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Abstract

The problem of minimizing the sum of a large number of component functions over the intersection of a finite family
of closed convex subsets of a Hilbert space is researched in the present paper. In the case of the number of the component
functions is huge, the incremental projection methods are frequently used. Recently, we have proposed a new incremental
gradient projection algorithm for this optimization problem. The new algorithm is parameterized by a single nonnegative
constant µ. And the algorithm is proved to converge to an optimal solution if the dimensional of the Hilbert space is finite the
step size is diminishing (such as αn = O(1/n)). In this paper, the algorithm is modified by employing the constant and the
dynamic stepsize, and the corresponding convergence properties are analyzed.
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1. Introduction

We consider a constrained optimization problem where the objective is a sum of component functions:

min
x∈C:=∩Ni=1Ci

f(x) =

M∑
j=1

fj(x), (1.1)

where N and M are large integers, {Ci} are finite nonempty closed convex subsets of a Hilbert space H,
and fj : H→ R are convex and differentiable functions. Problem of the form (1.1) arises in lots of applied
areas, and it is of central importance in machine learning and statics, for more details see [3, 10, 20].
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For the unconstrained composite minimization problem (i.e., Ci = H), gradient-like incremental meth-
ods are also frequently used, when and the number of the component functions is large. The incremental
gradient algorithm (IGA) [3] is similar to the classical subgradient algorithm: if xn is constructed, let

ψ0 = xn,ψj = ψj−1 −αn∇fj(ψj−1), j = 1, 2, . . . ,M, xn+1 = ψM,

where αn is a positive step size. It is easy to check that the IGA has the form

xn+1 = xn −αn

M∑
j=1

∇fj(ψj−1).

Note that, when the component functions fj and their gradients are evaluated at the same vector xn, then
the above algorithm is the classical steepest descent algorithm (SDA) [3]:

xn+1 = xn −αn

M∑
j=1

∇fj(xn).

More general versions of incremental subgradient methods can be seen in [4, 11, 12, 15, 23].
In [22], Yang and Xu proposed the following projection algorithm for the problem (1.1) where the step

size is diminishing (i.e., αn = O(1/n)): Choose an initial value x0 ∈ H arbitrarily, then iterate xn+1 (n > 0)
is as follows: 

xn,0 = xn,
xn,j = xn,j −αn∇fn(xn,j−1), j = 1, 2, . . . ,M
xn+1 =

∑N
i=1 βiPCi(xn,M),

(1.2)

where PCi is the projection from H to Ci for each 1 6 i 6 N, and βi > 0 is such that
∑N
i=1 βi = 1. And get

that: (1) if the dimensional of the Hilbert space is finite then {xn} converges to an optimal solution of the
problem (1.1); (2) if the dimensional of the Hilbert space is infinite and the limit of the sequence {f(xn)}
exists, then {xn} converges weakly to an optimal solution of the problem (1.1)

Recently, we [19] modified the algorithm (1.2) by a single nonnegative constant µ as follows:

Algorithm 1.1. Let µ is a fixed scalar µ > 0, choose an initial value x0 ∈ H arbitrarily, then iterate
xn+1(n > 0) is as follows: 

xn,0 = xn,
xn,j = xn −αnhj, j = 1, 2, . . . ,M
hj =

∑j
k=1ωk,j(µ)∇fk(xn,k−1), j = 1, 2, . . . ,M,

xn+1 =
∑N
i=1 βiPCi(xn,M),

(1.3)

where

ωk,j(µ) =
1 + µ+ · · ·+ µj−k

1 + µ+ · · ·+ µM−k
, j = 1, 2, . . . , M, 1 6 k 6 j,

step size αn > 0, PCi is the projection from H to Ci for each 1 6 i 6 N, and βi > 0 is such that∑N
i=1 βi = 1. In [19], we get the same convergence properties with [22].

Note that, in the algorithm (1.3) ωk,M = 1,k = 1, 2, . . . ,M, it follows that

xn,M = xn −αnhM = xn −αn

M∑
j=1

∇fj(xn,j−1).

If µ = 0, then ωk,j = 1 for all k and j. If µ → ∞, we have ωk,j → 0 for all i and j, and xn,j → xn
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for j = 1, 2, . . . ,M. Hence, the the algorithm (1.3) reduces to (1.2) when µ = 0. Furthermore, for the
constrained composite minimization problem with N = 1, and the extreme values µ = 0,µ = ∞, the
algorithm is obtained as special cases the algorithm IGA in [14] and algorithm SDA in [15] , respectively;
for the unconstrained composite minimization problem (i.e., Ci = H, i = 1, 2, . . . ,N), and the extreme
values µ = 0,µ = ∞, the algorithm is obtained as special cases of algorithms IGA and SDA in [3],
respectively. For N =M = 1, the algorithm is obtained as the special case of algorithm GPA in [21].

The purpose of this paper is modifying the Algorithm 1.1 by employing the constant and the dynamic
stepsizes. And we research the convergence properties of Algorithm 1.1 for there types of stepsize rules:
constant stepsize, dynamic stepsize for known the optimal value f∗, and dynamic stepsize for unknown
f∗. For case of dynamic stepsize for known f∗, we get that the Algorithms 1.1 converges weakly to an
optimal solution x∗ of the problem (1.1).

2. Preliminaries

In this section we shall give a few preliminary definitions and lemmas which are important in the
prove of our main theorem .

Let PC denote the projection from H onto a nonempty closed convex subset C of H; that is,

PC(x) = min
y∈C

||x− y||.

It is well known that PC(x) is nonexpansive and is characterized by the inequality

〈x− PC(x),y− PC(x)〉 6 0,∀y ∈ C.

Moreover,
‖PC(x− y)‖2 6 ‖x− y‖2 − ‖PCx− x‖2,∀x ∈ H,y ∈ C.

Let S = {x∗ ∈ C = ∩Ni=1Ci, f(x
∗) = infx∈C f(x)} be the set of optimal solution of the problem (1.1) and

f∗ = infx∈C f(x) be the optimal value. We always assume consistency of the problem of (1.1) from now
on, that is to say S 6= ∅.

We now collect some elementary facts which will be used in the proofs of our main results.

Lemma 2.1 ([7, 8]). Let X be a Banach space, C a closed convex subset of X, and T : C → C a nonexpansive
mapping with Fix(T) 6= ∅. If {xn} is a sequence in C weakly converging to x and if {(I− T)xn} converges strongly
to y, then (I− T)x = y.

Lemma 2.2 ([18]). Let H be a Hilbert space and {xn} a sequence in H such that there exists a nonempty set K ⊆ H
satisfying the following

(i) for every x ∈ K, limn→∞ ‖xn − x‖ exists;
(ii) any weak-cluster point of the sequence {xn} belongs to C.

Then, there exists x̃ ∈ K such that {xn} weakly converges to x̃.

The following Lemma [19, Prop. 3.3] will be used repeatedly in the subsequent convergence analysis.
And we include it for the sake of completeness.

Lemma 2.3. Let {xn} be generated by the Algorithm 1.1. Assume that there exists a positive constant L > 0 such
that

‖∇fj(xn,j−1)‖ 6 L, j = 1, 2, . . . ,M, n > 1. (2.1)

Then,

‖xn+1 − x‖2 6 ‖xn − x‖2 − 2αn[f(xn) − f(x)] + 5α2
nM

2L2

for any x ∈ C = ∩Ni=1Ci.
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Proof. By the algorithm, for 1 6 j 6M,

‖xn,j − xn‖ = αn‖hj‖ = αn‖
j∑
k=1

ωk,j(µ)∇fk(xn,k−1)‖ 6 αnML.

Since the projections PCi are nonexpansive, and using the convexity of the norm, we have, for any
x ∈ C,

‖xn+1 − x‖2 6
N∑
i=1

βi‖PCixn,M − PCix‖
2

6 ‖xn,M − x‖2

= ‖xn − x−αn

M∑
j=1

∇fj(xn,j−1)‖2

6 ‖xn − x‖2 − 2αn〈
M∑
j=1

∇fj(xn,j−1), xn − x〉+α2
nM

2L2

= ‖xn − x‖2 − 2αn〈
M∑
j=1

∇fj(xn,j−1), xn,j−1 − x〉+α2
nM

2L2

+ 2αn〈
M∑
j=1

∇fj(xn,j−1), xn,j−1 − xn〉

6 ‖xn − x‖2 − 2αn〈
M∑
j=1

∇fj(xn,j−1), xn,j−1 − x〉+ 3α2
nM

2L2.

Note that
fj(x) > fj(xn,j−1) + 〈∇fj(xn,j−1), x− xn,j−1〉.

We get that

‖xn+1 − x‖2 6 ‖xn − x‖2 − 2αn
M∑
j=1

(fj(xn,j−1) − fj(x)) + 3α2
nM

2L2

= ‖xn − x‖2 − 2αn
M∑
j=1

(fj(xn) − fj(x)) + 3α2
nM

2L2 − 2αn(
M∑
j=1

fj(xn,j) − fj(xn)).

Using
fj(xn,j) − fj(xn) > 〈∇fj(xn), xn,j − xn〉 > −L‖xn,j − xn‖,

it follows that

‖xn+1 − x‖2 6 ‖xn − x‖2 − 2αn
M∑
j=1

(fj(xn) − fj(x)) + 3α2
nM

2L2 + 2αnL(
M∑
j=1

‖xn,j − xn‖)

6 ‖xn − x‖2 − 2αn
M∑
j=1

(fj(xn) − fj(x)) + 5α2
nM

2L2

= ‖xn − x‖2 − 2αn(f(xn) − f(x)) + 5α2
nM

2L2.

That is to say
‖xn+1 − x‖2 6 ‖xn − x‖2 − 2αn(f(xn) − f(x)) + 5α2

nM
2L2.
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3. Convergence analysis for there types of stepsize

In this section, we research the convergence properties of Algorithm 1.1 for there types of stepsize
rules: constant stepsize, dynamic stepsize for known f∗, and dynamic stepsize for unknown f∗.

3.1. Constant stepsize
We first research the case of constant stepsize, that is to say the stepsize αn in the Algorithm 1.1 is

fixed to a positive constant.

Proposition 3.1. Let {xn} be generated by the Algorithm 1.1 with the stepsize {αn} fixed to a positive constant α.
And assume the boundedness of gradient (i.e., (2.1) is met). Then we have:

(i) if f∗ > −∞, then lim infn→∞ f(xn) 6 f∗ + 5αM2L2

2 , where L is given in (2.1) and M is the number of
component functions;

(ii) if f∗ = −∞, then lim infn→∞ f(xn) = −∞.

Proof. Assume (i) is not hold, then there exits ε0 > such that

lim inf
n→∞ f(xn) > f

∗ +
5αM2L2

2
+ 2ε0.

It follows that there exists x̃ ∈ C = ∩Ni=1Ci such that

lim inf
n→∞ f(xn) > f(x̃) +

5αM2L2

2
+ 2ε0.

Hence, there exists N > 0 such that

f(xn) > f(x̃) +
5αM2L2

2
+ ε0,

when n > N. Choose x = x̃ in Lemma 2.3 with the above inequality, we can get that

‖xn+1 − x̃‖2 6 ‖xn − x̃‖2 − 2α(f(xn) − f(x̃)) + 5α2M2L2

6 ‖xn − x̃‖2 − 2αε0

6 ‖xn−1 − x̃‖2 − 4αε0

...

6 ‖xN − x̃‖2 − 2(n+ 1 −N)αε0,

when n > N, which is impossible for sufficiently large n and hence it’s a contradiction. So conclusion (i)
is hold.

By a minor modification of above proof, conclusion (ii) is hold.

3.2. Dynamic stepsize for known f∗

In this subsection, we analyze the convergence properties of Algorithms 1.1 for dynamic stepsize with
f∗ being known. The dynamic stepsize {αn} is defined as follows:

αn = λn
f(xn) − f

∗

5M2L2 , (3.1)

with 0 < λ 6 λn 6 λ < 2, which is inspired by Polyak in [16] for the incremental method.

Theorem 3.2. Let {xn} be generated by the Algorithm 1.1 with dynamic stepsize (3.1) and assume (2.1) is met.
Then we have
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(i) if H is a finite dimensional Hilbert space, then {xn} converges to an optimal solution x∗ of the problem (1.1);
(ii) ifH is a infinite dimensional Hilbert space, then {xn} converges weakly to an optimal solution x∗ of the problem

(1.1).

Proof. Using Lemma 2.3 with x = x̃ ∈ S, one can get that

‖xn+1 − x̃‖2 6 ‖xn − x̃‖2 − 2α(f(xn) − f(x̃)) + 5α2M2L2

= ‖xn − x̃‖2 − 2λn
(f(xn) − f

∗)2

5M2L2 + λ2
n

(f(xn) − f
∗)2

5M2L2

= ‖xn − x̃‖2 − λn(2 − λn)
(f(xn) − f

∗)2

5M2L2

6 ‖xn − x̃‖2 − λ(2 − λ)
(f(xn) − f

∗)2

5M2L2 .

Hence, ‖xn− x̃‖ is a decreasing sequence, it follows that limn→∞ ‖xn− x̃‖ exists. Furthermore, taking the
limit on both sides of the above inequality, one have limn→∞ f(xn) = f∗ and then limn→∞ αn = 0.

Next, we will prove that
lim
n→∞ ‖PCixn − xn‖ = 0, i = 1, 2, . . . ,N.

In fact, applying the convex of norm and the properties of the projections PCi , we have for each x̃ ∈ S,

‖xn+1 − x̃‖2 = ‖
N∑
i=1

βiPCi(xn,M) − x̃‖2 6
N∑
i=1

βi‖PCi(xn,M) − x̃‖2

6
N∑
i=1

βi(‖xn,M − x̃‖2 − ‖PCi(xn,M) − xn,M‖2)

= ‖xn,M − x̃‖2 −

N∑
i=1

βi‖PCi(xn,M) − xn,M‖2,

which implies that

N∑
i=1

βi‖PCi(xn,M) − xn,M‖2 6 ‖xn,M − x̃‖2 − ‖xn+1 − x̃‖2. (3.2)

Observing, for 1 6 j 6M,

‖xn,j − xn‖ = αn‖hj‖ = αn‖
j∑
k=1

ωk,j(µ)∇fk(xn,j−1)‖ 6 αnML→ 0(n→∞).

Moreover, by Lemma 2.3, limn→∞ ‖xn − x̃‖ exists for x̃ ∈ S. Therefore, according to (3.2), we have

lim
n→∞

N∑
i=1

βi‖PCi(xn,M) − xn,M‖2 = 0.

Again using limn→∞ ‖xn,j − xn‖ = 0, one can get

lim
n→∞ ‖PCixn − xn‖ = 0, i = 1, 2, . . . ,N. (3.3)

At last, we will prove that {xn} converges weakly to an optimal solution x∗ of the problem (1.1).
In fact, if x̂ is a weak-cluster point of the sequence {xn}, using (3.3) and Lemma 2.1 we have x̂ ∈ C =

∩Ni=1Ci. Moreover, since limn→∞ f(xn) = f∗, it follows that x̂ ∈ S. Hence, using Lemma 2.1, we have {xn}

converges weakly to an optimal solution x∗ of the problem (1.1).
For the case of H being a finite dimensional Hilbert space, the result is clear.
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3.3. Dynamic stepsize for unknown f∗

In the practical problems, the optimal value f∗ is usually unknown. In this subsection, we modify the
dynamic stepsize (3.1) by replacing the optimal value f∗ with an estimate for the nth iteration as follows:

αn = λn
f(xn) − f

∗
n

5M2L2 , 0 < λ 6 λn 6 λ < 2, (3.4)

where f∗n is the best value of min06k6n f(xk) achieved up to the nth iteration minus a positive number
δn which is adjusted based on the iteration progress and is defined as follows:

f∗n = min
06k6n

f(xk) − δn, (3.5)

and choose an initial value δ0 > 0 arbitrarily, let β < 1, δ are fixed positive constant, then δn is updated
by

δn+1 =

{
δn, f(xn+1) 6 f∗n,
max{βδn, δ}, f(xn+1) > f

∗
n.

Note that δn is adjusted based on the iteration progress, whenever f(xn+1) 6 f∗n we increase δn+1, or δn+1
approaches to δ. Furthermore, since f∗n = min06k6n f(xk) − δn, it follows that f(xn) − f∗n > δn > δ. So
αn = λn

f(xn)−f
∗
n

5M2L2 > λ δ
5M2L2 , which is bounded away from zero. Hence, we have the following convergence

property which is similar to Proposition 3.1.

Proposition 3.3. Let {xn} be generated by the Algorithm 1.1 with the dynamic stepsize {αn} in (3.4). And assume
the boundedness of gradient (i.e., (2.1) is met). Then we have

(i) if f∗ > −∞, then infn>0 f(xn) 6 f∗ + δ, where L is given in (2.1) and M is the number of component
functions;

(ii) if f∗ = −∞, then infn>0 f(xn) = −∞.

Proof. If it is not, we assume infn>0 f(xn) > f
∗ + δ. Then there exists x̃ ∈ C such that

inf
n>0

f(xn) − δ > f(x̃). (3.6)

Since δn > δ, without loss of generality, we can assume each time the target is attained (i.e., f(xn+1) 6
f∗n). Then, the sequence min06k6n f(xk) decreases by at least δ. And because of the infn>0 f(xn) > f

∗ + δ,
it easy to get that there exists N, such that δn = δ for n > N.

By (3.5) and (3.6), we have

f∗n = min
06k6n

f(xk) − δ > inf
n>0

f(xn) − δ > f(x̃)

for n > N. So
f(xn) − f(x̃) > f(xn) − f

∗
n.

Using Lemma 2.3 with x = x̃, we have

‖xn+1 − x̃‖2 6 ‖xn − x̃‖2 − 2α(f(xn) − f(x̃)) + 5α2M2L2

6 ‖xn − x̃‖2 − 2λn
(f(xn) − f

∗
n)

2

5M2L2 + λ2
n

(f(xn) − f
∗
n)

2

5M2L2

= ‖xn − x̃‖2 − λn(2 − λn)
(f(xn) − f

∗
n)

2

5M2L2

6 ‖xn − x̃‖2 − λ(2 − λ)
(f(xn) − f

∗
n)

2

5M2L2 .

Therefore, ‖xn+1 − x̃‖2 6 ‖xN− x̃‖2 −(n+1−N)λ(2−λ) (f(xn)−f
∗
n)

2

5M2L2 , when n > N, which is a contradiction
when n is large. Hence the assumption is false, and infn>0 f(xn) 6 f∗ + δ.
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At last we will modify the dynamic stepsize (3.1) by replacing the optimal value f∗ with another
estimate fnlev for the nth iteration as follows:

αn = λn
f(xn) − f

n
lev

5M2L2 , 0 < λ 6 λn 6 λ < 2,

where fnlev is constructed in the following algorithm, which is inspired by Goffin and Kiwiel in [9] for
constrained convex minimization problem.

Algorithm 3.4.

Step 0: (Initiation). Select x0 ∈ H, δ0 > 0,R > 0. Set σ0 = 0, f(−1)
lev = ∞. Set n = 0, l = 0, and n0 = 0 (nl

will denote the iteration number of the lth change of fnlev).

Step 1: (Objective evaluation). Calculate f(xn), set fnrec = min06k6n f(xk).

Step 2: (Sufficient descent detection). If f(xn) 6 fnlrec −
δl
2 , set nl+1 = nl, σn = 0, δl+1 = δl, increase l by

1, and go to Step 4.

Step 3: (Oscillation detection). If σn > R, set nl+1 = nl, σn = 0, δl+1 = δl
2 , increase l by 1.

Step 4: (Level update). Set fnlev = fnlrec − δl, and calculate the stepsize αn.

Step 5: (Path update). Set σn+1 = σn +Cαn, increase n by 1 and go to step 1.

Let us split the iterations into groups Gl = {nl,nl + 1, . . .nl+1 − 1}, l > 0. Within group Gl, the
algorithm uses the same target level fnlev = fnlrec − δl for n ∈ Gl. The level is updated only by sufficient
descent (step 2) or oscillation (step 3) appeared.

The following proposition shows that the target levels fnlev are updated infinitely, (i.e., l is increased
infinitely), and infn>0 f(xn) =∞ if δl is not diminishing.

Proposition 3.5. Let {xn} be generated by the Algorithm 1.1 with the dynamic stepsize {αn} in (3.5). And assume
the boundedness of gradient (i.e., (2.1) is met). Then l→∞, and liml→∞ δl = 0 or infn>0 f(xn) =∞.

Proof. Firstly, we will prove l → ∞ (i.e., l is increased infinitely). In fact, if not, l has only finite values,
l = 0, 1, . . . l̄. According to step 4 and step 5 in the Algorithms 3.4, we have σn+1 = σn +Cαn < R for all
n > nl̄. It follows that limn→∞ αn = 0. But according to step 4, αn = λn

f(xn)−f
n
lev

5M2L2 > λ
δl̄

5M2L2 > 0 when
n > nl̄, which is a contradiction, so l→∞.

Then, we prove liml→∞ δl = 0 or infn>0 f(xn) = ∞. In fact, if liml→∞ δl = γ > 0, from steps 2
and 3 we have there exists L such that δl = γ for l > L. And then according to step 2, we can get that
f
nl+1
rec − fnlrec 6

γ
2 . It follows that infn>0 f(xn) = −∞.

At last, we will show that infn>0 f(xn) = f
∗.

Theorem 3.6. Let {xn} be generated by the Algorithm 1.1 with the dynamic stepsize {αn} in (3.5). And assume the
boundedness of gradient (i.e., (2.1) is met) and infn>0 f(xn) > −∞. Then infn>0 f(xn) 6 f∗.

Proof. If it is not, infn>0 f(xn) > f
∗, and there exists x̃ ∈ C, ε0 > 0 such that

inf
n>0

f(xn) > f(x̃) + ε0.

According to Proposition 3.5, liml→∞ δl = 0. There exists L such that δl < ε0 for all l > L. Hence,

fnlev = fnlrec − δl > inf
n>0

f(xn) − ε0 > f(x̃)
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for all n > nL. Moreover, using Lemma 2.3 with x = x̃, we have

‖xn+1 − x̃‖2 6 ‖xn − x̃‖2 − 2α(f(xn) − f(x̃)) + 5α2M2L2

6 ‖xn − x̃‖2 − 2λn
(f(xn) − f

n
lev)

2

5M2L2 + λ2
n

(f(xn) − f
n
lev)

2

5M2L2

= ‖xn − x̃‖2 − λn(2 − λn)
(f(xn) − f

n
lev)

2

5M2L2

6 ‖xn − x̃‖2 − λ(2 − λ)
(f(xn) − f

n
lev)

2

5M2L2 .

Hence,
λ(2 − λ)

5M2L2

∑
(f(xn) − f

n
lev)

2 <∞.

An then ∑
n>0

α2
n <∞. (3.7)

On the other hand, set I = {l, δl =
δl−1

2 }, since liml→∞ δl = 0, I is an infinite set. For l+ 1 ∈ I,nl+1 = n

in step 3, we have σn = σn−1 +Cαn−1 =
∑n−1
k=nl

Cαk > B. So for l ∈ I,
nl−1∑
k=nl−1

αk >
B

C
.

Note that ∞∑
n=1

αn >
∑
l∈I

nl−1∑
k=nl−1

αk,

and I is an infinite set, it follows that ∞∑
n=1

αn =∞. (3.8)

Using (3.7), (3.8), and the Proposition 3.3 in [19], we have lim infn→∞ f(xn) = f∗, which is contradiction
with infn>0 f(xn) > f

∗.

4. conclusion

In this paper, we research the convergence properties of Algorithm 1.1 for three types of stepsize
rules: constant stepsize, dynamic stepsize for known f∗, and dynamic stepsize for unknown f∗. For case
of dynamic stepsize for known f∗, we get that the Algorithm 1.1 converges weakly to an optimal solution
x∗ of the problem (1.1).
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