}-1$. For the second case, using arguments similar to the case of $S_{n}(t, x(t))<0$, we can show that $S_{m-2}(t, x(t))>0$ for $t \geqslant t_{0}$, which contradicts to the definition of m. The proof is completed.

Lemma 2.3. Let $x(t)$ be an eventually positive solution of (1.1). If

$$
\begin{equation*}
\int_{t_{0}}^{\infty} A_{n-1}(s) \Delta s=\infty \tag{2.3}
\end{equation*}
$$

where

$$
A_{i}(t)= \begin{cases}{\left[\frac{1}{a_{n}(t)} \int_{t}^{\infty} q(s) \Delta s\right]^{\frac{1}{\alpha_{n}}},} & \text { if } \mathfrak{i}=n, \\ {\left[\frac{1}{a_{i}(t)} \int_{t}^{\infty} A_{i+1}(t) \Delta s\right]^{\frac{1}{\alpha_{i}}},} & \text { if } 1 \leqslant i \leqslant n-1,\end{cases}
$$

then there exists $\mathrm{T} \in\left[\mathrm{t}_{0}, \infty\right)_{\mathbb{T}}$ sufficiently large such that $\mathrm{S}_{\mathrm{n}}^{\Delta}(\mathrm{t}, \mathrm{x}(\mathrm{t}))<0$ for $\mathrm{t} \geqslant \mathrm{T}$. Moreover,
(1) the following statement holds when n is odd,

$$
\begin{equation*}
\left.S_{j}(t, x(t))\right)>0, \quad j=1,2, \ldots, n \tag{2.4}
\end{equation*}
$$

(2) either (2.4) holds or

$$
\left.(-1)^{j} S_{j}(t, x(t))\right)>0, \quad j=1,2, \ldots, n
$$

and $\lim _{\mathrm{t} \rightarrow \infty} \mathrm{x}(\mathrm{t})=0$, when n is even.
Proof. According to (H1) and (H2), there exist $T \in\left[t_{0}, \infty\right)_{\mathbb{T}}$ and $\left|p_{0}\right|<p_{1}<1$ such that $x(t)>0, x(\tau(t))>$ $0, x(\delta(t))>0$ and $|p(t)| \leqslant p_{1}$ for $t \in[T, \infty)_{\mathbb{T}}$. From (H3) and (1.2), we obtain

$$
\begin{equation*}
S_{n}^{\Delta}(t, x(t)) \leqslant-q(t) x(\delta(t))<0 \tag{2.5}
\end{equation*}
$$

When n is odd, by Lemma 2.2, m must be an odd number. By (2.1), we can get

$$
S_{0}^{\Delta}(t)=\left(\frac{S_{1}(t,(x(t))}{a_{1}(t)}\right)^{\frac{1}{\alpha_{1}}}>0
$$

Hence, $\lim _{t \rightarrow \infty} S_{0}(t)$ exists and is positive, or $\lim _{t \rightarrow \infty} S_{0}(t)=\infty$. It follows that there are $T_{1} \geqslant T$ and a positive real number b such that $S_{0}(t) \geqslant b$ for $t \geqslant T_{1}$. We claim that $m=n$. If not, then, by Lemma 2.1, we have

$$
\begin{equation*}
S_{n-1}(t, x(t))<0 \text { and } S_{n-2}(t, x(t))>0 \text { for } t \geqslant T \tag{2.6}
\end{equation*}
$$

Integrating both sides of (2.5) from t to ∞, we get

$$
S_{n}(t, x(t)) \geqslant \int_{t}^{\infty} q(s) x(\delta(s)) \Delta s
$$

which yields that

$$
S_{n-1}^{\Delta}(t, x(t)) \geqslant\left[\frac{1}{a_{n}(t)} \int_{T}^{\infty} q(s) x(\delta(s)) \Delta s\right]^{\frac{1}{\alpha_{n}}}=: \beta_{n}(t) .
$$

Integrating above from T to ∞, we have

$$
-S_{n-1}(t, x(t)) \geqslant \int_{t}^{\infty} \beta_{n}(s) \Delta s
$$

which yields that

$$
-S_{n-2}^{\Delta}(t, x(t)) \geqslant\left[\frac{1}{a_{n-1}(t)} \int_{t}^{\infty} \beta_{n}(s) \Delta s\right]^{\frac{1}{\alpha_{n-1}}}=: \beta_{n-1}(t) .
$$

Again, integrating above from t_{0} to ∞, by Lemma 2.1, we obtain

$$
\infty>S_{n-2}\left(\mathrm{t}_{0}, \chi\left(\mathrm{t}_{0}\right)\right) \geqslant \int_{\mathrm{t}_{0}}^{\infty} \beta_{\mathfrak{n}-1}(\mathrm{~s}) \Delta \mathrm{s} \geqslant \frac{\mathrm{~b}}{1-\mathrm{p}_{0}} \int_{\mathrm{t}_{0}}^{\infty} A_{\mathfrak{n}-1}(\mathrm{~s}) \Delta \mathrm{s},
$$

which contradicts (2.1). Hence, $\mathfrak{m}=\mathrm{n}$ and (2.4) holds.
When n is even, by Lemma 2.2, m must be an even integer. By (2.1) and (2.2), we have either $S_{0}^{\Delta}(t)>0$ or $S_{0}^{\Delta}(t)<0$. It means that $\lim _{t \rightarrow \infty} S_{0}(t)=l \geqslant 0$. We claim that $l \neq 0$ implies that $m=n$. Otherwise, (2.6) holds. By a similar arguments as above, we can reach a contradiction to (2.3). This completes the proof.

Lemma 2.4. Suppose that $\chi(\mathrm{t})$ is an eventually positive solution of (1.1) which satisfies (2.4) eventually. Then there exists $\mathrm{T} \in\left[\mathrm{t}_{0}, \infty\right)_{\mathbb{T}}$ such that, for $\mathrm{t} \geqslant \mathrm{T}$ and $0 \leqslant \mathrm{j} \leqslant \mathrm{n}$, we have

$$
\begin{equation*}
S_{j}(\mathrm{t}, x(\mathrm{t})) \geqslant \mathrm{S}_{\mathrm{n}}^{\prod_{k=j+1}^{n} \frac{1}{\alpha_{k}}}(\mathrm{t}, x(\mathrm{t})) \mathrm{B}_{\mathrm{j}+1}(\mathrm{t}, \mathrm{~T}), \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{0}^{\Delta}(t) \geqslant S_{n}^{\prod_{k=1}^{n} \frac{1}{\alpha_{k}}}(\sigma(t), \chi(\sigma(t)))\left(\frac{B_{2}(t, T)}{a_{1}(t)}\right)^{\frac{1}{\alpha_{1}}} \tag{2.8}
\end{equation*}
$$

and there exist $\mathrm{T}_{1}>\mathrm{T}$ and a constant $\mathrm{c}>0$ such that

$$
\begin{equation*}
\mathrm{S}_{0}(\mathrm{t}) \leqslant \mathrm{c} \mathrm{~B}_{1}(\mathrm{t}, \mathrm{~T}) \text { for } \mathrm{t} \geqslant \mathrm{~T}_{1} \tag{2.9}
\end{equation*}
$$

where

$$
B_{j}(t, T)= \begin{cases}\int_{T}^{t}\left(\frac{1}{a_{n}(s)}\right)^{\frac{1}{\alpha_{n}}} \Delta s, & \text { if } j=n, \\ \int_{T}^{t}\left(\frac{B_{j+1}(s, T)}{a_{j}(s)}\right)^{\frac{1}{\alpha_{j}}} \Delta s, & \text { if } 1 \leqslant j \leqslant n-1 .\end{cases}
$$

Proof. According to the hypothesis, there exists $T \in\left[t_{0}, \infty\right)_{\mathbb{T}}$ such that for any $t \geqslant T$ and $0 \leqslant j \leqslant n$, $S_{j}(t, x(t))>0$. So $S_{n}(t, x(t))$ is decreasing on $[T, \infty)_{\mathbb{T}}$. For $t \geqslant T$, we have

$$
\begin{aligned}
S_{n-1}(t, x(t)) & =S_{n-1}(T, x(T))+\int_{T}^{t}\left(\frac{S_{n}(s, x(s))}{a_{n}(s)}\right)^{\frac{1}{\alpha_{n}}} \Delta s \\
& \geqslant S_{n}^{\frac{1}{\alpha_{n}}}(t, x(t)) \int_{T}^{t}\left(\frac{1}{a_{n}(s)}\right)^{\frac{1}{\alpha_{n}}} \Delta s=S_{n}^{\frac{1}{\alpha_{n}}}(t, x(t)) B_{n}(t, T),
\end{aligned}
$$

$$
\begin{aligned}
S_{n-2}(t, x(t)) & =S_{n-2}(T, x(T))+\int_{T}^{t}\left(\frac{S_{n-1}(s, x(s))}{a_{n-1}(s)}\right)^{\frac{1}{\alpha_{n-1}}} \Delta s \\
& \geqslant \int_{T}^{t}\left(\frac{S_{n-1}(s, x(s))}{a_{n-1}(s)}\right)^{\frac{1}{\alpha_{n-1}}} \Delta s \\
& \geqslant \int_{T}^{t}\left(\frac{S_{n}^{\frac{1}{\alpha_{n}}}(s, x(s)) B_{n}(s, T)}{a_{n-1}(s)}\right)^{\frac{1}{\alpha_{n-1}}} \Delta s \\
& \geqslant S_{n}^{\frac{1}{\alpha_{n} \alpha_{n-1}}}(t, x(t)) \int_{T}^{t}\left(\frac{B_{n}(s, T)}{a_{n-1}(s)}\right)^{\frac{1}{\alpha_{n-1}}} \Delta s=S_{n}^{\frac{1}{\alpha_{n} \alpha_{n-1}}}(t, x(t)) B_{n-1}(t, T) .
\end{aligned}
$$

By induction, it is easy to see that

$$
S_{1}(t, x(t)) \geqslant S_{n}^{\prod_{k=2}^{n} \frac{1}{\alpha_{k}}}(t, x(t)) B_{2}(t, T), \quad S_{0}(t, x(t)) \geqslant S_{n}^{\prod_{k=1}^{n} \frac{1}{\alpha_{k}}}(t, x(t)) B_{1}(t, T) .
$$

Then we have

$$
S_{0}^{\Delta}(t)=\left(\frac{S_{1}(t, x(t)}{a_{1}(t)}\right)^{\frac{1}{\alpha_{1}}} \geqslant S_{n}^{\prod_{k=1}^{n} \frac{1}{\alpha_{k}}}(t, x(t))\left(\frac{B_{2}(t, T)}{a_{1}(t)}\right)^{\frac{1}{\alpha_{1}}} .
$$

Since $S_{n}(t, x(t))$ is decreasing on $[T, \infty)_{\mathbb{T}}$,

$$
S_{0}^{\Delta}(t) \geqslant S_{n}^{\prod_{k=1}^{n} \frac{1}{\alpha_{k}}}(\sigma(t), x(\sigma(t)))\left(\frac{B_{2}(t, T)}{a_{1}(t)}\right)^{\frac{1}{\alpha_{1}}}
$$

On the other hand, for $t>T$,

$$
S_{n-1}(t, x(t))=S_{n-1}(T, x(T))+\int_{T}^{t}\left(\frac{S_{n}(s, x(s))}{a_{n}(s)}\right)^{\frac{1}{\alpha_{n}}} \Delta s \leqslant S_{n-1}(T, x(T))+S_{n}^{\frac{1}{\alpha_{n}}}(T, x(T)) B_{n}(t, T) .
$$

Thus, there exist $\mathrm{T}_{1}>\mathrm{T}$ and $\mathrm{b}_{1}>0$ such that

$$
S_{n-1}(t, x(t)) \leqslant b_{1} B_{n}(t, T) \text { for } t \geqslant T_{1} .
$$

Similarly, we have

$$
S_{n-2}(t, x(t))=S_{n-2}\left(T_{1}, x\left(T_{1}\right)\right)+\int_{T_{1}}^{t}\left(\frac{S_{n-1}(s, x(s))}{a_{n-1}(s)}\right)^{\frac{1}{\alpha_{n-1}}} \Delta s \leqslant S_{n-1}\left(T_{1}, x\left(T_{1}\right)\right)+b_{1} \int_{T}^{t}\left(\frac{B_{n}(s, T)}{a_{n-1}(s)}\right)^{\frac{1}{\alpha_{n-1}}} \Delta s
$$

Thus, there exists a constant $b_{2}>0$ such that

$$
S_{n-2}(t, x(t)) \leqslant b_{2} B_{n-1}(t, T) \text { for } t \geqslant T_{1} .
$$

By induction, it is easy to see that there exist $T_{1}>T$ and $b_{n}>0$ such that

$$
S_{0}(t) \leqslant b_{n} B_{1}(t, T) \text { for } t \geqslant T_{1} .
$$

This completes the proof.

3. Main results

Theorem 3.1. Suppose that (2.3) holds, $\mathrm{p}_{0} \in(0,1), \delta(\mathrm{t})>\mathrm{t}$, and $\prod_{\mathrm{k}=1}^{n} \alpha_{\mathrm{k}} \geqslant 1$. If there exists $z \in \mathrm{C}_{\mathrm{rd}}(\mathbb{T},(0, \infty))$ such that for all sufficiently large $\mathrm{T} \in\left[\mathrm{t}_{0}, \infty\right)_{\mathbb{T}}$,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{T}^{t}\left[z(s) q(s)-\frac{\left(z^{\Delta}(s)\right)^{2}}{4 M z(s) \delta^{\Delta}(s)}\left(\frac{a_{1}(\delta(s))}{B_{2}(\delta(s), T)}\right)^{\frac{1}{\alpha_{1}}}\right] \Delta s=\infty, \tag{3.1}
\end{equation*}
$$

where M is a positive constant, then
(1) every solution of (1.1) is either oscillatory or tends to zero when n is even;
(2) every solution of (1.1) is oscillatory when n is odd.

Proof. Assume that $x(t)$ is a non-oscillatory solution of (1.1). Then there is a $T \geqslant t_{0}$ sufficiently large such that $x(t), \chi(\tau(t)), x(\delta(t))>0$ and $p(t)>0$ for $t \geqslant T$. From Lemma 2.3, we see that (2.4) holds when n is odd, and either (2.4) holds or $\lim _{t \rightarrow \infty} x(t)=0$ when n is even.

Assume that n is odd. Define w by

$$
\begin{equation*}
w(t)=\frac{z(t) S_{n}(t, x(t))}{S_{0}(\delta(t))} \text { for } t \geqslant T \tag{3.2}
\end{equation*}
$$

Then $w(\mathrm{t})>0$. Using the product rule, we have

$$
w^{\Delta}(t)=\left(S_{n}(t, x(t))\right)^{\sigma}\left(\frac{z(t)}{S_{0}(\delta(t))}\right)^{\Delta}+\left(S_{n}(t, x(t))\right)^{\Delta} \frac{z(t)}{S_{0}(\delta(t))}
$$

By the definition of $S_{0}(t)$, we obtain $x(t) \geqslant S_{0}(t)$ for $t \geqslant T$. By the quotient rule and applying (2.5), we get

$$
w^{\Delta}(t) \leqslant\left(S_{n}(t, x(t))\right)^{\sigma} \frac{z^{\Delta}(t) S_{0}(\delta(t))-z(t)\left(S_{0}(\delta(t))\right)^{\Delta}}{S_{0}(\delta(t)) S_{0}\left(\delta^{\sigma}(t)\right)}-z(t) q(t) \frac{S_{0}(\delta(t))}{S_{0}(\delta(t))}
$$

From (3.2), it follows that

$$
\begin{equation*}
w^{\Delta}(\mathrm{t}) \leqslant-z(\mathrm{t}) \mathrm{q}(\mathrm{t})+\frac{z^{\Delta}(\mathrm{t})}{z(\sigma(\mathrm{t}))} w(\sigma(\mathrm{t}))-\left(\mathrm{S}_{\mathrm{n}}(\mathrm{t}, x(\mathrm{t}))\right)^{\sigma} \frac{z(\mathrm{t}) \mathrm{S}_{0}^{\Delta}(\delta(\mathrm{t})) \delta^{\Delta}(\mathrm{t})}{\mathrm{S}_{0}(\delta(\mathrm{t})) \mathrm{S}_{0}\left(\delta^{\sigma}(\mathrm{t})\right)} . \tag{3.3}
\end{equation*}
$$

Since $S_{n}(t, x(t))$ is decreasing on $\left[t_{1}, \infty\right)_{\mathbb{T}}$, there exists a constant $d>0$ such that

$$
\left(S_{n}(t, x(t))\right)^{\sigma} \leqslant S_{n}(t, x(t)) \leqslant d \text { for } t \geqslant T
$$

Applying (3.3) to (2.8) and noting that $\prod_{k=1}^{n} \alpha_{k} \geqslant 1$, we have

$$
\begin{equation*}
S_{0}^{\Delta}(t) \geqslant d^{\left(\prod_{k=1}^{n} \frac{1}{\alpha_{k}}\right)-1} S_{n}(\sigma(t), \chi(\sigma(t)))\left(\frac{B_{2}(t, T)}{a_{1}(t)}\right)^{\frac{1}{\alpha_{1}}} \tag{3.4}
\end{equation*}
$$

Let $M=d^{\left(\prod_{k=1}^{n} \frac{1}{\alpha_{k}}\right)-1}$. From (3.2), (3.3), (3.4), and noting that $S_{0}^{\Delta}(t)>0$, we get

$$
\begin{equation*}
w^{\Delta}(\mathrm{t}) \leqslant-z(\mathrm{t}) q(\mathrm{t})+\frac{z^{\Delta}(\mathrm{t})}{z(\sigma(\mathrm{t}))} w(\sigma(\mathrm{t}))-\frac{M z(\mathrm{t}) \mathrm{B}_{2}^{\frac{1}{\alpha_{1}}}(\delta(\mathrm{t}), \mathrm{T}) \delta^{\Delta}(\mathrm{t})}{z^{2}(\sigma(\mathrm{t})) \mathrm{a}_{1}^{\frac{1}{\alpha_{1}}}(\delta(\mathrm{t}))} w^{2}(\sigma(\mathrm{t})) . \tag{3.5}
\end{equation*}
$$

By completing the square for $w(\sigma(t))$ on the right-hand side of (3.5), we have

$$
w^{\Delta}(t) \leqslant-z(t) q(t)+\frac{\left(z^{\Delta}(t)\right)^{2}}{4 M z(t) \delta^{\Delta}(t)}\left(\frac{a_{1}(\delta(t))}{B_{2}(\delta(t), T)}\right)^{\frac{1}{\alpha_{1}}}
$$

Integrating the above inequality from T to t for $t \geqslant T$, we get

$$
\int_{T}^{t}\left[z(s) q(s)-\frac{\left(z^{\Delta}(s)\right)^{2}}{4 M z(s) \delta^{\Delta}(s)}\left(\frac{a_{1}(\delta(s))}{B_{2}(\delta(s), T)}\right)^{\frac{1}{\alpha_{1}}}\right] \Delta s \leqslant w(T)-w(t)<w(T)
$$

Taking the lim sup on both sides of the above inequality as $t \rightarrow \infty$, we obtain a contradiction to (3.1).
In similar fashion, we can show that either every solution of (1.1) is oscillatory or $\lim _{t \rightarrow \infty} x(t)=0$, when n is even. This completes the proof.

Theorem 3.2. Suppose that (2.3) holds, $p_{0} \in(0,1), \delta(t)>t$ and $\prod_{k=1}^{n} \alpha_{k} \geqslant 1$. If there exist positive functions $H, C \in C_{r d}(\mathbb{D},(0, \infty))$, where $\mathbb{D}=\left\{(t, s) \in \mathbb{T}^{2}: t \geqslant s \geqslant t_{0}\right\}$, such that

$$
H(t, t)=0, H(t, s)>0 \text { and } H_{s}^{\Delta}(t, s) \leqslant 0 \text { for } t>s \geqslant t_{0}, \quad C(t, s)=H_{s}^{\Delta}(t, s)+H(t, s) \frac{z^{\Delta}(s)}{z^{\sigma}(s)}
$$

and for sufficiently large T ,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{1}{H(t, T)} \int_{T}^{t}\left[H(t, s) z(s) q(s)-\frac{C^{2}(t, s) z^{2}(\sigma(s)) a_{1}^{\frac{1}{\alpha_{1}}}(\delta(s)}{4 M z(s) \delta^{\Delta}(s) B_{2}^{\frac{1}{\alpha_{1}}}(\delta(s), T) H(t, s)}\right] \Delta s=\infty \tag{3.6}
\end{equation*}
$$

where z, M are defined as in Theorem 3.1. Then
(1) every solution of (1.1) is either oscillatory or tends to zero when \mathfrak{n} is even;
(2) every solution of (1.1) is oscillatory when \mathfrak{n} is odd.

Proof. Assume that $x(t)$ is a non-oscillatory solution of (1.1). Then there is a $T \geqslant t_{0}$ sufficiently large such that $x(t), x(\tau(t)), x(\delta(t))>0$ and $p(t)>0$ for $t \geqslant T$. From Lemma 2.3, we see that (2.4) holds when n is odd, and either (2.4) holds or $\lim _{t \rightarrow \infty} x(t)=0$ when n is even. Assume that n is odd. We define $w(t)$ by (3.2) and proceed as the proof of Theorem 3.1 to get (3.5). Multiplying (3.5) by $\mathrm{H}(\mathrm{t}, \mathrm{s})$ and integrating from T to t, we have

$$
\begin{aligned}
\int_{T}^{t} H(t, s) z(s) q(s) \Delta s \leqslant & -\int_{T}^{t} H(t, s) w^{\Delta}(s) \Delta s+\int_{T}^{t} H(t, s) \frac{z^{\Delta}(s)}{z(\sigma(s))} w(\sigma(s)) \Delta s \\
& -\int_{T}^{t} H(t, s) \frac{M z(s) B_{2}^{\frac{1}{\alpha_{1}}}(\delta(s), T) \delta^{\Delta}(s)}{z^{2}(\sigma(s)) a_{1}^{\frac{1}{\alpha_{1}}}(\delta(s))} w^{2}(\sigma(s)) \Delta s .
\end{aligned}
$$

By integration by parts we obtain

$$
-\int_{T}^{t} \mathrm{H}(\mathrm{t}, \mathrm{~s}) w^{\Delta}(\mathrm{s}) \Delta \mathrm{s}=\mathrm{H}(\mathrm{t}, \mathrm{~T}) w(\mathrm{~T})+\int_{\mathrm{T}}^{\mathrm{t}} \mathrm{H}_{\mathrm{s}}^{\Delta}(\mathrm{t}, \mathrm{~s}) w(\sigma(\mathrm{~s})) \Delta \mathrm{s}
$$

It follows that

$$
\begin{aligned}
\int_{T}^{t} H(t, s) z(s) q(s) \Delta s \leqslant & H(t, T) w(T)+\int_{T}^{t}\left[H_{s}^{\Delta}(t, s)+H(t, s) \frac{z^{\Delta}(s)}{z(\sigma(s))}\right] w(\sigma(s)) \Delta s \\
& -\int_{T}^{t} H(t, s) \frac{M z(s) B_{2}^{\frac{1}{\alpha_{1}}}(\delta(s), T) \delta^{\Delta}(s)}{z^{2}(\sigma(s)) a_{1}^{\frac{1}{\alpha_{1}}}(\delta(s))} w^{2}(\sigma(s)) \Delta s \\
& =H(t, T) w(T)+\int_{T}^{t} C(t, s) w(\sigma(s)) \Delta s-\int_{T}^{t} H(t, s) \frac{M z(s) B_{2}^{\frac{1}{\alpha_{1}}}(\delta(s), T) \delta^{\Delta}(s)}{z^{2}(\sigma(s)) a_{1}^{\frac{1}{\alpha_{1}}}(\delta(s))} w^{2}(\sigma(s)) \Delta s
\end{aligned}
$$

By completing the square for $w(\sigma(t))$ on the right-hand side, we get

$$
\int_{T}^{t} H(t, s) z(s) q(s) \Delta s \leqslant H(t, T) w(T)+\int_{T}^{t}\left[\frac{C^{2}(t, s) z^{2}(\sigma(s))}{4 M z(s) \delta^{\Delta}(s) H(t, s)}\left(\frac{a_{1}(\delta(s))}{B_{2}(\delta(s), T)}\right)^{\frac{1}{\alpha_{1}}}\right] \Delta s
$$

and this implies that

$$
\frac{1}{\mathrm{H}(\mathrm{t}, \mathrm{~T})} \int_{\mathrm{T}}^{\mathrm{t}}\left[\mathrm{H}(\mathrm{t}, \mathrm{~s}) z(\mathrm{~s}) \mathrm{q}(\mathrm{~s})-\frac{\mathrm{C}^{2}(\mathrm{t}, \mathrm{~s}) z^{2}(\sigma(\mathrm{~s}))}{4 \mathrm{Mz}(\mathrm{~s}) \delta^{\Delta}(\mathrm{s}) \mathrm{H}(\mathrm{t}, \mathrm{~s})}\left(\frac{\mathrm{a}_{1}(\delta(\mathrm{~s}))}{\mathrm{B}_{2}(\delta(\mathrm{~s}), \mathrm{T})}\right)^{\frac{1}{\alpha_{1}}}\right] \Delta \mathrm{s} \leqslant w(\mathrm{~T})
$$

which contradicts (3.6).
In similar fashion, we can show that either every solution of (1.1) is oscillatory or $\lim _{t \rightarrow \infty} x(t)=0$ when n is even. This completes the proof.

Theorem 3.3. Suppose that (2.3) holds and $p_{0} \in(0,1), \delta(t)>t$. If for all sufficiently large $T \in\left[t_{0}, \infty\right)_{\mathbb{T}}$, there exist positive constants $\mathrm{d}_{1}, \mathrm{~d}_{2}$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} B_{1}^{\prod_{k=1}^{n} \alpha_{k}}(\delta(t), T) \gamma\left(\delta(t), T, d_{1}, d_{2}\right) \int_{t}^{\infty} q(s) \Delta s>1 \tag{3.7}
\end{equation*}
$$

where

$$
\gamma\left(\delta(t), T, d_{1}, d_{2}\right)= \begin{cases}1, & \text { if } \prod_{k=1}^{n} \alpha_{k}=1 \\ d_{1}, & \text { if } \prod_{k=1}^{n} \alpha_{k}<1 \\ d_{2} B_{1}^{1-\prod_{k=1}^{n} \alpha_{k}}(\delta(t), T), & \text { if } \prod_{k=1}^{n} \alpha_{k}>1\end{cases}
$$

Then
(1) every solution of (1.1) is either oscillatory or tends to zero when \mathfrak{n} is even;
(2) every solution of (1.1) is oscillatory when \mathfrak{n} is odd.

Proof. Assume that $x(t)$ is a non-oscillatory solution of (1.1). Then, without loss of generality, there is a $T \geqslant t_{0}$ sufficiently large such that $x(t), x(\tau(t)), x(\delta(t))>0$ for $t \geqslant T$. From Lemma 2.3, we see that (2.4) holds when \mathfrak{n} is odd, and either (2.4) holds or $\lim _{t \rightarrow \infty} x(t)=0$ when \mathfrak{n} is even.

Assume that \mathfrak{n} is odd. From (2.5) and (2.7), we get for $t>T$,

$$
\int_{t}^{\infty} q(s) S_{0}(\delta(s)) \Delta s \leqslant S_{n}(t, x(t)) \leqslant\left[\frac{S_{0}(t)}{B_{1}(t, T)}\right]^{\prod_{k=1}^{n} \alpha_{k}}
$$

Noting that $S_{0}^{\Delta}(t)>0$ and $\delta(t)>t$, we obtain

$$
S_{0}(\delta(t)) \int_{t}^{\infty} q(s) \Delta s \leqslant S_{n}(t, x(t)) \leqslant\left[\frac{S_{0}(\delta(t))}{B_{1}(t, T)}\right]^{\prod_{k=1}^{n} \alpha_{k}}
$$

Thus

$$
B_{1}^{\prod_{k=1}^{n} \alpha_{k}}(t, T) S_{0}^{1-\prod_{k=1}^{n} \alpha_{k}}(\delta(t)) \int_{t}^{\infty} q(s) \Delta s \leqslant 1
$$

The rest of the proof is separated into three cases:
Case 1. If $\prod_{k=1}^{n} \alpha_{k}=1$, then

$$
\begin{equation*}
S_{0}^{1-\prod_{k=1}^{n} \alpha_{k}}(\delta(t))=1 \text { for } t \geqslant T \tag{3.8}
\end{equation*}
$$

Case 2. If $\prod_{k=1}^{n} \alpha_{k}<1$, then

$$
\begin{equation*}
S_{0}(\delta(t)) \geqslant S_{0}(\delta(T)) \text { for } t \geqslant T \tag{3.9}
\end{equation*}
$$

Thus

$$
\begin{equation*}
S_{0}^{1-\prod_{k=1}^{n} \alpha_{k}}(\delta(t)) \geqslant d_{1} S_{0}^{1-\prod_{k=1}^{n} \alpha_{k}}(\delta(T)) \tag{3.10}
\end{equation*}
$$

Case 3. If $\prod_{k=1}^{n} \alpha_{k}>1$, then from (2.9), there exists a $T_{1}>T$ and a constant c such that

$$
S_{0}(\delta(t)) \leqslant c B_{1}(\delta(t), T) \text { for } t \geqslant T_{1}
$$

Thus

$$
\begin{equation*}
S_{0}^{1-\prod_{k=1}^{n} \alpha_{k}}(\delta(t)) \geqslant c^{1-\prod_{k=1}^{n} \alpha_{k}} B_{1}^{1-\prod_{k=1}^{n} \alpha_{k}}(\delta(t), T) \tag{3.11}
\end{equation*}
$$

Let $d_{2}=c^{1-\prod_{k=1}^{n} \alpha_{k}}$, we have

$$
\begin{equation*}
S_{0}^{1-\prod_{k=1}^{n} \alpha_{k}}(\delta(t)) \geqslant d_{2} B_{1}^{1-\prod_{k=1}^{n} \alpha_{k}}(\delta(t), T) \tag{3.12}
\end{equation*}
$$

According to (3.8)-(3.12), we obtain that for $t \geqslant T_{1}$,

$$
\mathrm{B}_{1}^{\prod_{\mathrm{k}=1}^{\mathrm{n}} \alpha_{\mathrm{k}}}(\delta(\mathrm{t}), \mathrm{T}) \gamma\left(\delta(\mathrm{t}), \mathrm{T}, \mathrm{~d}_{1}, \mathrm{~d}_{2}\right) \int_{\mathrm{t}}^{\infty} \mathrm{q}(\mathrm{~s}) \Delta \mathrm{s} \leqslant 1
$$

which is a contradiction to (3.7).
In similar fashion, we can show that either every solution of (1.1) is oscillatory or $\lim _{t \rightarrow \infty} \chi(t)=0$ when n is even. The proof is completed.

4. Examples

Example 4.1. Consider the equation

$$
\begin{equation*}
\left[\frac{1}{t}\left(\left(\frac{1}{t}\left(\cdots\left(\frac{1}{t}\left(x(t)-\frac{1}{2} x(\tau(t))\right)^{\Delta}\right)^{n}\right)^{\Delta} \cdots\right)^{\Delta}\right)^{\frac{1}{n}}\right]^{\Delta}+t^{n} x\left(t^{n}\right)=0 \tag{4.1}
\end{equation*}
$$

where n is odd and $n \geqslant 2, \mathbb{T}=[1, \infty)$. Here we have $a_{k}(t)=\frac{1}{t}(1 \leqslant k \leqslant n), \alpha_{1}=n, \alpha_{k}=1(2 \leqslant k \leqslant$ $n-1), \alpha_{n}=\frac{1}{n}, p(t)=\frac{1}{2}$, and $q(t)=\delta(t)=t^{n}$. Clearly,

$$
\begin{aligned}
\int_{t_{0}}^{\infty}\left(\frac{1}{a_{1}(t)}\right)^{\frac{1}{\alpha_{1}}} \Delta t & =\int_{1}^{\infty} t^{\frac{1}{n}} \Delta t=\infty, \\
\int_{t_{0}}^{\infty}\left(\frac{1}{a_{n}(t)}\right)^{\frac{1}{\alpha_{n}}} \Delta t & =\int_{1}^{\infty} t^{n} \Delta t=\infty, \\
\int_{t_{0}}^{\infty}\left(\frac{1}{a_{k}(t)}\right)^{\frac{1}{\alpha_{k}}} \Delta t & =\int_{1}^{\infty} t \Delta t=\infty(2 \leqslant k \leqslant n-1), \\
A_{n}(t) & =\left[\frac{1}{a_{n}(t)} \int_{t}^{\infty} q(s) \Delta s\right]^{\frac{1}{\alpha_{n}}}=\left[t \int_{t}^{\infty} s^{n} \Delta s\right]^{n}=t^{n}\left[\int_{t}^{\infty} s^{n} \Delta s\right]^{n}=\infty, \\
A_{n-1}(t) & =\left[\frac{1}{a_{n-1}(t)} \int_{t}^{\infty} A_{n}(s) \Delta s\right]^{\frac{1}{\alpha_{n-1}}}=t \int_{t}^{\infty} A_{n}(s) \Delta s=\infty, \\
\int_{t_{0}}^{\infty} A_{n-1}(s) \Delta s & =\int_{1}^{\infty} A_{n-1}(s) \Delta s=\infty .
\end{aligned}
$$

Let $z(t)=1$, we see that for all sufficiently large $T \in\left[t_{0}, \infty\right)_{\mathbb{T}}$,

$$
\underset{t \rightarrow \infty}{\limsup } \int_{T}^{t}\left[z(s) q(s)-\frac{\left(z^{\Delta}(s)\right)^{2}}{4 M z(s) \delta^{\Delta}(s)}\left(\frac{a_{1}(\delta(s))}{B_{2}(\delta(s), T)}\right)^{\frac{1}{\alpha_{1}}}\right] \Delta s=\limsup _{t \rightarrow \infty}^{t} \int_{T}^{t} s^{n} \Delta s=\infty .
$$

Hence the conditions of Theorem 3.1 are satisfied. By Theorem 3.1, every solution $x(t)$ of (4.1) is oscillatory.

Example 4.2. Consider the equation

$$
\begin{equation*}
\left[\frac{1}{\mathrm{t}}\left(\left(\frac{1}{\mathrm{t}}\left(\cdots\left(\frac{1}{\mathrm{t}}\left(x(\mathrm{t})-\frac{1}{3} x(\tau(\mathrm{t}))\right)^{\Delta}\right)^{\mathrm{n}+1}\right)^{\Delta} \cdots\right)^{\Delta}\right)^{\frac{1}{n-1}}\right]^{\Delta}+\mathrm{t}^{\mathrm{n}} x\left(\mathrm{t}^{\mathrm{n}}\right)=0 \tag{4.2}
\end{equation*}
$$

where n is even and $n \geqslant 2, \mathbb{T}=[1, \infty)$. Here we have $a_{k}(t)=\frac{1}{t}(1 \leqslant k \leqslant n), \alpha_{1}=n+1, \alpha_{k}=1(2 \leqslant k \leqslant$ $\mathrm{n}-1), \alpha_{n}=\frac{1}{n-1}, p(\mathrm{t})=\frac{1}{3}$, and $\mathrm{q}(\mathrm{t})=\delta(\mathrm{t})=\mathrm{t}^{\mathrm{n}}$. Clearly,

$$
\begin{aligned}
\int_{t_{0}}^{\infty}\left(\frac{1}{a_{1}(t)}\right)^{\frac{1}{\alpha_{1}}} \Delta t & =\int_{1}^{\infty} t^{\frac{1}{n+1}} \Delta t=\infty, \\
\int_{t_{0}}^{\infty}\left(\frac{1}{a_{n}(t)}\right)^{\frac{1}{\alpha_{n}}} \Delta t & =\int_{1}^{\infty} t^{n-1} \Delta t=\infty, \\
\int_{t_{0}}^{\infty}\left(\frac{1}{a_{k}(t)}\right)^{\frac{1}{\alpha_{k}}} \Delta t & =\int_{1}^{\infty} t \Delta t=\infty(2 \leqslant k \leqslant n-1), \\
A_{n}(t) & =\left[\frac{1}{a_{n}(t)} \int_{t}^{\infty} q(s) \Delta s\right]^{\frac{1}{\alpha_{n}}}=\left[t \int_{t}^{\infty} s^{n} \Delta s\right]^{n-1}=t^{n-1}\left(\int_{t}^{\infty} s^{n} \Delta s\right)^{n-1}=\infty, \\
A_{n-1}(t) & =\left[\frac{1}{a_{n-1}(t)} \int_{t}^{\infty} A_{n}(s) \Delta s\right]^{\frac{1}{\alpha_{n-1}}}=t \int_{t}^{\infty} A_{n}(s) \Delta s=\infty, \\
\int_{t_{0}}^{\infty} A_{n-1}(s) \Delta s & =\int_{1}^{\infty} A_{n-1}(s) \Delta s=\infty .
\end{aligned}
$$

Let $z(t)=1$, we see that for all sufficiently large $T \in\left[t_{0}, \infty\right)_{\mathbb{T}}$,

$$
\limsup _{t \rightarrow \infty} \int_{T}^{t}\left[z(s) q(s)-\frac{\left(z^{\Delta}(s)\right)^{2}}{4 M z(s) \delta^{\Delta}(s)}\left(\frac{a_{1}(\delta(s))}{B_{2}(\delta(s), T)}\right)^{\frac{1}{\alpha_{1}}}\right] \Delta s=\limsup _{t \rightarrow \infty} \int_{T}^{t} s^{n} \Delta s=\infty
$$

Hence the conditions of Theorem 3.1 are satisfied.
By Theorem 3.1, every solution $x(t)$ of (4.2) is either oscillatory or tends to zero.

Acknowledgment

This work is supported by NNSF of China (No. 11761011, No. 11461003, No. 11401116) and NSF of Guangxi (No. 2014GXNSFBA118003). The authors would like to thank the referee for the valuable suggestions and comments.

References

[1] J. Baoguo, L. Erbe, A. Peterson, Asymptotic behavior of nth-order sublinear dynamic equations on time scales, Common. Appl. Anal., 15 (2011), 183-194. 1
[2] L. Erbe, B. Jia, A. Peterson, Oscillation of nth-order superlinear dynamic equations on time scales, Rocky Mountain J. Math., 41 (2011), 471-491. 1
[3] L. Erbe, A. Peterson, S. H. Saker, Oscillation criteria for second-order nonlinear delay dynamic equations, J. Math. Anal. Appl., 333 (2007), 505-522. 1
[4] T. Li, Z. Han, S. Sun, Y. Zhao, Oscillation results for third order nonlinear delay dynamic equations on time scales, Bull. Malays. Math. Sci. Soc., 34 (2011), 639-648.
[5] Y. Shi, Z. Han, Y. Sun, Oscillation criteria for a generalized Emden-Fowler dynamic equations on time scales, Adv. Difference Equ., 2016 (2016), 12 pages.
[6] Y. Sun, Z. Han, G. Zhang, Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Appl. Math. Comput., 30 (2009), 459-468.
[7] Y. Sun, Z. Han, Y. Sun, Y. Pan, Oscillation theorems for certain third-order nonlinear delay dynamic equations on time scales, Electron J. Qual. Theory Differ. Equ., 2011 (2011), 14 pages. 1
[8] T. Sun, Q. He, H. Xi, W. Yu, Oscillation for higher order dynamic equations on time scales, Abstr. Appl. Anal., 2013 (2013), 8 pages. 1
[9] T. Sun, W. Yu, H. Xi, Oscillation behavior and comparison for higher order nonlinear dynamic equations on time scales, J. Appl. Math. Info., 30 (2012), 289-304. 1
[10] C. Zhang, R. P. Agarwal, M. Bohner, T. Li, Oscillation of fourth-order delay dynamic equations, Sci. China Math., 58 (2015), 143-160. 1
[11] S.-Y. Zhang, Q.-R. Wang, Q. Kong, Asymptotic and oscillation of n th-order nonlinear dynamic equations on time scales, Appl. Math. comput., 275 (2016), 324-334. 1

[^0]: *Corresponding author
 Email addresses: 2416482188@qq.com (Yaru Zhou), czhhxl@gxu.edu.cn (Zhanhe Chen), stxhql@gxu.edu.cn (Taixiang Sun) doi: 10.22436/jnsa.011.07.06
 Received: 2017-06-29 Revised: 2018-01-11 Accepted: 2018-04-11

