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Abstract
In this paper, we prove the superstability theorems of the functional equations
wy)f(xolylzo) £ flxyzo) = 2f(x)f(y), x,y €S, wly)floly)xzo) +f(xyzo) = 2f(x)f(y), x,y €5,

where S is a semigroup, o is an involutive morphism of S, and p : S — C is a bounded multiplicative function such that
p(xo(x)) =1 for all x € S, and zj is in the center of S.
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1. Introduction

Van Vleck [31, 32] studied the continuous solutions f: R — R, f # 0 of the following functional
equation

fix —y +2z0) — flx +y +2z0) =2f(x)f(y), x, y € R,
where zp > 0 is fixed. He showed that any continuous solution with minimal period 4z, has to be the sine

function f(x) = sin(%x) = Cos(z—go(x— 29)), x € R. Kannappan [18] proved that any solution f: R — C
of the functional equation

f(x+y+2zo) +f(x —y +2z0) =2f(x)f(y), x,y € R
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is periodic, if zg # 0. Furthermore, the periodic solutions have the form f(x) = g(x —zp) where g is a
periodic solution of d’Alembert functional equation

g(x+y)+glx—y) =2g9(x)g(y), x,y € R.

Stetkeer [24, Exercise 9.18] found the complex-valued solutions of the functional equation

120) — f(xyzo) = 2f(x)f(y), x,y € G

fixy™
on groups G, where 2z is a fixed element in the center of G.
Perkins and Sahoo [21] replaced the group inversion by an involutive anti-automorphism o: G — G
and they obtained the abelian, complex-valued solutions of the functional equation

f(xo(y)zo) — f(xyzo) = 2f(x)f(y), x,y € G. (1.1)

Stetkeer [26] extends the results of Perkins and Sahoo [21] about equation (1.1) to the more general case
where G is a semigroup and the solutions are not assumed to be abelian and zj is a fixed element in the
center of G.

In 1979, a type of stability was observed by Baker et al. [9]. Indeed, they proved that if a function is
approximately exponential, then it is either a true exponential function or bounded. Then the exponential
functional equation is said to be superstable. This result was the first result concerning the superstability
phenomenon of functional equations. Later, Baker [1] generalized this result as follows: Let (S,.) be an
arbitrary semigroup, and let f : S — C. Assume that f is an approximately exponential function, i.e.,
there exists a nonnegative number & such that [f(xy) — f(x)f(y)| < o for all x,y € S. Then f is either
bounded or f is a multiplicative function. The result of Baker et al. [2] was generalized by Székelyhidi
[28-30] in another way. We refer also to [5, 11, 16, 17, 19, 20, 22, 23] for other results concerning the
stability and the superstability of functional equations.

Throughout this paper S denotes a semigroup with an involutive morphism o: S — S. That is ¢
an involutive anti-automorphism: o(xy) = o(y)o(x) and o(o(x)) = x for all x,y € S or o an involutive
automorphism: o(xy) = o(x)o(y) and o(o(x)) =x for all x,y € S. Let u: S — C denotes a multiplicative
function such that p(xo(x)) = 1 for all x € S and |u(x)| < M for all x € S and for same M > 0. In all
proofs of the results of this paper we use without explicit mentioning the assumption that zg is contained
in the center of S and its consequence 0(zp) is contained in the center of S.

In the present paper, we consider the following functional equations which are solved recently by
Bouikhalene and Elqorachi [3] and Elqorachi and Redouani [12]. The equations are the Kannappan's
functional equation

f(xyzo) + nly)f(xoly)zo) = 2f(x)f(y), x,y €5, (1.2)
the Van Vleck functional equation

w(y)f(xoly)zo) — flxyzo) = 2f(x)f(y), x,y €, (1.3)
a variant of Van Vleck functional equation

k(y)floly)xzo) — flxyzo) = 2f(x)f(y), v,y €, (1.4)
and a variant of Kannappan’s functional equation

f(xyzo) + u(y)flo(y)xzo) = 2f(x)f(y), x,y € S. (1.5)

The results of this paper are organized as follows. In Section 2, we prove the superstability of (1.2).
In Section 3, we prove the superstability of (1.3). In Section 4 and 5 we prove the superstability of the
functional equations (1.4) and (1.5), respectively.
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2. The superstability of Kannappan’s functional equation (1.2)

In this section we obtain the superstability result of equation (1.2) on semigroups not necessarily
abelian. The following Lemma will be used later.

Lemma 2.1. Let o be an involutive morphism of a semigroup S. Let p be a bounded multiplicative function on S
such that u(xo(x)) =1 for all x € S. Let & > 0 be fixed. If f : S — C is an unbounded function such that

If(xyzo) + w(y)f(xo(y)zo) —2f(x)f(y)] < 6 (2.1)
forall x,y € S, then, for all x € S we have
f(x) = n(x)f(a(x)), (2.2)
F(x0(20)20) — lo(20))f(20)7 00 < 5, 23
7(c2d) — () Flao)l < o+, e
f(zo) £ 0. (2.5)
The function g defined by
~ fxzo)
g(x) = flzo) " X €S (2.6)
is unbounded on S and satisfies
(2+M)d
lg(xy) + kly)g(xaly)) —2g(x)g(y)l < TR (2.7)

2+M)5  (1+M)s

xzo) — g(x)g(zo)| < + 2.8
forall x,y € S. Furthermore, g is a non-zero solution of d’Alembert’s functional equation
g9(xy) +ulylglxoly)) = 2g(x)g(y), x,y €5, (2.9)
and satisfies the condition
g(xzo) = glz0)g(x) forall x € S. (2.10)

Proof.
Equation (2.2): Replacing y by o(y) in (2.1) and multiplying the result obtained by p(y) and using that
rlyo(y)) =1, [u(y)l < M we get

In(y)f(xo(y)zo) + flxyzo) —2u(y)f(x)f(o(y))l < M.

Subtracting resulting inequalities we find after using the triangle inequality that

o+ Mbd

f) () —uW)fleWIs ——-

Since f is assumed to be unbounded then p(y)f(o(y)) = f(y) for ally € S.

Equation (2.3): By setting x by o(zo) in (2.1) we get
f(o(zo)yzo) + wly)f(o(zo)o(y)zo) — 2f(o(z0)) fly)l < o.
By using (2.2) and p(yo(y)) = 1 we get
If(o(z0)yzo) + flo(zo)yzo) — 21(o(20))f(y)f(z0) < 6,

which proves (2.3).
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Equation (2.4): Putting y = z in (2.1) we get
[f(xz5) + w(z0)f(x0(z0)z0) — 2f(x)F(20)] < b
From equation (2.3), the triangle inequality, and that p(xo(x)) =1, |u(x)| < M for all x € S we obtain (2.4).
Equation (2.5): Assume that f(zg) = 0. Replacing x by xzg, y by yzp in (2.1) we get
If(xyzg) + wlyzo)f(xz00(yzo)z0) — 2f(x20)f(yzo)| < 8. (2.11)
From (2.3) and (2.4) we get

38
., f(xyzg) — fz0)f(xyzo)l < o

N o

If(xzo0(zo)o(y)zo) — 1lo(zo))f(zo)f(xzoo(y))| <

Since f(zg) = 0, then we get

5 Mb

Sy If (XUZO)| S 5 +29.

From (2.11) we conclude that the function x — f(xzg) is a bounded function on S, then the functions
(x,y) —>f(xyzo); (x,y) —>f(x0(y)zp) are bounded on S x S. So, from (2.1) and the triangle inequality we
deduce that f is a bounded function, which contradict the assumption that f is an unbounded function
on S and this proves (2.5).

If(xzo0(z0)o(y)zo)| <

Equation (2.7): First we show that the function g defined by (2.6) is unbounded. If g is bounded, then
the function x — f(xzo) is also bounded. From (2.1) and the triangle inequality we get that the function
(x,y) — f(x)f(y) is bounded on S x S and this implies that f is bounded. This contradict the assumption
that f is unbounded on S. From the inequalities (2.1), (2.3), (2.4), (2.5), (2.6) and the fact that p(xo(x)) =1
for all x € S we get

(f(z0))*[9(xy) + 1(y)g(xa(y)) —2g(x)g(y)]
= f(zo)f(xyzo) + m(y)f(zo)f(xo(y)zo) — 2f(xzo)f(yzo)
= f(z0)f(xyzo) — f(xyzg) + (yzo) [(0(20))f(z0) F(x0(y)ze) — F(x0(y)zo0(20)20)]
+ 1(yzo)f(xzo0(yzo)zo) + f(xyzg) — 2f(xz0)f(yzo) < (24+M)3,

which proves (2.7). Since g is unbounded and satisfies the inequality (2.7) then from [4], we deduce that
g satisfies p-d’Alembert’s functional equation (2.9).

Equation (2.8): For all x € S, we have

f(xzg)  f(z§)f(xzo) _ f(xzg)f(zo) — f(z5)f(xz0)
f(z0) (f(20))? (f(20))? '
By replacing x by xz3 and y by z in (2.1) we get

g(xzo) —g(x)g(zo) =

[f(xzg) + w(zo) f(xz§0(z0)z0) — 2f(x25)f(z0)| < 8.
By replacing x by xzp and y by z3 in (2.1) we get
If(xz8) + u(23)f(xz30(23)) — 2f(23)f(xz)| < 6.
By using the fact that p(yo(y)) =1 we get
2f(25)f(xzo) — 2f (xz5)f(zo)
= [2f(23)f(xzo) — f(xzg) — w(z3)f(xz50(23))]
— [2(xz§)f(z0) — f(xz5) — wlz0)f(xz50(20))] + 125 [f (xz50(25)) — w(o(20))F(x0(20)20) F(20)]
+ plz0) [f(x0(z0)z0) f(z0) — plo(20))F(x) (£(20))?] — w(zo) [f (xz50(20)) — w(0(20))F(x25) f(z0)]
— [f(xz§)f(z0) — F(x)(f(z0))?.
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From inequalities (2.1), (2.2), (2.3), and the above relations we get

12f(25) f(xz0) — 2f(xz5)f(20)| < (1 4+ M + Mf(z0)| + [f(20)])3,
from which we deduce (2.8).
Equation (2.10):

2lg(y)llg(xzo) — g(x)g(z0)l = 129(y) g(xz0) — 29(x)g(y) g(zo0)|
= [lg(xyzo) + w(y)g(xo(y)zo)l — g(zo)[g(xy) + rly)g(xo(y))ll
= [g(xyzo) — g(z0)g(xy) + 1ly)lg(xo(y)zo) — g(zo)g(xa(y))ll
< 19(xyzo) — g(xy)g(zo)|l + Mlg(xo(y)zo) — g(xc(y))g(zo)l.

In view of inequality (2.8), we get that the function (x,y) — g(y)(g(xzo) — g(x)g(zo)) is bounded. Since g
is an unbounded function on S then we get g(xzy) = g(x)g(zo) for all x € S. This completes the proof. [

The following theorem is the main result of the present section.

Theorem 2.2. Let o be an involutive morphism of S. Let w be a bounded multiplicative function such that
u(xo(x)) =1forall x € S. Let & > 0 be fixed. If f : S — C satisfies the inequality

If(xyzo) + nly)f(xo(y)zo) — 2f(x)f(y)| < & (2.12)
or all x,y € S, then either f is bounded or f is a solution of Kannappan’s functional equation (1.2).
PP q

Proof. Assume that f is an unbounded solution of (2.12). By replacing y by yzg in (2.12) we get

[f(xyz5) + w(yzo)f(xo(z0)o(y)zo) — 2f(x)f(yzo)| < 5.
From (2.3), (2.4), u(xo(x)) =1, |u(x)| < M for all x € S and the triangle inequality we get

M M?

[f(z0)f(xy) + u(y)flzo)f(xo(y)) — 2f(x)f(yzo)l < (1 + 5+ —-)8 (2.13)

for all x,y € S. Since from (2.5) we have f(zg) # 0, then the inequality (2.13) can be written as follows

36
(20

for all x,y € S, where g is the function defined in Lemma 2.1 by the formulas (2.6). Now, from [4,
Theorem 2.2(b)], we conclude that f, g are solutions of u-Wilson’s functional equation

f(xy)+uly)fixoly)) =2f(x)g(y) (2.14)

forall x,y € S. By replacing x by zg in (2.14) we get f(zoy) + 1(y)f(zoo(y)) =29(y)f(zo). Since u(y)f(o(y)) =
f(y) and p(yo(y)) =1 then we get

If(xy) + r(y)f(xo(y)) —2f(x)g(y)l <

f(zoy) + w(y)f(zoo(y)) =f(yzo)+ wlzo)f(yo(zo)) = 2f(y)g(zo).

Then we have f(y)g(zo) = g(y)f(zo). Since f(zy) # 0, then we have g = 2((;‘0)f.
For all x,y € S we have

f(xyzo) + u(y)fxoly)zo) = [f(xzoy) + n(y)f(xzoo(y))l = 2f(xz0)g(y) = 2BF(x)f(y), (2.15)

where 3 = %. Substituting this into (2.1) we obtain [2( —1)f(y)f(x)| < b for all x,y € S. Since f is

assumed to be unbounded then we deduce that f = 1 and then from (2.15) we deduce that f is a solution
of (1.2). This completes the proof. O
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3. The superstability of the Van Vleck’s functional equation (1.3)

In the present section we prove the superstability theorem of the Van Vleck’s functional equation (1.3)
on semigroups. First, we prove the following useful lemma.

Lemma 3.1. Let o be an involutive morphism of S. Let p be a bounded multiplicative function such that u(xo(x)) =
1 forall x € S. Let & > 0 be fixed. If f : S — C is an unbounded function which satisfies the following inequality

In(y)f(xo(y)zo) — flxyzo) — 2f(x)f(y)l < & 5.1)
forall x,y € S, then, for all x € S we have
f(x) = —u(x)flo(x)), (3.2)
(x0(20)20) — (olz0) Fx)f(z0)| < 2, 3)
1023) + 00Tz < T +5, G4
f(z0) #0, (3.5)
f(z5) =0, (3.6)
35+ 3MS + 3 M25
Flxz0) — w(o(z))F(o(0)z0)] < = 22 67)
If(z0)]
The function g defined by
_ f(xzo)
g(x) = fzo)’ * € S (3.8)
is unbounded on S and satisfies the following inequality
90xy) + ulyalxoty) ~ 2009wl < TN forally < 5. 9)

|f(zo)I?
Furthermore,
1) g(zo) =0; g(z3) #0;

2) g is an abelian solution of u-d’Alembert’s functional equation (2.9);
3) f,g are solutions of u-Wilson's functional equation (2.14).
Proof.
Equation (3.2): By replacing y by o(y) in (3.1) and multiplying the resulting inequality by p(y) and using
iyo(y)) =1and [u(y)l < M we get
If(xyzo) — u(y)f(xoly)zo) —2u(y)f(x)f(o(y))l < Ms (3.10)

for all x,y € S. By adding the result of (3.1) and (3.10) and using the triangle inequality we obtain
12f(x) (f(y) + n(y)f(o(y)))l < (1+M)d for all x,y € S. Since f is assumed to be unbounded then we get
(3.2).

Equation (3.3): By replacing x by o(zp) in (3.1) we have

In(y)flo(zo)o(y)zo) — flo(zo)yzo) — 2f(o(20))f(y)l < 8 (3.11)
for all y € S. By using (3.2) and the fact that p(yo(y)) = 1 we have f(o(zo)o(y)zo) = —u(o(y))f(yo(zo)zo)
and f(o(zp)) = —p(o(zp))f(z0). So, equation (3.11) can be written as follows

| —f(yo(zo)zo) — f(yo(zo)zo) +2u(0(2z0) ) f(y)f(zo)l < O

for all y € S, which proves (3.3).
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Equation (3.4): Taking y = zo in (3.1) we get
I(z0)f(x0(20)z0) — F(x25) — 2f(x)f(z0)| < & (3.12)
for all x € S. Since
[f(xz5) + F(x)f(z0)| = If(xz5) + 2f(x)f(z0) — p(z0)f(x0(20)z0) + 11(z0) [f(x0(20)z0) — 1(0(z0))F(x)F(20)]],

then from (3.3), (3.12) and the triangle inequality we get (3.4).
Equation (3.5): f is assumed to be an unbounded solution of the inequality (3.1) then f # 0. Now assume
that f(z9) = 0. By replacing x by xz¢ in (3.1) we get

() f(xoly)zg) — Fxyzg) — 2f(y)f(xzo)| < 5.

For all x,y € S, we have

2f(y)f(xzo) = 2f(y)f(xzo) + flxyzg) — wly)f(xoly)zg) — (Flxyzg) + fxy)f(zo))
+ n(y)[f(xo(y)zg) + f(xo(y))f(zo)] + f(xy)f(zo) — m(y)f(xo(y))f(zo).
So, using (3.4), (3.1), f(zo) = 0, and the triangle inequality we get that y —— f(y)f(xzo) is a bounded
function on S, since f is unbounded then we obtain f(xzp) = 0 for all x € S. By substituting this into (3.1)

we get f a bounded function on S and this contradicts the assumption that f is an unbounded function.
So, we have (3.5).

Equation (3.9): By using similar computation used in the above section, the function g defined by (3.8) is
an unbounded function on S. Furthermore,

f(z0)%[g(xy) + n(y)g(xo(y)) —2g(x)g(y)]
= f(z0)f(xyzo) + n(y)f(zo)f(xo(y)zo) — 2f(xz0)f(yzo)
= f(xyzo)f(zo) + f(xyz3) + m(yzo) k(o (z0))F(x0(y)z0)f(20) — F(x0(Y)z00(20)20)]

+ 1(yzo) f(xzo0(yzo)zo) — f(xyzg) — 2f(x20)f(yzo).

So, using (3.3), (3.4), and (3.1) we get (3.9).

Equation (3.6): Since g is unbounded so, from [4] g satisfies the p-d’Alembert’s functional equation (2.9).
From (3.3), (3.4), the triangle inequality, and the fact that p(yo(y)) = 1 we have

I(z0) F(x0(20)20) + f(x25)| < (1+M)d (3.13)

f(xzg)
f(zo)

for all x,y € S. Since g = , the inequality (3.13) can be written as follows

lu(zo)f(zo)g(xo(zo)) + f(z0)g(xzo)| < (1 + M)s.

On the other hand g is a solution of p-d”’Alembert’s functional equation (2.9) then we get [2g(x)g(zo)| <
% for all x € S. Since g is unbounded then we deduce that g(z9) = 0. That is f (z%) = 0. This proves
(3.6).

Equation (3.7): By replacing x by z3 in (3.1), and using (3.6) we obtain

ln(y)f(o(y)zy) — flyzd) < (3.14)

for all y € S. Since,

my)f(a(y)zd) — flyzd) = nly)(flo(y)zd) + flo(y)zo)f(zo))

— (f(yz) + f(yzo)f(20)) — (k(y)f(ol(y)zo) — F(yzo))f(z0)-
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Then from (3.14), (3.4), and the triangle inequality we get (3.7).
From (3.1), (3.3), (3.4), the triangle inequality, and that p(yo(y)) =1 we get

1f(z0)f(xy) + 1(y)f(zo)f(xo(y)) —2f(x)f(yzo)l
< If(zo)f(xy) + f(xyzd)l + In(yzo) (1(o(z0)) f(zo) f(x0(y)) — f(xo(y)o(z0)z0))| (3.15)
+ Ii(yzo) f(xo(y)o(z0)z0) — fxyzg) — 2f(x)f(yzo)l < (2+M)S

for all x,y € S. Since from (3.5) we have f(zg) # 0. Then the inequality (3.15) can be written as follows

30
F0xy) + wly)f(xoly)) ~ 269 (y)l < e

for all x,y € S and where g is the function defined in Lemma 3.1, (3.8). Now, by using [4, Theorem 2.2(b)]
we conclude that f, g are solutions of p-Wilson’s functional equation (2.14). This completes the proof. [

The main result of the present section is the following.

Theorem 3.2. Let o be an involutive morphism of S. Let w be a bounded multiplicative function such that
u(xo(x)) =1forall x € S. Let & > 0 be fixed. If f : S — C satisfies the following inequality

In(y)f(xoly)zo) — flxyzo) — 2f(x)f(y)| < & (3.16)
or all x,y € S, then either f is bounded or f is a solution of Van Vleck’s functional equation (1.3).
q

Proof. Assume that f is an unbounded solution of (3.16). From Lemma 3.1, the pair f, g is a solution of
u-Wilson’s functional equation (2.14). Taking y = z¢ in (2.14) and using g(z9) = 0 (see Lemma 3.1) we get

f(xzo) + w(zo)f(x0(z0)) = 0. (3.17)
By replacing y by zpo(zo) in (2.14) and using that p(zpo(z9)) = 1 we obtain
f(xzo0(20)) + f(x0(20)z0) = 2f(x)g(200(20)) = 2f(x200(z0)).

That is,
f(xzoo(z0)) = f(x)g(z00(z0)). (3.18)

Now from (3.3) and (3.18), we get

f(x)(g(z00(20)) — nlo(z0))f(20))| <

NI o

for all x € S. Since f is assumed to be unbounded then we get

9(z00(z0)) = nl(o(z0))f(z0). (3.19)

The function g satisfies p-d’Alembert’s functional equation (2.9) and g(z9) = 0 then we have g(yzo) =
—u(zo0)gl(yo(zp)) for ally € S. So, by using the definition of g, equations (3.18), (3.19), and that u(yo(y)) =
1 we have

—1(zo)f(yo(zo)zo) _ —ml(z0)f(y)g(o(z0)z0) _ —Fly)f(zo0)

9(yzo) = —1(z0)g(yo(zo)) = fz0) = f(z0) f(z0)

Finally, from (2.14), (3.17), and (3.20) we have

— —f(y). (3.20)

w(y)f(xoly)zo) — f(xyzo) = —ulyzo)f(xo(y)o(zo)) — f(xyzo)
= —[u(yzo)f(xo(yzo)) + f(xyzo)] = —2f(x)g(yzo) = 2f(x)f(y)

forall x,y € S. That is f is a solution of Van Vleck’s functional equation (1.3). This completes the proof. [
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4. The superstability of a variant of Van Vleck’s functional equation (1.4)

In this section, we obtain the superstability of the variant of Van Vleck’s functional equation (1.4) on
semigroups. The following useful lemma will be used later.

Lemma 4.1. Let S be a semigroup, let o be an involutive morphism of S. Let w be a bounded multiplicative function
such that u(xo(x)) =1 forall x € S. Let & > 0 be fixed. If f : S — C is an unbounded function which satisfies the
following inequality

In(y)floly)xzo) — flxyzo) — 2f(x)f(y) < 6 (4.1)
forall x,y € S, then, for all x,y € S we have
f(x) = —u(x)flo(x)), (4.2)
RO (o () + my)T(oly)l < 27 43
[f(zo)]
[f(xo(z0)z0) — n(o(z0))f(x)f(z0)] < g, (4.4)
(x23) + () o)l < 50+, @5)
f(Zo) # 0, (4°6)
f(xo(z0)) = nix)f(a(x)o(zo)), (4.7)
25+M  M(26+M)
If(xzo) — n(x)f(o(x)z0)| < tizo)l fzo]] (4.8)
The function g defined by
. f(XZ())
g(x) = fzo) ' * € S (4.9)
is unbounded on S and satisfies the following inequality
3%
l90xy) +1(W)gloly)x) =290l < Frm (4.10)
forall x,y € S. Furthermore, g satisfies the variant of d’Alembert’s functional equation
glxy) + r(ylgloly)x) = 2g(x)g(y), x,y €S, (4.11)

and we have g(z%) # 0and g(zp) = 0.

Proof. Let f: S — C be an unbounded function which satisfies (4.1).

Equation (4.6): We prove that f(zy) # 0 by contradiction. Assume that f(z9) = 0. By replacing y by zg and
x by o(y)x in (4.1) we get

I(zo)f(0(y)xo(20)z0) — F(o(y)xzg)l < 6. (4.12)
Replacing y by yzo in (4.1) we have
Iu(yzo)f(o(y)xo(z0)zo) — f(xyz§) — 2f(x)f(yzo)| < . (4.13)

By replacing x by xzj in (4.1) we obtain
Iy)f(oly)xzg) — Fixyzg) — 26(y)f(xzo)| < . (414)

By subtracting the result of equation (4.14) from the result of (4.13) and using the triangle inequality, we
get after computation that

I(y) (1(z0)f(o(y)xo(z0)20) — Flo(y)xzg)) — 2 (x)F(yzo) — Fly)f(x20)]l < 2. (4.15)
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From (4.12), (4.15), and the triangle inequality we get

00 lyzo) — Fly)Flxzo)] < 50 +3. (416

Since f is assumed to be unbounded function on S then f # 0. Let yo € S such that f(yg) # 0. Equation
(4.16) can be written as follows

5 Mg
[f(yo)l ~ 2If(yo)l’

If(xz0) — of(x)| < (4.17)

f(yozo)
f(yo)
x — f(xzp) is bounded and from (4.1) and the triangle inequality we get f bounded which contradicts

the assumption that f is an unbounded function on S.
From (4.17) and the triangle inequality, the inequality (4.1) can be written as follows

where & = . Of course a # 0 because if « = 0 then by using (4.17) we deduce that the function

2 TrtueT + el | 8
In(y)floly)x) —fixy) — —FO)FlY)l < — 1w TN (4.18)
for all x,y € S. By replacing y by zp in (4.18) and using that f(zy) = 0 we get
Iu(zo)f(o(zg)x) — f(xzg)] < N forall x € S. (4.19)
Replacing y by x and x by z( in (4.18) we get
lu(x)f(o(x)zg) — f(zox)] < N for all x € S. (4.20)
Subtracting the result of (4.19) from the result of (4.20) and using the triangle inequality we get
lu(x)f(o(x)zg) — n(zo)f(o(z0)x)| < 2M for all x € S. (4.21)

By interchanging x with y in (4.18) we get

ROIT(ox)y) — fye) — 2 Fx)Fly)l < N. @22)

Replacing y by o(y) in (4.18) and multiplying the result by u(y) and using that pu(yo(y)) =1 we get

f(yx) — my)i(xoly)) — 2 Fx)uy)ilo(y)) < NM. @.23)

By adding the results of (4.23) and (4.22) and using the triangle inequality we have

lu(x)f(o(x)y) — u(y)f(xoly)) — %f(X)[f(y) + u(y)flo(y))ll < 2M. (4.24)

By replacing x by o(x) in (4.24) and multiplying the result obtained by (x) and using that p(xo(x)) =1
we get
2
[f(xy) — nixy)flo(x)oly)) — —nx)f(e(x))[f(y) + uly)fley)l < N +NM. (4.25)

If we replace y by o(y) in (4.24) and multiplying the result by u(y) and using that p(yo(y)) =1 we get
2
n(xy)flo(x)o(y)) —flxy) — —FX)FY) + nly)floy)ll < N+ NM. (4.26)

Now, by adding the results of (4.25) and (4.26) and using the triangle inequality we have

((N+NM)+M(N+NM))|«f
> .

[[F(x) + n(x)f(o(x))If (o (y)) + nly)fla(y)ll <
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That is x — f(x) + p(x)f(o(x)) is a bounded function on S. So, the function
x — f(o(x)zo) + pxo(z0))f(x0(z0))

is also a bounded function on S. Multiplying (4.21) by n(o(zo)) we deduce that x — p(xo(zo))f(o(x)zo) —
f(xo(zp)) is a bounded function on S. By using triangle inequality, the function x — f(xo(zp)) is a
bounded function on S and consequently the function x — (f o 0)(xzg). Since x — f(xzp) + p(xzg)f o
o(xzp) is bounded, then we get that f is a bounded function on S which contradicts the assumption that f
is an unbounded function on S and this proves (4.6).

Equation (4.3): If we replace y by yzo in (4.1) we get

I(yzo) f(o(y)xo(zo)z0) — flxyzg) — 2f(x)f(yzo)| < 5. (4.27)
Replacing x by xzg in (4.1) we get
In(y)f(o(y)xzg) — fxyzg) — 2f(y)flxzo)| < 8. (4.28)

By subtracting the result of (4.28) from the result of (4.27) and using the triangle inequality we deduce
that

In(yzof(o(y)xo(zo)z0) — mly)f(oly)xzg) —20f(x)flyzo) — F(y)f(xzo)ll < (4.29)
Replacing y by zg and x by o(y)x in (4.1) and multiplying the result obtained by u(g) we get
In(yzo)f(o(y)xo(z0)z0) — n(y)f(o(y)xz§) — 2u(y)f(o(y)x)f(zo)l < M. (4.30)
By subtracting the result of (4.29) from the result of (4.30) and using the triangle inequality we obtain
Mb + 25
(y)f(oly)x)f(zo) — [f(x)f(yzo) — FlY)f(xzolll < ———- (4.31)
By interchanging x and y in (4.31) we have
M + 26
() f(o(x)y)f(zo) — [F(y)Flxzo) — FOx)Flyzo)ll < —F—- (4.32)

By adding the result of (4.31) and the result of (4.32) and using the triangle inequality we get (4.3).
Equation (4.7): Replacing x by xo(z¢) in (4.1) we get

In(y)flo(y)xo(zo)zo) — flxyo(zo)zo) — 2f(y)f(xo(zo))| < 6. (4.33)

Replacing y by yzo and x by xzg in (4.3) and multiplying the result by p1(o(zg)) and using that pu(yo(y)) =1

we obtain
20 + Mb

[f(zo)l
By subtracting the result of (4.33) from the result of (4.34) and using the triangle inequality we get
26 + Mb
If(z0)]
Replacing x by o(x) in (4.35) and multiplying the result by p(x) and using that p(xo(x)) =1 we get
26 +Mbd
If(zo)]

Subtracting the result of (4.36) from the result of (4.35) and using the triangle inequality we get

26 (y)[F(x0(20)) — p)f(o(x)olz0))] < 2 H2MO L og
[f(z0)]

In(x)flo(x)yo(zo)zo) + mly)f(o(y)xo(z)zo)l < (4.34)

lu(x)f(o(x)yo(zo)zo) + flxyo(zo)zo) + 2f(y)f(xo(z0))] < +9. (4.35)

[f(xyo(zo)zo) + n(x)flo(x)yolzo)zo) +2u(x)f(y)flo(x)o(zo))| < + 9. (4.36)

Since f is assumed to be unbounded then we have (4.7).
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Equation (4.8): If we replace y by o(zp) in (4.3) we obtain
260+M

In(o(z0))f(xz0) + m{x)f(o(x)o(z0)) < : (4.37)
[f(z0)

In view of (4.7), the inequality (4.37) can be written as follows

In(otz0) flxz0) + flxozo)) < 22 (4.38)
If(zo)]
Replacing y by zg in (4.3) we get
In(20)f(x0(z0)) + wx)f(o(0)z0)| < 220 (4.39)
[f(zo)l

By multiplying (4.38) by u(zo) and using that p1(zo0(z9)) = 1 and subtracting the resulting inequality from
the result of (4.39) we get (4.8).

Equation (4.2): Replacing x by o(x) in (4.1) and multiplying the result by u(x) we get
Ik(xy)floly)o(x)zo) — u(x)f(o(x)yzo) —2u(x)f(o(x))f(y)l <. (4.40)

Now, we will discuss two cases.

Case 1. If 0 is an involutive automorphism of S. By replacing x by yx in (4.8) we obtain

B 260+ M M(26+M)
[fyxzo) — n(yx)f(o(y)o(x)zo)| < F(z0)] + IF(zo)]

Adding the result of (4.40) to the result of (4.41) and using the triangle inequality we get

(4.41)

26+M  M(25+M)
If(zo)| If(zo)l

[f(yxzo) — u(x)f(o(x)yzo) — 2u(x)f(o(x))f(y)l < + 8. (4.42)

By interchanging x and y in (4.1) we get
Ik(x)f(o(x)yzo) — flyxzo) — 2f(x)f(y)l < &. (4.43)
By adding the result of (4.43) and the result of (4.42) and using the triangle inequality we obtain

26+M | M(256+M)
el [f(zo)]

2f(y) Iu(x)f(o(x)) + f(x)]] < +28.

Since f is assumed to be unbounded then we obtain (4.2).

Case 2. If 0 is an involutive anti-automorphism of S. By replacing x by yx in (4.8) we have

26+M  M(26+M)
Iflyxzo) —ulyx)flo(x)oly)zoll € e + 5y

If we replace y by x and after y by o(y) in (4.1) and we multiply the result by u(y) we get

(4.44)

In(xy)f(o(x)ol(y)zo) — uly)flo(y)xzo) —2u(y)flo(y))f(x)] < MS. (4.45)
By adding the results of (4.44) and (4.45) and using the triangle inequality we get

26+ M | M(25+ M)
If(zo)l If(zo)|

ITlyxzo) — u(y)f(o(y)xzo) —2u(y)f(o(y))f(x)] < Md + (4.46)
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By interchanging x by y in (4.1) we get
In(x)f(o(x)yzo) — flyxzo) — 2f(y)f(x)[ < 8. (4.47)
By replacing x by o(x)y in (4.8) and multiplying the result obtained by p(x) and using that p(xo(x)) =1

we get
26+M  M(20+M)

x)f(o(x)yzo) — flo(y)xzo)| < + 4.48
lu(x)f(o(x)yzo) — nly)flo(y)xzo)l Tzl Tiz0)l (4.48)
By subtracting the results of (4.47) from (4.48) and using the triangle inequality we get
26+M  M(26+M
Ih(y)F(oy)xz0) — flyxzo) — 26(y)F0)] < 5+ 20+ M (4.49)

+
If(zo)] If(2o0)l
By adding the results of (4.49) and (4.46)

26+ M | M(25+M)
If(zo)| If(zo)l

for all x,y € S. Since f is unbounded then we we get (4.2).

12f(x) (f(y) + n(y)flo(y)))l < 2 +Mb+5

Equation (4.4): If we replace x by o(zp) in (4.1) and using (4.2) and using that u(xo(x)) =1 for all x € §,
we get
| = f(yzo0(z0)) — flyo(zo)zo) + 2u(o(20))f(y)f(z0)l < §,
which proves (4.4).
Equation (4.5): By replacing y by zq in (4.1) we get
Iu(z0)f(x0(z0)z0) — f(xz5) — 2f(x)f(z0)| < 5. (4.50)
Multiplying (4.4) by p(zp) and subtracting the result obtained from the result of (4.50) and using the

triangle inequality we deduce (4.5).
Equation (4.10): Let g be the function defined by (4.9). Then we have

f(z0)?lg(xy) + uly)g(o(y)x) —2g(x)g(y)]
= f(z0)f(xyzo) + 1(y)flzo)f(o(y)xzo) — 2f(xz0)f(yzo)
= f(xyzo)f(zo) + f(xyzg) + wlyzo) (w(0(z0)) F(o(y)xz0)f(20) — F(0(y)x0(20)25))
+ ulyzo)f(o(yzo)xzg) — fxyzgy) — 2f(xzo)f(yzo).
So, from (4.4), (4.5), and (4.1) we get (4.10). Now, since f is unbounded then g is unbounded and satisfies
(4.1). So, by using same computations used in [14] g satisfies the variant of d’Alembert’s functional

equation (4.11).
Finally, from (4.4), (4.5), and the triangle inequality we have

1(z0)f(x0(20)20) + flx25)| < (14 M)S (451)
for all x,y € S. By using the definition of g, the inequality (4.51) can be written as follows

If(z0)[1(z0)g(x0(z0)) + g(xz0)]| < 25.

On the other hand g is a solution of p-d’Alembert’s functional equation (4.11) then g is central [25] and

we get [2g(x)g(zo)| < (‘1:(2/0[)15 for all x € S. Since g is unbounded then we deduce that g(zy) = 0. That is

f(z%) =0. O]
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Theorem 4.2. Let S be a semigroup, let o be an involutive morphism of S. Let w be a bounded multiplicative
function, such that u(xo(x)) =1 for all x € S. Let & > 0 be fixed. If f : S — C is a function which satisfies the
inequality

In(y)f(oly)xzo) — flxyzo) — 2f(x)f(y) < 6 (4.52)
forall x,y € S, then, either f is bounded on S or f is a solution of the variant of Van Vleck’s functional equation
(1.4).

Proof. Assume that f is an unbounded solution of (4.52). Replacing y by yzg in (4.1) we get

In(yzo)f(o(y)xo(zo)zo) — flxyz§) — 2f(x)f(yzo)l < &
for all x,y € S. By using (4.1), (4.4), and (4.5) and the triangle inequality we get

2
F(20)Flxy) + 1y o) oy )x) — 26(x)lyzo)| < 26+ 50 + 22

for all x,y € S. Equation which can be written as follows

26 . Ms M25
(zo)l  2[f(z0)l ~ 2[f(zo0)l

If(xy) + uly)f(o(y)x) —2f(x)g(y)l < P (4.53)

for all x,y € S and where g is the function defined by (4.9). Replacing x by xzj in (4.1) we get
Iy f(oly)xzg) — fxyzg) - 2f(y)fxzo)l < 8
for all x,y € S. By using (4.1), (4.5), and the triangle inequality we get

25 3Ms M25
(zo)l  2[f(z0)l ~ 2[f(z0)l

[f(xy) — wly)flo(y)x) —2f(y)g(x)| < P (4.54)

for all x,y € S. By adding the result of (4.54) and (4.53) we get

25 Mbd M?25
0] =T 9ty) = TS fe i * o)l * 207Czol

for all x,y € S. Now, we will show that if &, € C and «f + g is a bounded function on S, then
o = 3 = 0. Assume that there exits N such that

locf(x) + Bf(xzo)l < N (4.55)

for all x € S. Then by replacing x by o(x) and multiplying the result by p(x) we get [ocp(x)f(o(x)) +
Bu(x)f(o(x)zo)| < NM. Using (4.8), the triangle inequality, and that p(x)f(o(x)) = —f(x) we get

260+M n Mb N M2
If(zo)l ~ [f(zo)l ~ 2[f(z0)l
By adding the result of (4.55) and (4.56) we get 2[3f(xzp) is a bounded function. Since g is unbounded then

3 =0 and consequently & = 0. Now, from [30, Lemma 2.1] we conclude that the pair f, g is a solution of
the sine addition law

| = of(x) 4 Bf(xzo)| < M+ BI(

). (4.56)

fixy) = f(x)g(y) +f(y)glx) x,y €S.

Since u(x)f(o(x)) = —f(x) and u(x)g(o(x)) = g(x) for all x € S then the pair f, g satisfies the variant
u-Wilson'’s functional equation

f(xy) + u(y)flo(y)x) =2f(x)g(y) x,y €S. (4.57)
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By taking y = zp in (4.57) and using g(zp) = 0 (see Lemma 4.1) we get
f(xzg) + w(zo)f(o(z9)x) = 0. (4.58)
By replacing y by zpo(zp) in (4.57) and using that p(xo(x)) =1 for all x € S we get
f(xz90(z0)) + f(x200(20)) = 2f(x)g(z00(20)).

That is
f(xzoo(z0)) = f(x)g(zo0(20)). (4.59)

Now from (4.4) and (4.59) we get

[f(x)(g(z00(20)) — mlo(z0))f(2z0))| <

N| o

for all x € S. Since f is assumed to be unbounded then we get
9(z00(z0)) = nlo(z0))f(zo). (4.60)

The function g is a solution of (4.11) and g(zo) = 0, then we get g(yzo) = —n(z0)g(yo(zo)). So, by using
the definition of g, and equations (4.59), (4.2), (4.60) we obtain

L _ —w(zo)f(yo(zo)zo)  —u(zo)fly)glo(zo)zo)  —f(y)f(zo)
9(yzo) = —u(zo0)g(yo(zo)) = flzo) = f(zo) = ()

Finally, from (4.58), (4.57), and (4.61) we have

= —f(y). (4.61)

w(y)f(oly)xzo) — f(xyzo) = —ulyzo)f(o(y)xo(zo)) — f(xyzo)
= —[u(yzo)f(o(yzo)x) + f(xyzo)] = —2f(x)g(yzo) = 2f(x)f(y)

for all x,y € S. This completes the proof. O

5. The superstability of a variant of Kannappan’s functional equation (1.5)

In this section we obtain the superstability result of equation (1.5) on semigroups not necessarily
abelian. Later, we need the following Lemma.

Lemma 5.1. Let S be a semigroup, let o be an involutive morphism of S. Let w be a bounded multiplicative function
such that u(xo(x)) =1 forall x € S. Let & > 0 be fixed. If f : S — C is an unbounded function which satisfies the
following inequality

[f(xyzo) + w(y)floly)xzo) — 2fF(x)f(y)l < 6 (5.1)

forall x,y € S, then, forall x € S

f(x) = ux)f(o(x)), (5.2)
S+«
Flxo(z0)z0) — (0(z0)) FX)(z0)] <~ 53)
where o« = (M + 1)\/§.
108) — 1001(z0)l < Y 54
f(zo) #0, and f(o(z9)) #0, (5.5)

f(xo(z0)) = u(x)f(o(x)o(zo)), (5.6)
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[f(xz0) — u(x)f(o(x)zo)l < (M +Tax. (5.7)
The function g defined by
f(xzo)
X) = orx eSS 5.8
() = o7 58)
is unbounded on S and satisfies the following inequalities
M(d + ) + 258
90xy) + y)g(oly)x) — 29(xgly)l < Mo % 59)
20+M(0+«a«) S+M(d+ «x)
xzo) — g(x)g(zo)| < + 5.10
l9(xz0) — g(x)g(z0)l HEE Tizo]] (5.10)
forall x,y € S. Furthermore, g is a non-zero solution of a variant of u-d’Alembert’s functional equation
g9(xy) +ulylgloly)x) = 2g(x)g(y), x,y €5, (5.11)
and satisfies the condition
g(xzp) = g(zo)g(x) forall x € S. (5.12)

Proof. First we prove that x — f(x) — pu(x)f(o(x)) is a bounded function on S. Interchanging x and y in

(5.1) and multiplying the result by p(o(y)) we get

In(xa(y))f(o(x)yzo) + nlo(y))flyxzo) —2f(x)ulo(y))fly)l < M.

Replacing y by o(y) in (5.1) we obtain

lu(o(y))f(yxzo) + f(xo(y)zo) —2f(x)f(o(y))l < b.

By subtracting (5.14) from (5.13) and using the triangle inequality we get

lu(xo(y))flo(x)yzo) — f(xa(y)ze) — 2f(x)[u(o(y))f(y) — flo(y))l] < M& + 8.
By replacing x by o(x) in (5.15) we have

In(o(x)oly))f(xyzo) — f(o(x)oly)zo) —2f(a(x))[ulo(y))fly) — flo(y))]l < Md +.

Replacing y by o(y) in (5.15) and multiplying the result by u(o(y)o(x)) we obtain

[f(a(x)ol(y)zo) — nlo(x)o(y))f(xyzo) — 2f(x)u(o(x))f(0(y)) — wlo(y))F(y)ll < M8 + Ms.

Now, by adding (5.16) and (5.17) and using the triangle inequality we get

(M2 +2M +1).

N o

[flo(x)) — u(a(x))F(x)][f(a(y)) — nlo(y))fy)ll <

Replacing y by x in (5.18) we deduce that

f(o(x)) = plo(x))f(x)] < (M+1)\/§ =0,

which gives by replacing x by o(x),
If(x) —pu(x)f(o(x))] < o

forall x € S.

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)



B. Keltouma, E. Elhoucien, T. M. Rassias, R. Ahmed, J. Nonlinear Sci. Appl., 11 (2018), 894-915 910

Equation (5.3): First we prove that f(zo) = p(z0)f(0(z0)). Replacing y by zo in (5.1) we get
[£(xz5) + w(z0) f(x0(z0)zo) — 2 (x)f(z0)| < 5. (5.20)

Replacing y by o(zo) in (5.1) we get
[f(x0(z0)z0) + w(0(z0))F(x2§) — 2f(x)f(0(z0))] < 8. (5.21)

Multiplying (5.21) by p(zo) and using that w(xo(x)) = 1 we get

|u(zo) f(x0(20)z0) + f(xz5) — 2u(z0) F(0(20)) F(x)| < M. (5.22)

Subtracting (5.20) from (5.22) we get

2f(x)[f(z0) — u(zo)f(o(20))Il < MO + 8.

Since f is assumed to be unbounded, then

flz0) = wlzo)f(o(z0)) 523)
Now, if we replace x by o(zo) in (5.1) we get
If(yo(zo)zo) + nl(y)floly)olzo)ze) —2f(a(20))f(y)l < 8. (5.24)
Replacing x by yo(zo)zo in (5.19) and using that p(xo(x)) = 1 we get
F(yolz0)z0) — n(y)f(o(y)oz0)z0)] < o 525)
Adding (5.24) and (5.25) we get
f(yolzo)zo) — f(olz0))f(y)l < * 5. (526)

From (5.23) and (5.26) we deduce (5.3).

Equation (5.4): Multiplying (5.3) by u(zg) we get

M(d+ o)

—

Subtracting the result of (5.27) from (5.20) and using the triangle inequality we deduce (5.4).

lu(zo)f(x0o(z0)zo) — f(zo)f(x)] < (5.27)

Equation (5.5): Assume that f is an unbounded function which satisfies the inequality (5.1) and that
f(zo) = 0. Replacing x by xzg, y by yzp in (5.1) we get

If(xyzp) + wlyzo)f(o(yzo)xzozo) — 2f(x20)f(yzo)| < 8. (5.28)
In view of (5.3) and (5.4) we have
[f(zoo(y)xo(2z0)z0) — K(0(20))f(z0)f(zo0o(y)x)| < HT“,
10yz3) — flao)ayzo)l < 0 s
Since f(zg) = 0, then we get
faoolzioty ezl < S5, ey < MOEY s

From (5.28) we conclude that the function h(x) = f(xzg) is a bounded function on S, in particular the
functions (x,y) —f(xyzo); (x,y) —f(o(y)xzg) are bounded on S x S. So, from (5.1) we deduce that f
is a bounded function, which contradicts the assumption that f is an unbounded function on S. So, we
deduce that f(zg) # 0, and that f(o(zg)) # 0 because f(o(zg)) = n(o(zo))f(zo) and p(x) # 0 for all x € S.
This proves (5.5).
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Equation (5.6): Replacing x by xo(zg) in (5.1) we get
Iu(y)f(oly)xol(zo)zo) + f(xyo(zo)zo) — 2f(y)f(xo(z0)) < 8. (5.29)

Now we will discuss two cases.

Case 1. If 0 is an involutive anti-automorphism of S. By replacing x by o(x)yo(zg)z in (5.19) we get
[f(o(x)yo(zo)zo) — nlo(x)y)f(o(y)xo(zo)zo)l < . (5.30)
Multiplying (5.30) by pu(x) and using that pu(xo(x)) = 1 we obtain
In)f(o(x)yo(zo)zo) — mly)floly)xoe(zo)zo)l < M. (5.31)
By adding the result of (5.29) to the result of (5.31) and using the triangle inequality we get
lu(x)f(o(x)yol(zo)zo) + fxyo(zo)zo) — 2f(y)f(xo(2z0))| < Mo +5. (5.32)
Replacing x by o(x) in (5.32) and multiplying the result by p(x) and using that p(xo(x)) =1 we get
[f(xyo(z0)zo) + k(x)f(o(x)yo(zo)zo) — 2u(x)f(y)f(o(x)o(20))] < MPor+ M. (5.33)
Subtracting the result of (5.33) from the result of (5.32) and using the triangle inequality we get
2(y)[f(xo(z0)) — k(x)f(0(x)0(20))] < MPx+ M (e +8) + 5.

Since f is assumed to be unbounded, then we have (5.6).

Case 2. If 0 is an involutive automorphism of S. Replacing y by o(x)o(zp), and x by y in (5.1) we get
[f(yo(x)o(zo)zo) + w(o(x)0(20))f(xyzg) — 2f(y)f(o(x)o(z0))l < 8. (5.34)
Multiplying (5.34) by p(x) and using that u(xo(x)) = 1 we obtain
() f(yo(x)o(zo)zo) + 1lo(20)) F(xyz§) — 2u(x)f(0(x) o (20))f(y)l < MS. (5.35)
Subtracting (5.35) from (5.29) we get

[f(xyo(z0)z0) — w(o(z0))f(xyzg) + (y)f(o(y)xo(zo)z0) — m(x)flyo(x)o(zo)z0)]

(5.36)
—2f(y)[f(xo(z0)) — n(x)f(o(x)o(z0))ll < &+ M.
On the other hand, if we multiply (5.4) by u(o(zo)) we get
2
Iu(0(20))10c23) — lo(z0)) Fx) lzo)] < V504 s 537)
Subtracting (5.37) from (5.3) we get
2
7(x0(z0)20) — wlolzo)) xz) < MO sy 2FE (5.38)
Replacing x in (5.38) by xy we get
2
0yo(z0)20) — lotzo)) fxyz)| < Va2 4 ms 4 2%, (5.39)

Replacing x by o(y)xo(zp)zg in (5.19) we get

[f(o(y)xo(zo)zo) — ulo(y)x)f(yo(x)o(zo)zo))l < . (5.40)
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Multiplying (5.40) by pn(y) and using that pu(yo(y)) = 1 we obtain
In(y)flo(y)xo(zo)zo) — u(x)f(yo(x)o(zo)zo)l < Ma. (5.41)
From (5.39), (5.41), (6.36), and the triangle inequality we deduce that
() F(x0lz0)) — (0T (olx)otzo) ] < S5 2M2 4 221 o R EX
Since f is assumed to be unbounded we deduce (5.6).
Equation(5.7): If we replace x by xzg in (5.19) we obtain
If(xz0) — n(xzo)f(a(x)o(z0))| < ex. (5.42)
In view of (5.6), the inequality (5.42) can be written as follows
[f(xz0) — u(zo)f(x0(20))] < . (5.43)
Replacing x by xo(zg) in (5.19) we get
[f(xo(z0)) — n(xo(z0))f(o(x)20)] < ox. (5.44)
Multiplying (5.44) by 1(zo) and using that p(zoo(zg)) =1 we get
Iu(zo)f(x0o(z0)) — n(x)f(o(x)z0)| < Max. (5.45)
By adding the results of (5.43) and (5.45) we deduce (5.7).
Equation (5.2): Replacing x by o(x) in (5.1) and multiplying the result by u(x) we get
In(xy)flo(y)o(x)zo) + n(x)flo(x)yze) — 2u(x)f(o(x))f(y)l < M. (5.46)
Now, we will discuss two cases.
Case 1. If 0 is an involutive automorphism of S. By replacing x by yx in (5.7) we obtain
[flyxzo) — n(yx)fo(y)o(x)zo)| < (M + Dax. (5.47)
Adding the result of (5.46) to the result of (5.47) and using the triangle inequality we get
[f(yxzo) + u(x)f(o(x)yzo) —2n(x)f(a(x))f(y)l < M(a+8) + . (5.48)
By interchanging x and y in (5.1) we get
ln(x)f(o(x)yzo) + f(yxzo) —2f(x)f(y)| < 8. (5.49)

By subtracting the result of (5.48) from the result of (5.49) and using the triangle inequality we obtain

2f(y)[n(x)f(o(x)) = F(x)] < M(8 + &) + x + 5.

Since f is assumed to be unbounded then we obtain (5.2).

Case 2. If 0 is an involutive anti-automorphism of S. By replacing x by yx in (5.7) we have
If(yxzo) — u(yx)f(o(x)o(y)zo)| < (M +1)c.
If we replace y by x and x by o(y) in (5.1) and we multiply the result by p(y) we get

In(xy)flo(x)o(y)zo) + nly)f(oly)xzo) —2uly)f(aly))f(x)] < M.

(5.50)

(5.51)
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By adding the results of (5.50) and (5.51) and using the triangle inequality we get
[f(yxzo) + 1(y)f(oly)xzo) —2u(y)f(a(y))f(x)] < Mo+ 8) + . (5.52)
By interchanging x by y in (5.1) we get
k() f(o(x)yzo) + flyxzo) — 2f(y)f(x)| < 3. (5.53)

By replacing x by o(x)y in (5.7) and multiplying the result obtained by n(x) and using that p(xo(x)) =1
we get
() f(o(x)yzo) — m(y)fo(y)xzo)l < MPx + M. (5.54)

By subtracting the results of (5.54) from (5.53) and using the triangle inequality we get
In(y)f(oly)xzo) + flyxzo) — 2f(y)f(x)| < MPa+ Mac+8. (5.55)
By subtracting the results of (5.55) from the result of (5.52) and using the triangle inequality we get
2f(x) (f(y) — w(Y)F(o(y))) < M2+ M2+ 8) + o+

for all x,y € S. Since f is unbounded then we we get (5.2).

Equation (5.9): In the following we will show that the function g defined by (5.8) is unbounded. If g
is bounded, then the function x — f(xzp) is also bounded. From (5.1) and the triangle inequality we
get that the function (x,y) — f(x)f(y) is bounded on S x S and this implies that f is bounded. This
contradicts the assumption that f is assumed to be unbounded on S. From the inequalities (5.1), (5.3),
(5.4), and that pu(xo(x)) =1 for all x € S we get

((20))*lg(xy) + r(y)g(o(y)x) —29(x)g(y)]
= f(z0)f(xyzo) + n(y)f(zo)f(o(y)xzo) — 2f(xz0)f(yzo)
= f(z0)f(xyz0) — f(xyzp) + r(yzo) [u(0(20))f(20)f(0(y)xz0) — F(0(y)x2z00(20)20)]
+ 1(yzo)f(o(yzo)xzozo) + f(xyzp) — 2f(xz0)f(yzo) < M(8+ ) + 28,
which gives (5.9).
Equation (5.10): For all x € S, we have

B f(xz%) f(z%)f(xzo) B f(xz%)f(zo) —f(z%)f(xzo)
90xz0) = 9(N)0z0) = SV iz - (F(z0))? |

Replacing x by xz3 and y by zj in (5.1) we get

If(x25) + w(z0) f(xz50(20)z0) — 2f(x25)f(20)| < 6.
By replacing x by xzo and y by z3 in (5.1) we get
If(xzg) + w(z8)f(o(28)xz3) — 2f(23)f(xz0)| < 6.
By using the fact that p(yo(y)) =1 we get
2f(z5)f(xzo) — 2f(xz5)f(z0)
= [2f(z5)f(xz0) — f(xz5) — n(zg) f(xz50(25))]
— [2f(xz5)f(z0) — F(xzg) — n(z0)f(xz50(20))] + 1(25) [f(xz50(25)) — m(o(z0))F(x0(20)z0)f(20)]
f(

+ w(zo) [f(x0(20)20)f(2z0) — 10 (20)) (%) (F(20))?] — l(z0) [f(xz30(20)) — (0 (20)) f(x23)F(20)]
— [f(xz5)f(z0) — (x)(f(20))?].
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From inequalities (5.1), (5.2), (5.3), and the above relations we get
2f(23)f(xz0) — 2f(x23)f(z0) < 26+ M(5 + o) + f(z0) (8 + M(8 + ),
which implies that
20+ M6+ a) O+ M(6+«)
If(z0)?] If(zo)l
and this proves (5.10). Now, since g is unbounded and satisfies the inequality (5.9) then, from [14], we

deduce that g satisfies p-d”Alembert’s functional equation (5.11). We will show that g(xzp) = g(x)g(zo)
forall x € S,

2|g(y)llg(xzo) — g(x)g(z0)| = 12g(y)g(xz0) —29(x)g(y)g(20)|
= [lg(xyzo) + 1(y)g(o(y)xzo)l — g(z0)[g(xy) + u(y)g(o(y)x)]|
= [g(xyzo) — g(z0)g(xy) + nly)lg(o(y)xzo) — g(zo)g(o(y)x)l|
< lg(xyzo) — g(xy)g(zo)l +Ig(o(y)xzo) — g(o(y)x)g(zo)l.

lg(xzo) — g(x)g(zo)| <

In view of inequality (5.10) we obtain

20+ M(b+a) O+M(d+ )
[f(z0)I? If(zo)]

Since g is an unbounded function on S then we get g(xzp) = g(x)g(zo) for all x € S. This completes the
proof. O

2lg(y)llg(xzo) — g(x)g(zo)| < 2(

Now, we are ready to prove the main result of the present section.

Theorem 5.2. Let S be a semigroup, and o be an involutive morphism of S. Let p be a bounded multiplicative
function such that u(xo(x)) =1, and zg is contained in the center of S. Let & > 0 be fixed. If f : S — C satisfies
the inequality

If(xyzo) + w(y)f(o(y)xzo) —2f(x)f(y) < 6 (5.56)

forall x,y € S, then either f is bounded or f is a solution of the variant of Kannappan's functional equation (1.5).

Proof. Assume that f is an unbounded solution of (5.56). Replacing y by yzg in (5.56) we get
[f(xyz§) + nlyzo)f(o(z0)o(y)xzo) — 2f(x)f(yz)| < &
forally € S. From (5.3), (5.4), n(xo(x)) =1 for all x € S, and the triangle inequality we get
[f(z0) f(xy) + wly)f(zo)floly)x) — 2f(x)f(yzo)| < 26+ M( + &) (5.57)
for all x,y € S. Since from (5.5) we have f(zy) # 0, then the inequality (5.57) can be written as follows

26+ M(d+ «)
(o)
for all x,y € S, where g is the function defined in Lemma 5.1. Now, by using the same computation

used in [14, Theorem 3.7 (iv)] we conclude that f, g are solutions of the variant of pu-Wilson’s functional
equation

If(xy) + nly)f(oly)x) —2f(x)g(y) <

f(xy) + nly)flo(y)x) = 2f(x)g(y) (5.58)

for all x,y € S. By replacing x by zg in (5.58) we get f(zoy)+u(y)f(o(y)zo) =29(y)f(zo). Since u(y)f(oly)) =
f(y) and p(yo(y)) =1, then we get

f(zoy) + u(y)f(o(y)zo) = f(yzo) + u(zo)f(o(zo)y) = 2f(y)g(zo).
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Then we have f(y)g(zo) = g(y)f(zo). So, g = ]?((;"8))1:
For all x,y € S we have
f(xyzo) + nly)flo(y)xzo) = [f(xzoy) + nly)flo(y)xzo)l = 2f(xzo)g(y) = 2B f(x)f(y), (5.59)
where = %ZOO)))Z. Substituting this into (5.1) we obtain [2(f — 1)f(y)f(x)| < o for all x,y € S. Since f is
assumed to be unbounded, then we deduce that 3 = 1 and then from (5.59) we deduce that f is a solution
of (1.5). This completes the proof. O
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