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Abstract

In this paper, we investigate the solution’s oscillation of nth-order nonlinear dynamic equation

[an(t)((an−1(t)(· · · (a1(t)(x(t) − p(t)x(τ(t)))
∆)α1)∆ · · · )∆)αn ]∆ + f(t, x(δ(t))) = 0

on a time scale T with n > 2. We give some conditions for the oscillation of the above equation.
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1. Introduction

In this paper, we study the nth-order nonlinear neutral delay dynamic equation

[an(t)((an−1(t)(· · · (a1(t)(x(t) − p(t)x(τ(t)))
∆)α1)∆ · · · )∆)αn ]∆ + f(t, x(δ(t))) = 0 (1.1)

on a time scale T satisfying inf T = t0 and sup T = ∞, where n > 2 and αk(1 6 k 6 n) are quotients of
odd positive integers. Throughout this paper, we assume the following conditions are satisfied:

(H1) ak(t) ∈ Crd(T, (0,∞)),p(t) ∈ Crd(T, R), limt→∞ p(t) = p0, where |p0| < 1, and∫∞
t0

( 1
ak(t)

) 1
αk∆t =∞ (1 6 k 6 n);

(H2) τ, δ ∈ Crd(T, T), τ(t) 6 t, and limt→∞ τ(t) = limt→∞ δ(t) =∞;
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(H3) f ∈ C(T×R, R),uf(t,u) > 0 and there exists q(t) ∈ Crd(T, (0,∞)) such that |f(t,u)| > q(t)|u| for all
u 6= 0 and t ∈ T.

We write

Sk(t, x(t)) =
{
x(t) − p(t)x(τ(t)), if k = 0,
ak(t)

(
S∆k−1(t, x(t))

)αk , if 1 6 k 6 n.

Then (1.1) reduces to the equation

S∆n(t, x(t)) + f(t, x(δ(t))) = 0. (1.2)

In last few decades, there are lots of research concerning oscillation of second and third order delay
dynamic equations and we can find in [3–7, 10]. Recently, the number of papers, such as [1, 2, 8, 9, 11], are
concerned with the oscillation of higher order dynamic equations. Sun et al. [8] studied the oscillation
for higher order dynamic equation{

an(t)
[(
an−1(t)

(
· · · (a1(t)x

∆(t))∆ · · ·
)∆)∆]α}∆

+ p(t)xβ(t) = 0.

Zhang and Wang [11] considered the asymptotic and oscillation of nth-order nonlinear dynamic equation

(r(t)Φγ(x
∆n−1

(t)))∆ +

k∑
i=0

qi(t)Φαi(x(δi(t))) = 0.

The purpose of this paper is to extend the existing results to more general nth-order dynamic equa-
tions, and give some oscillation criteria.

2. Auxiliary results

Lemma 2.1. Let x(t) be an eventually positive solution of (1.1). If there exists a constant l > 0 such that
limt→∞ S0(t) = l, then limt→∞ x(t) = l

1−p0
.

Proof. Suppose that x(t) is an eventually positive solution of (1.1). According to (H1) and (H2), there exist
T1 ∈ [t0,∞)T and |p0| < p1 < 1 such that x(t), x(τ(t)) > 0 and |p(t)| 6 p1 for t ∈ [T1,∞)T. We claim that
x(t) is bounded on [t0,∞)T. If not, then there exists {tn}

∞
n=1 ⊂ [T1,∞)T with tn →∞ as n→∞ such that

x(tn) = max
t06t6tn

x(t), lim
t→∞ x(tn) =∞.

Noting that τ(t) 6 t, so x(τ(tn)) 6 x(tn). Then we have

S0(tn) = x(tn) − p(tn)x(τ(tn)) > (1 − p1)x(tn)→∞
as n→∞, which contradicts the fact limt→∞ S0(t) = l. Therefore, x(t) is bounded. Let lim supt→∞ x(t) =
x1 and lim inft→∞ x(t) = x2. If 0 6 p0 < 1, we have

x1 − p0x2 6 l 6 x2 − p0x1,

which implies that x1 6 x2. If −1 6 p0 < 0, we have

x1 − p0x1 6 l 6 x2 − p0x2,

which also implies that x1 6 x2. Therefore, limt→∞ x(t) exists and limt→∞ x(t) = l
1−p0

.

Lemma 2.2. If S∆n(t, x(t)) < 0 and x(t) > 0 for t > t0, then there exists an integer m ∈ [0,n] with m+ n even
such that

(−1)m+iSi(t, x(t)) > 0 for t > t0 and m 6 i 6 n, (2.1)

and if m > 1, then there exists T > t0 such that

Si(t, x(t)) > 0 for t > T and 1 6 i 6 m− 1. (2.2)
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Proof. First, we show that Sn(t, x(t)) > 0 for t > t0. If not, then there exists some T1 > t0 such that
Sn(T1, x(T1)) < 0. Noting that S∆n(t, x(t)) < 0 , it follows Sn(t, x(t)) is strictly decreasing on [t0,∞)T.
Therefore, Sn(t, x(t)) < Sn(T1, x(T1)) < 0 for t > T1. Then, from (H1), we have

Sn−1(t, x(t)) = Sn−1(T1, x(T1)) +

∫t
T1

(Sn(s, x(s))
an(s)

) 1
αn
∆s 6 Sn−1(T1, x(T1)) +

∫t
T1

(Sn(T1, x(T1))

an(s)

) 1
αn
∆s.

Thus limt→∞ Sn−1(t, x(t)) = −∞. By induction we can obtain limt→∞ S0(t) = −∞, which is a contradic-
tion to S0(t) > 0. Thus Sn(t, x(t)) > 0. Then we have the following two cases:

(i) Si(t) > 0 for any 0 6 i 6 n− 1;
(ii) Sj(t) < 0 for some 0 < j < n− 1.

From case (ii), there exists a smallest integer m ∈ [0,n] with m+n even such that (−1)m+iSi(t, x(t)) >
0 for t > t0 and m 6 i 6 n.

If m > 1, then S∆m−1(t, x(t)) =
(Sm(t,x(t))

am(t)

) 1
αm > 0 for t > t0. So we have two cases: either

Sm−1(t, x(t)) > Sm−1(t1, x(t1)) > 0, t > t1 for some t1 > t0 or Sm−1(t, x(t)) < 0 for all t > t0.
For the first case, similar to the case of Sn(t, x(t)) < Sn(T1, x(T1)) < 0 for t > T1, we can show that
limt→∞ Si(t, x(t)) = ∞ for 0 6 i 6 m− 1. For the second case, using arguments similar to the case of
Sn(t, x(t)) < 0, we can show that Sm−2(t, x(t)) > 0 for t > t0, which contradicts to the definition of m.
The proof is completed.

Lemma 2.3. Let x(t) be an eventually positive solution of (1.1). If∫∞
t0

An−1(s)∆s =∞, (2.3)

where

Ai(t) =


[ 1
an(t)

∫∞
t q(s)∆s

] 1
αn , if i = n,[ 1

ai(t)

∫∞
t Ai+1(t)∆s

] 1
αi , if 1 6 i 6 n− 1,

then there exists T ∈ [t0,∞)T sufficiently large such that S∆n(t, x(t)) < 0 for t > T . Moreover,

(1) the following statement holds when n is odd,

Sj(t, x(t))) > 0, j = 1, 2, . . . ,n; (2.4)

(2) either (2.4) holds or
(−1)jSj(t, x(t))) > 0, j = 1, 2, . . . ,n,

and limt→∞ x(t) = 0, when n is even.

Proof. According to (H1) and (H2), there exist T ∈ [t0,∞)T and |p0| < p1 < 1 such that x(t) > 0, x(τ(t)) >
0, x(δ(t)) > 0 and |p(t)| 6 p1 for t ∈ [T ,∞)T. From (H3) and (1.2), we obtain

S∆n(t, x(t)) 6 −q(t)x(δ(t)) < 0. (2.5)

When n is odd, by Lemma 2.2, m must be an odd number. By (2.1), we can get

S∆0 (t) =
(S1(t, (x(t))

a1(t)

) 1
α1 > 0.

Hence, limt→∞ S0(t) exists and is positive, or limt→∞ S0(t) = ∞. It follows that there are T1 > T and a
positive real number b such that S0(t) > b for t > T1. We claim that m = n. If not, then, by Lemma 2.1,
we have

Sn−1(t, x(t)) < 0 and Sn−2(t, x(t)) > 0 for t > T . (2.6)
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Integrating both sides of (2.5) from t to∞, we get

Sn(t, x(t)) >
∫∞
t

q(s)x(δ(s))∆s,

which yields that

S∆n−1(t, x(t)) >
[ 1
an(t)

∫∞
T

q(s)x(δ(s))∆s
] 1
αn

=: βn(t).

Integrating above from T to∞, we have

−Sn−1(t, x(t)) >
∫∞
t

βn(s)∆s,

which yields that

−S∆n−2(t, x(t)) >
[ 1
an−1(t)

∫∞
t

βn(s)∆s
] 1
αn−1 =: βn−1(t).

Again, integrating above from t0 to∞, by Lemma 2.1, we obtain

∞ > Sn−2(t0, x(t0)) >
∫∞
t0

βn−1(s)∆s >
b

1 − p0

∫∞
t0

An−1(s)∆s,

which contradicts (2.1). Hence, m = n and (2.4) holds.
When n is even, by Lemma 2.2, m must be an even integer. By (2.1) and (2.2), we have either S∆0 (t) > 0

or S∆0 (t) < 0. It means that limt→∞ S0(t) = l > 0. We claim that l 6= 0 implies that m = n. Otherwise,
(2.6) holds. By a similar arguments as above, we can reach a contradiction to (2.3). This completes the
proof.

Lemma 2.4. Suppose that x(t) is an eventually positive solution of (1.1) which satisfies (2.4) eventually. Then
there exists T ∈ [t0,∞)T such that, for t > T and 0 6 j 6 n, we have

Sj(t, x(t)) > S
∏n
k=j+1

1
αk

n (t, x(t))Bj+1(t, T), (2.7)

and

S∆0 (t) > S
∏n
k=1

1
αk

n (σ(t), x(σ(t)))
(B2(t, T)
a1(t)

) 1
α1 , (2.8)

and there exist T1 > T and a constant c > 0 such that

S0(t) 6 cB1(t, T) for t > T1, (2.9)

where

Bj(t, T) =


∫t
T

( 1
an(s)

) 1
αn∆s, if j = n,∫t

T

(Bj+1(s,T)
aj(s)

) 1
αj∆s, if 1 6 j 6 n− 1.

Proof. According to the hypothesis, there exists T ∈ [t0,∞)T such that for any t > T and 0 6 j 6 n,
Sj(t, x(t)) > 0. So Sn(t, x(t)) is decreasing on [T ,∞)T. For t > T , we have

Sn−1(t, x(t)) = Sn−1(T , x(T)) +
∫t
T

(Sn(s, x(s))
an(s)

) 1
αn
∆s

> S
1
αn
n (t, x(t))

∫t
T

( 1
an(s)

) 1
αn
∆s = S

1
αn
n (t, x(t))Bn(t, T),
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Sn−2(t, x(t)) = Sn−2(T , x(T)) +
∫t
T

(Sn−1(s, x(s))
an−1(s)

) 1
αn−1∆s

>
∫t
T

(Sn−1(s, x(s))
an−1(s)

) 1
αn−1∆s

>
∫t
T

(S 1
αn
n (s, x(s))Bn(s, T)

an−1(s)

) 1
αn−1∆s

> S
1

αnαn−1
n (t, x(t))

∫t
T

(Bn(s, T)
an−1(s)

) 1
αn−1∆s = S

1
αnαn−1
n (t, x(t))Bn−1(t, T).

By induction, it is easy to see that

S1(t, x(t)) > S
∏n
k=2

1
αk

n (t, x(t))B2(t, T), S0(t, x(t)) > S
∏n
k=1

1
αk

n (t, x(t))B1(t, T).

Then we have

S∆0 (t) =
(S1(t, x(t)

a1(t)

) 1
α1 > S

∏n
k=1

1
αk

n (t, x(t))
(B2(t, T)
a1(t)

) 1
α1 .

Since Sn(t, x(t)) is decreasing on [T ,∞)T,

S∆0 (t) > S
∏n
k=1

1
αk

n (σ(t), x(σ(t)))
(B2(t, T)
a1(t)

) 1
α1 .

On the other hand, for t > T ,

Sn−1(t, x(t)) = Sn−1(T , x(T)) +
∫t
T

(Sn(s, x(s))
an(s)

) 1
αn
∆s 6 Sn−1(T , x(T)) + S

1
αn
n (T , x(T))Bn(t, T).

Thus, there exist T1 > T and b1 > 0 such that

Sn−1(t, x(t)) 6 b1Bn(t, T) for t > T1.

Similarly, we have

Sn−2(t, x(t)) = Sn−2(T1, x(T1)) +

∫t
T1

(Sn−1(s, x(s))
an−1(s)

) 1
αn−1∆s 6 Sn−1(T1, x(T1)) + b1

∫t
T

(Bn(s, T)
an−1(s)

) 1
αn−1∆s.

Thus, there exists a constant b2 > 0 such that

Sn−2(t, x(t)) 6 b2Bn−1(t, T) for t > T1.

By induction, it is easy to see that there exist T1 > T and bn > 0 such that

S0(t) 6 bnB1(t, T) for t > T1.

This completes the proof.

3. Main results

Theorem 3.1. Suppose that (2.3) holds, p0 ∈ (0, 1), δ(t) > t, and
∏n
k=1 αk > 1. If there exists z ∈ Crd(T, (0,∞))

such that for all sufficiently large T ∈ [t0,∞)T,

lim sup
t→∞

∫t
T

[
z(s)q(s) −

(z∆(s))2

4Mz(s)δ∆(s)

( a1(δ(s))

B2(δ(s), T)

) 1
α1

]
∆s =∞, (3.1)

where M is a positive constant, then
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(1) every solution of (1.1) is either oscillatory or tends to zero when n is even;
(2) every solution of (1.1) is oscillatory when n is odd.

Proof. Assume that x(t) is a non-oscillatory solution of (1.1). Then there is a T > t0 sufficiently large such
that x(t), x(τ(t)), x(δ(t)) > 0 and p(t) > 0 for t > T . From Lemma 2.3, we see that (2.4) holds when n is
odd, and either (2.4) holds or limt→∞ x(t) = 0 when n is even.

Assume that n is odd. Define w by

w(t) =
z(t)Sn(t, x(t))
S0(δ(t))

for t > T . (3.2)

Then w(t) > 0. Using the product rule, we have

w∆(t) = (Sn(t, x(t)))σ
( z(t)

S0(δ(t))

)∆
+ (Sn(t, x(t)))∆

z(t)

S0(δ(t))
.

By the definition of S0(t), we obtain x(t) > S0(t) for t > T . By the quotient rule and applying (2.5), we get

w∆(t) 6 (Sn(t, x(t)))σ
z∆(t)S0(δ(t)) − z(t)(S0(δ(t)))

∆

S0(δ(t))S0(δσ(t))
− z(t)q(t)

S0(δ(t))

S0(δ(t))
.

From (3.2), it follows that

w∆(t) 6 −z(t)q(t) +
z∆(t)

z(σ(t))
w(σ(t)) − (Sn(t, x(t)))σ

z(t)S∆0 (δ(t))δ∆(t)

S0(δ(t))S0(δσ(t))
. (3.3)

Since Sn(t, x(t)) is decreasing on [t1,∞)T, there exists a constant d > 0 such that

(Sn(t, x(t)))σ 6 Sn(t, x(t)) 6 d for t > T .

Applying (3.3) to (2.8) and noting that
∏n
k=1 αk > 1, we have

S∆0 (t) > d(
∏n
k=1

1
αk

)−1
Sn(σ(t), x(σ(t)))

(B2(t, T)
a1(t)

) 1
α1 . (3.4)

Let M = d
(
∏n
k=1

1
αk

)−1. From (3.2), (3.3), (3.4), and noting that S∆0 (t) > 0, we get

w∆(t) 6 −z(t)q(t) +
z∆(t)

z(σ(t))
w(σ(t)) −

Mz(t)B
1
α1
2 (δ(t), T)δ∆(t)

z2(σ(t))a
1
α1
1 (δ(t))

w2(σ(t)). (3.5)

By completing the square for w(σ(t)) on the right-hand side of (3.5), we have

w∆(t) 6 −z(t)q(t) +
(z∆(t))2

4Mz(t)δ∆(t)

( a1(δ(t))

B2(δ(t), T)

) 1
α1 .

Integrating the above inequality from T to t for t > T , we get∫t
T

[
z(s)q(s) −

(z∆(s))2

4Mz(s)δ∆(s)

( a1(δ(s))

B2(δ(s), T)

) 1
α1

]
∆s 6 w(T) −w(t) < w(T).

Taking the lim sup on both sides of the above inequality as t→∞, we obtain a contradiction to (3.1).
In similar fashion, we can show that either every solution of (1.1) is oscillatory or limt→∞ x(t) = 0,

when n is even. This completes the proof.
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Theorem 3.2. Suppose that (2.3) holds, p0 ∈ (0, 1), δ(t) > t and
∏n
k=1 αk > 1. If there exist positive functions

H,C ∈ Crd(D, (0,∞)), where D = {(t, s) ∈ T2 : t > s > t0}, such that

H(t, t) = 0,H(t, s) > 0 and H∆s (t, s) 6 0 for t > s > t0, C(t, s) = H∆s (t, s) +H(t, s)
z∆(s)

zσ(s)
,

and for sufficiently large T ,

lim sup
t→∞

1
H(t, T)

∫t
T

[
H(t, s)z(s)q(s) −

C2(t, s)z2(σ(s))a
1
α1
1 (δ(s)

4Mz(s)δ∆(s)B
1
α1
2 (δ(s), T)H(t, s)

]
∆s =∞, (3.6)

where z,M are defined as in Theorem 3.1. Then

(1) every solution of (1.1) is either oscillatory or tends to zero when n is even;
(2) every solution of (1.1) is oscillatory when n is odd.

Proof. Assume that x(t) is a non-oscillatory solution of (1.1). Then there is a T > t0 sufficiently large such
that x(t), x(τ(t)), x(δ(t)) > 0 and p(t) > 0 for t > T . From Lemma 2.3, we see that (2.4) holds when n is
odd, and either (2.4) holds or limt→∞ x(t) = 0 when n is even. Assume that n is odd. We define w(t)
by (3.2) and proceed as the proof of Theorem 3.1 to get (3.5). Multiplying (3.5) by H(t, s) and integrating
from T to t, we have∫t

T

H(t, s)z(s)q(s)∆s 6 −

∫t
T

H(t, s)w∆(s)∆s+
∫t
T

H(t, s)
z∆(s)

z(σ(s))
w(σ(s))∆s

−

∫t
T

H(t, s)
Mz(s)B

1
α1
2 (δ(s), T)δ∆(s)

z2(σ(s))a
1
α1
1 (δ(s))

w2(σ(s))∆s.

By integration by parts we obtain

−

∫t
T

H(t, s)w∆(s)∆s = H(t, T)w(T) +
∫t
T

H∆s (t, s)w(σ(s))∆s.

It follows that∫t
T

H(t, s)z(s)q(s)∆s 6 H(t, T)w(T) +
∫t
T

[
H∆s (t, s) +H(t, s)

z∆(s)

z(σ(s))

]
w(σ(s))∆s

−

∫t
T

H(t, s)
Mz(s)B

1
α1
2 (δ(s), T)δ∆(s)

z2(σ(s))a
1
α1
1 (δ(s))

w2(σ(s))∆s

= H(t, T)w(T) +
∫t
T

C(t, s)w(σ(s))∆s−
∫t
T

H(t, s)
Mz(s)B

1
α1
2 (δ(s), T)δ∆(s)

z2(σ(s))a
1
α1
1 (δ(s))

w2(σ(s))∆s.

By completing the square for w(σ(t)) on the right-hand side, we get∫t
T

H(t, s)z(s)q(s)∆s 6 H(t, T)w(T) +
∫t
T

[
C2(t, s)z2(σ(s))

4Mz(s)δ∆(s)H(t, s)

( a1(δ(s))

B2(δ(s), T)

) 1
α1

]
∆s,

and this implies that

1
H(t, T)

∫t
T

[
H(t, s)z(s)q(s) −

C2(t, s)z2(σ(s))

4Mz(s)δ∆(s)H(t, s)

( a1(δ(s))

B2(δ(s), T)

) 1
α1

]
∆s 6 w(T),

which contradicts (3.6).
In similar fashion, we can show that either every solution of (1.1) is oscillatory or limt→∞ x(t) = 0

when n is even. This completes the proof.



Y. Zhou, Z. Chen, T. Sun, J. Nonlinear Sci. Appl., 11 (2018), 937–946 944

Theorem 3.3. Suppose that (2.3) holds and p0 ∈ (0, 1), δ(t) > t. If for all sufficiently large T ∈ [t0,∞)T, there
exist positive constants d1,d2 such that

lim sup
t→∞ B

∏n
k=1αk

1 (δ(t), T)γ(δ(t), T ,d1,d2)

∫∞
t

q(s)∆s > 1, (3.7)

where

γ(δ(t), T ,d1,d2) =


1, if

∏n
k=1 αk = 1,

d1, if
∏n
k=1 αk < 1,

d2B
1−
∏n
k=1αk

1 (δ(t), T), if
∏n
k=1 αk > 1.

Then
(1) every solution of (1.1) is either oscillatory or tends to zero when n is even;
(2) every solution of (1.1) is oscillatory when n is odd.

Proof. Assume that x(t) is a non-oscillatory solution of (1.1). Then, without loss of generality, there is a
T > t0 sufficiently large such that x(t), x(τ(t)), x(δ(t)) > 0 for t > T . From Lemma 2.3, we see that (2.4)
holds when n is odd, and either (2.4) holds or limt→∞ x(t) = 0 when n is even.

Assume that n is odd. From (2.5) and (2.7), we get for t > T ,∫∞
t

q(s)S0(δ(s))∆s 6 Sn(t, x(t)) 6
[ S0(t)

B1(t, T)

]∏n
k=1αk

.

Noting that S∆0 (t) > 0 and δ(t) > t, we obtain

S0(δ(t))

∫∞
t

q(s)∆s 6 Sn(t, x(t)) 6
[S0(δ(t))

B1(t, T)

]∏n
k=1αk

.

Thus
B
∏n
k=1αk

1 (t, T)S1−
∏n
k=1αk

0 (δ(t))

∫∞
t

q(s)∆s 6 1.

The rest of the proof is separated into three cases:

Case 1. If
∏n
k=1 αk = 1, then

S
1−
∏n
k=1αk

0 (δ(t)) = 1 for t > T . (3.8)

Case 2. If
∏n
k=1 αk < 1, then

S0(δ(t)) > S0(δ(T)) for t > T . (3.9)

Thus
S

1−
∏n
k=1αk

0 (δ(t)) > d1S
1−
∏n
k=1αk

0 (δ(T)). (3.10)

Case 3. If
∏n
k=1 αk > 1, then from (2.9), there exists a T1 > T and a constant c such that

S0(δ(t)) 6 cB1(δ(t), T) for t > T1.

Thus
S

1−
∏n
k=1αk

0 (δ(t)) > c1−
∏n
k=1αkB

1−
∏n
k=1αk

1 (δ(t), T). (3.11)

Let d2 = c1−
∏n
k=1αk , we have

S
1−
∏n
k=1αk

0 (δ(t)) > d2B
1−
∏n
k=1αk

1 (δ(t), T). (3.12)

According to (3.8)-(3.12), we obtain that for t > T1,

B
∏n
k=1αk

1 (δ(t), T)γ(δ(t), T ,d1,d2)

∫∞
t

q(s)∆s 6 1,

which is a contradiction to (3.7).
In similar fashion, we can show that either every solution of (1.1) is oscillatory or limt→∞ x(t) = 0

when n is even. The proof is completed.
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4. Examples

Example 4.1. Consider the equation[1
t

(
(
1
t
(· · · (1

t
(x(t) −

1
2
x(τ(t)))∆)n)∆ · · · )∆

) 1
n

]∆
+ tnx(tn) = 0, (4.1)

where n is odd and n > 2, T = [1,∞). Here we have ak(t) = 1
t (1 6 k 6 n), α1 = n, αk = 1 (2 6 k 6

n− 1), αn = 1
n , p(t) = 1

2 , and q(t) = δ(t) = tn. Clearly,∫∞
t0

( 1
a1(t)

) 1
α1∆t =

∫∞
1
t

1
n∆t =∞,∫∞

t0

( 1
an(t)

) 1
αn
∆t =

∫∞
1
tn∆t =∞,∫∞

t0

( 1
ak(t)

) 1
αk∆t =

∫∞
1
t∆t =∞ (2 6 k 6 n− 1),

An(t) =
[ 1
an(t)

∫∞
t

q(s)∆s
] 1
αn

=
[
t

∫∞
t

sn∆s
]n

= tn
[ ∫∞
t

sn∆s
]n

=∞,

An−1(t) =
[ 1
an−1(t)

∫∞
t

An(s)∆s
] 1
αn−1 = t

∫∞
t

An(s)∆s =∞,∫∞
t0

An−1(s)∆s =

∫∞
1
An−1(s)∆s =∞.

Let z(t) = 1, we see that for all sufficiently large T ∈ [t0,∞)T,

lim sup
t→∞

∫t
T

[
z(s)q(s) −

(z∆(s))2

4Mz(s)δ∆(s)

( a1(δ(s))

B2(δ(s), T)

) 1
α1

]
∆s = lim sup

t→∞
∫t
T

sn∆s =∞.

Hence the conditions of Theorem 3.1 are satisfied. By Theorem 3.1, every solution x(t) of (4.1) is oscilla-
tory.

Example 4.2. Consider the equation[1
t

(
(
1
t
(· · · (1

t
(x(t) −

1
3
x(τ(t)))∆)n+1)∆ · · ·

)∆
)

1
n−1

]∆
+ tnx(tn) = 0, (4.2)

where n is even and n > 2, T = [1,∞). Here we have ak(t) = 1
t (1 6 k 6 n), α1 = n+ 1, αk = 1 (2 6 k 6

n− 1), αn = 1
n−1 , p(t) = 1

3 , and q(t) = δ(t) = tn. Clearly,∫∞
t0

( 1
a1(t)

) 1
α1∆t =

∫∞
1
t

1
n+1∆t =∞,∫∞

t0

( 1
an(t)

) 1
αn
∆t =

∫∞
1
tn−1∆t =∞,∫∞

t0

( 1
ak(t)

) 1
αk∆t =

∫∞
1
t∆t =∞ (2 6 k 6 n− 1),

An(t) =
[ 1
an(t)

∫∞
t

q(s)∆s
] 1
αn

=
[
t

∫∞
t

sn∆s
]n−1

= tn−1
( ∫∞
t

sn∆s
)n−1

=∞,

An−1(t) =
[ 1
an−1(t)

∫∞
t

An(s)∆s
] 1
αn−1 = t

∫∞
t

An(s)∆s =∞,∫∞
t0

An−1(s)∆s =

∫∞
1
An−1(s)∆s =∞.
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Let z(t) = 1, we see that for all sufficiently large T ∈ [t0,∞)T,

lim sup
t→∞

∫t
T

[
z(s)q(s) −

(z∆(s))2

4Mz(s)δ∆(s)

( a1(δ(s))

B2(δ(s), T)

) 1
α1

]
∆s = lim sup

t→∞
∫t
T

sn∆s =∞.

Hence the conditions of Theorem 3.1 are satisfied.
By Theorem 3.1, every solution x(t) of (4.2) is either oscillatory or tends to zero.
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