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Abstract
Peter Saveliev generalized Lomonosov’s invariant subspace theorem to the case of linear relations. In particular, he proved

that if S and T are linear relations defined on a Banach space X and having finite dimensional multivalued parts and if T right
commutes with S, that is, ST ⊂ TS, and if S is compact then T has a nontrivial weakly invariant subspace. However, the case of
left commutativity remained open. In this paper, we develop some operator representation techniques for linear relations and
use them to solve the left commutativity case mentioned above under the assumption that ST(0) = S(0) and TS(0) = T(0).
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1. Introduction

Let X be normed linear space and T a bounded linear operator on X. A closed subspace M of X is said
to be a nontrivial invariant subspace for T if {0} 6= M 6= X and Tx ∈ M for every x ∈ M. The invariant
subspace problem is the question whether every bounded operator on X has a nontrivial closed invariant
subspace. One of the oldest results in the theory of invariant subspaces is the theorem of Aronszajn and
Smith [1], published in 1954, that every compact operator on a Banach space X has a nontrivial invariant
subspace. A much stronger result and probably one of the landmark theorems in the area of invariant
subspaces was given in 1973 by Lomonosov [6], a special case of which states that:

If an operator T on a Banach space commutes with a non-zero compact operator, then T has a nontrivial invariant
subspace.

Using fixed point techniques for multivalued operators, Saveliev [8] generalized Lomonosov’s result to
linear relations with finite dimensional multivalued parts which right commute with a compact linear
relation but the case of left commutativity remained open. In this paper, we employ operator represen-
tations of linear relations with finite dimensional multivalued parts to solve a case of left commutativity.
By a linear relation here we mean a multivalued operator T : D(T) ⊂ X → Y between linear spaces such
that
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1. T(x+ y) = T(x) + T(y),
2. T(αx) = αT(x),

for all x,y ∈ D(T), the domain of T, and any nonzero scalar α. Here, addition on the righthand side of
(1) above should be understood to be addition of sets. If D(T) = X, we denoted by LR(X, Y) the class of
all linear relations from X into Y and we denote LR(X,X) by LR(X). We say that T is a linear relation on X
if T ∈ LR(X).

Let S and T be two linear relations on a linear space X and let G(S) denote the graph of S. We say that
S left commutes with T if

G(ST) ⊂ G(TS).

We write ST ⊂ TS to mean that S left commutes with T. Right commutativity is defined in a similar way.
Recall that

D(ST) = {x ∈ D(T) : T(x) ∈ D(S)} .

For a detailed account of the theory of linear relations we refer to [3].
For purposes of completeness and for the convenience of the reader, we conclude this section by

recalling some auxiliary results on quotient spaces and complementary subspaces. Let M and N be
subspaces of a linear space X. We define the sum M+N of M and N to be

M+N = {m+n : (m,n) ∈M×N}.

If M is a subspace of a linear space X then X/M denotes the linear space of all equivalent classes [x] =
x+M, where x is equivalent to y if and only if x− y ∈ M, with x,y ∈ X. The following two lemmas,
together with their proofs can be found in [2, 7].

Lemma 1.1. Let X be a normed space, E a subspace of X and F a subspace of E.

(a) If E is a complemented subspace of X and F is a complemented subspace of E then F is a complemented subspace
of X.

(b) If F is a complemented subspace of X, then it is a complemented subspace of E.

Lemma 1.2. Let X be a normed linear space and let M and N be topologically complemented subspaces of X and let

π : X→ X/M

be the natural quotient map. Then π|N, the restriction of π to N is a homeomorphism.

2. Some properties of linear relations

From now on, X and Y will denote normed spaces unless stated otherwise.

Definition 2.1. Let T : X → Y be a linear relation. The inverse of T is the linear relation T−1 defined by
T−1 := {(y, x) ∈ Y ×X : (x,y) ∈ G(T)}.

The fact that T is linear if and only if

T(αx+βy) = αT(x) +βT(y)

implies that both T(0) and T−1(0) are linear subspaces. See [3] for the following lemma.

Lemma 2.2. Let T ∈ LR(X, Y) and let x ∈ D(T). Then

T(x) = y+ T(0)

for every y ∈ T(x).
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Definition 2.3. Let T : X→ Y be a linear relation. Then

1. T(M) =
⋃
{T(x)|x ∈M} for each M ⊂ X,

2. T−1(N) = {x ∈ X|T(x)∩N 6= ∅} for each N ⊂ Y.

The definition of continuity given below takes into consideration the fact that there are linear relations
T : X→ Y from a topological space X to a topological space Y for which T−1(U) is open for every open U
in Y but T−1(B) is not closed for some closed B in Y. In other words, the various equivalent definitions of
continuity of single valued functions have to be considered separately in the case of linear relations.

Definition 2.4. Let T : X→ Y be a linear relation. Then we say that

(a) T is upper semi-continuous if T−1(B) is closed for every closed B ∈ Y,

(b) T is lower semi-continuous if T−1(U) is open for every open U ∈ Y,

(c) T is continuous if it is both upper semi-continuous and lower semi-continuous.

We will concentrate on the classes LR0(X) and LR0(X, Y) where

LR0(X, Y) = {T ∈ LR(X, Y) : T is continuous, dim T(0) <∞}

and LR0(X) = LR0(X,X). Note that B(X, Y) ⊂ LR0(X, Y), where B(X, Y) denotes the class of all bounded
linear operators from X into Y. See [8] for the following lemma.

Lemma 2.5. If S ∈ LR0(X,Z) and T ∈ LR0(Z, Y), then TS ∈ LR0(X, Y).

For T ∈ LR0(X, Y), let QT denote the natural quotient map with domain Y and null space T(0). Then
QTT is a single valued linear operator [3, p. 25].

Definition 2.6. Let T ∈ LR0(X, Y). T is said to be compact if the single valued operator QTT is compact.

3. Operator representation of continuous linear relations

Let T ∈ LR0(X, Y). In this section, we use the fact that T(0) is topologically complemented in Y with
topological complement T(0)c to show the existence of a linear operator A : X→ T(0)c ⊂ Y such that

T(x) = T(0) +Ax (3.1)

for every x ∈ X = D(T). We employ the techniques developed in [9] where a similar result was proved
for sectorial linear relations on Hilbert spaces. This result is well known for linear relations T on Hilbert
spaces for which G(T), the graph of T, is closed. The fact that the range of A is contained in T(0)c, the
topological complement of T(0) in Y is very crucial in our subsequent proofs. We refer to (3.1) as an
operator representation of the linear relation T with operator part A.

Theorem 3.1. Let X and Y be Banach spaces and let T ∈ LR(X, Y). If T(0) is topologically complemented in Y with
topological complement T(0)c then there exits a linear operator A : X→ T(0)c such that

T(x) = T(0) +Ax for all x ∈ X. (3.2)

Proof. Let T(0)c be a topological compliment of T(0) in Y and let x ∈ X. Then every y ∈ T(x) can be
uniquely decomposed as

y = z+w, z ∈ T(0)c, w ∈ T(0).

Lemma (2.2) implies that
T(x) = y+ T(0) = z+ [w+ T(0)] = z+ T(0). (3.3)
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Let P be the projection of X onto T(0)c along T(0). Equality (3.3) shows that Py is irrespective of the choice
of y ∈ T(x), that is, Py1 = Py2 for every y1,y2 ∈ T(x). Define A : X→ T(0)c by

Ax = Py, y ∈ T(x).

Then A is a well defined linear operator whose linearity follows from that of P and T.

Note that every T ∈ LR0(X) admits representation (3.2) since dim T(0) < ∞ and every finite dimen-
sional subspace of a Banach space is topologically complemented.

Lemma 3.2. Let T ∈ LR0(X) and let
T(x) = T(0) +A(x) (3.4)

be an operator representation of T. Then

G(T) = G(A)⊕ ({0}× T(0)). (3.5)

If P is the projection of G(T) onto G(A) along {0}× T(0), then

P(x,y) = (x,Ax) (3.6)

for every (x,y) ∈ G(T).

Proof. Equality (3.5) is a consequence of (3.4). Let y ∈ T(x). We see from (3.2) that y = z+A(x) for some
z ∈ T(0) and so (x,y) = (x,Ax) + (0, z). Hence

P(x,y) = (x,Ax).

The following lemma enables us to extend Aronszajn Smith’s theorem [1] which states that every
compact operator on a Banach space X has a nontrivial invariant subspace to the case of compact linear
relations T ∈ LR0(X).

Lemma 3.3. Let T(x) = T(0) +Ax be an operator representation of T ∈ LR0(X). Then T is compact if and only if
the operator A is compact.

Proof. Let T(0)c be a topological complement of T(0) in X, Z = X/T(0) and consider the natural quotient
mapping π with domain X and kernel T(0). Denote by π̂ the restriction of π to T(0)c. Lemma 1.2 implies
that the mapping π̂ : T(0)c → Z is a homeomorphism. Since

QTT(x) = QT(T(0) +A(x))

for all x ∈ X, the linearity of QT implies that

QTT(x) = QT(T(0)) +QTA(x) = QTAx = [Ax], (3.7)

where [A(x)] denotes the equivalent class of A(x) is Z. From (3.7) we see that for x ∈ X,

QTT(x) = π̂A(x) (3.8)

and that
A(x) = (π̂)−1QTT(x). (3.9)

The lemma then follows from (3.8) and (3.9) and the fact that the composition of a compact linear operator
and a bounded linear operator yields a compact linear operator [5].
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4. Operator Representation of Compositions of Linear Relations

In this section, we consider an operator representation AST of the composition ST of linear relations
S and T in LR0(X). We establish a relationship between operator parts of the individual linear relations
S and T and that of their composition ST. In particular, we show that if AST is an operator part of the
composition ST then it is a composition of operator part of S and T in that order if ST(0) = S(0). We then
use this result to show that if T right (left) commutes with S and if ST(0) = S(0) and TS(0) = T(0) then
their operator parts also commute. This last result is used in the next section to prove the existence of a
nontrivial weakly invariant subspace for S under some assumptions on T.

Lemma 4.1. Let X be a Banach space and consider S,T ∈ LR0(X) with operator representations

S(x) = S(0) +AS(x) and T(x) = T(0) +AT(x) (4.1)

and let
ST(x) = ST(0) +AST(x) (4.2)

be an operator representation of ST. Denote by PST the projection of X onto ST(0)c along ST(0). Then for all x ∈ X,

(a) AST(x) = PSTASAT(x) and,

(b) if S(0) = ST(0) then ASAT(x) = AST(x).

Proof. Let x ∈ X. Then

ST(x) = S(T(x))

= S(T(0) +AT(x))

= S(T(0)) + S(AT(x))

= ST(0) + S(0) +AS(AT(x))

= ST(0) +ASAT(x).

Hence
ST(x) = ST(0) +ASAT(x)

for all x ∈ X. Recall that ST has an operator representation

ST(x) = ST(0) +AST(x),

and therefore
ST(0) +AST(x) = ST(0) +ASAT(x). (4.3)

Since AST(x) ∈ ST(0)c, application of PST on both sides of (4.3) shows that

AST(x) = PSTASAT(x).

This proves part (a) of the lemma. Part (b) follows from the fact that AS(x) ∈ S(0)c and that S(0) =
ST(0).

Below we give an example of linear relations S and T for which S(0) = ST(0) and T(0) = TS(0).

Example 4.2. Let X be a Hilbert space and consider the Hilbert space H̃ = H ⊕H and let u and v be
arbitrary but fixed elements of H. If S and T are linear relations whose graphs are defined by

G(S) =

((
x

y

)
,
(

x

αu

)
,α ∈ C

)
, G(T) =

((
x

y

)
,
(

x

βu+ γv

)
,β,γ ∈ C

)
,

then S(0) = ST(0) and T(0) = TS(0).
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The following theorem establishes the commutativity of operator parts of linear relations S and T.

Theorem 4.3. Let X be a Banach space and let S(x) = S(0) + AS(x) and T(x) = T(0) + AT(x) be operator
representations of linear relations S and T in LR0(X). If T right commutes with S, that is, ST ⊂ TS, and if
S(0) = ST(0) and T(0) = TS(0) then the operators AS and AT commute, that is,

ASAT = ATAS.

Proof. Since S,T ∈ LR0(X), it follows that ST ∈ LR0(X) and TS ∈ LR0(X). Lemma 4.1 implies that ST and
TS have operator representations ST(x) = ST(0) +ASAT(x), and TS(x) = TS(0) +ATAS(x) for all x ∈ X.
Since ST ⊂ TS, we see that for all x ∈ X,

ST(0) +ASAT(x) ⊂ TS(0) +ATAS(x). (4.4)

In particular, x = 0 yields
ST(0) ⊂ TS(0).

Relation (4.4) means that for every x ∈ X, there exists a z ∈ TS(0) such that

ASAT(x) = z+ATAS(x) (4.5)

and so
ASAT(x) −ATAS(x) = z ∈ TS(0). (4.6)

Consider the quotient space X/TS(0) and for y ∈ X, let [y]X/TS(0) denote the quotient class of y in X/TS(0).
Then we see from (4.6) that for all x ∈ X,

[ATAS(x)]X/TS(0) = [ASAT(x)]X/TS(0) . (4.7)

Let x ∈ X and consider the decompositions

x = y1 + y2 ∈ ST(0)⊕ ST(0)c = X

and
x = z1 + z2 ∈ TS(0)⊕ TS(0)c = X.

Lemma 1.2 implies that the mappings

Π : X/ST(0)⊕ ST(0)→ X; Π([x]X/ST(0) + y1) = x

and
π : X→ X/TS(0)⊕ TS(0); π(x) = ([x]X/TS(0 + z1)

are both bijective. This observation implies that the mapping

Π̂ := π ◦Π : X/ST(0)⊕ ST(0)→ X/TS(0)⊕ TS(0),

which is defined by
Π̂([x]X/ST(0) + y1) = ([x]X/TS(0) + z1)

is also bijective. For the element ASAT(x) ∈ ST(0)c, (4.5) implies that

Π̂([ASAT(x)]X/ST(0) + 0) = ([ASAT(x)]X/TS(0) + z)

= ([ATAS(x)]X/TS(0) + z),
(4.8)

where the last equality in (4.8) follows from (4.7). Hence if z is as given by (4.7), then

Π̂([ASAT(x)]X/ST(0)) = [ATAS(x)]X/TS(0) + z. (4.9)



G. Wanjala, J. Nonlinear Sci. Appl., 11 (2018), 877–884 883

Consider the decomposition
w = u+ v ∈ ST(0)⊕ ST(0)c = X

of the element w = ATAS(x) + z ∈ TS(0)⊕ TS(0)c = X. Then

Π̂−1([ATAS(x)]X/TS(0) + z) = ([ATAS(x)]X/ST(0) + u). (4.10)

Since Π̂ is bijective, (4.9) and (4.10) imply that

[ATAS(x)]X/ST(0) + u = [ASAT(x)]X/ST(0). (4.11)

Let P be the projection of X/ST(0)⊕ ST(0) onto X/ST(0) along ST(0). Applying P to both side of the
equality (4.11) shows that

[ATAS(x)]X/ST(0) = [ASAT(x)]X/ST(0)

for all x ∈ X. This equality implies that

ATAS(x) −ASAT(x) ∈ ST(0). (4.12)

From (4.6) and (4.12) we see that there exists an elements s = −z ∈ ST(0) such that

ATAS(x) = s+ASAT(x). (4.13)

Let Q be the projection of X onto ST(0)c along ST(0). Since TS(0)c ⊂ ST(0)c, application of Q on both
sides of (4.13) yields the required result

ATAS(x) = ASAT(x).

Note that we have used the fact that S(0) = ST(0) and T(0) = TS(0) in the application of the projection Q
in (4.13).

5. Weakly Invariant Subspaces

Let X be a normed linear space and let T ∈ LR(X). A subspace M of X is said to be a weakly invariant
subspace for T or a T-weakly invariant subspace if T(M)∩M 6= ∅ . For any T ∈ LR(X), the subspace T(0)
is trivially T-weakly invariant. This follows from Lemma 2.2 since T(0) is a linear subspace and therefore
0 ∈ T(0). The invariant subspace for linear relations T ∈ LR(X) therefore is the question of existence of
weakly invariant subspaces M such that {0} 6=M 6= X and M 6= T(0). We begin with the following simple
result.

Lemma 5.1. Let T be a linear relation in LR0(X) with operator representation T(x) = T(0) +Ax. If A has a
nontrivial invariant subspace then T has a nontrivial weakly invariant subspace.

Proof. Let M be a nontrivial invariant subspace for A. Since R(A) ⊂ T(0)c, it follows that M 6= T(0). The
subspace M is a weakly invariant subspace for T since Ax ∈ T(x) = T(0) +Ax and so T(x)∩M 6= ∅.

Next we consider the following linear relation form of the Aronszajn Smith’s theorem [1].

Theorem 5.2. Let T ∈ LR0(X) be compact. Then T has a nontrivial weakly invariant subspace.

Proof. Let T(x) = T(0) + Ax be the operator representation of T. Since T is compact, it follows from
Lemma 3.3 that A is a compact operator and therefore has a nontrivial invariant subspace M. The result
then follows from Lemma 5.1.

We are now in a position to prove the existence of a nontrivial weakly invariant subspace for a linear
relation S ∈ LR0(X) that left commutes with a compact linear relation T and satisfies the conditions of
Theorem 4.3.
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Theorem 5.3. Let X be a Banach space and let S,T ∈ LR0(X). Suppose further that S left commutes with T, that is,
ST ⊂ TS, and that S(0) = ST(0) and T(0) = TS(0). If T is compact then there exists a nontrivial weakly invariant
subspace M ⊂ X for S.

Proof. Let S,T ∈ LR0(X) with operator representations S(x) = S(0) + AS(x) and T(x) = T(0) + AT(x).
Assume that S left commutes with T, that is,

ST ⊂ TS,

and that T is compact. Theorem 4.3 implies that the operators AS and AT commute with each other, that
is,

ASAT = ATAS. (5.1)

Since AT is an operator part of a compact linear relation T ∈ LR0(X), Lemma 3.3 implies that AT is
compact. The commutativity in (5.1) implies (by Lomonosov’s results) that the operator part AS of the
linear relation S ∈ LR0(X) has a nontrivial invariant subspace. The desired result then follows from
Lemma 5.1.
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