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Abstract
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1. Introduction

The study of convex sets and convex functions is a comparatively recent development (see [6]). Al-
though convexity appears implicitly much earlier (going back to work of Archimedes, in fact), the first
papers on convex sets appeared at the end of nineteenth century. The characterizations of solutions of
optimization problems, first appeared around the middle of the twentieth century. Starting in the 1970s,
there has been considerable work on extending these methods to nonconvex functions.

Majorization: [17, p.319] x is said to majorize y (or y is said to be majorized by x), in symbol, x � y, if

l∑
i=1

y[i] 6
l∑
i=1

x[i]
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holds for l = 1, 2, ...,m− 1 and
m∑
i=1

xi =

m∑
i=1

yi,

where x[i] and y[i] denote their decreasing order.
Because xi’s and yi’s are reordered decreasingly in the definition of majorization, their original order

plays no role. Thus, the fact that these numbers are viewed as components of vectors is not important to
the concept of majorization. But it is convenient to regards x = (x1, x2, ..., xn) and y = (y1,y2, ...,yn) are
vectors so that the relationship x = yP can be written with standard notation.

The following notion of Schur-convexity generalizes the definition of convex function via the notion
of majorization (see [1]). The superb reference on the subject majorization is the monograph [16].

A function F : S ⊆ Rn → R is called Schur-convex on S if

F(y) 6 F(x)

for every x, y ∈ S such that

y ≺ x.

A relation between one-dimensional convex function and m-dimensional Schur-convex function is in-
cluded in the following Majorization theorem proved by G. H. Hardy, J. E. Littlewood, G. Pólya (see [8],
[17, p. 333]).

Theorem 1.1 (Majorization Theorem). Let I ⊂ R be an interval and x = (x1, ..., xm), y = (y1, ...,ym) ∈ Im.
Let f : I→ R be continuous function. Then a function F : Im → R, defined by

F(x) =
m∑
i=1

f(xi),

is Schur-convex on Im iff f is convex on I.

The following theorem gives weighted generalization of Majorization Theorem (see [7], [17, p. 323]).

Theorem 1.2 (Fuchs’s Theorem). Let x = (x1, ..., xm), y = (y1, ...,ym) ∈ Im be two decreasing m-tuples and
w = (w1, ...,wm) be a real m-tuple such that

k∑
i=1

wi yi 6
k∑
i=1

wi xi for k = 1, ...,m− 1; (1.1)

and
m∑
i=1

wi yi =

m∑
i=1

wi xi, (1.2)

then for every continuous convex function f : I→ R, we have
m∑
i=1

wi f (yi) 6
m∑
i=1

wi f (xi) .

Consider the Green function G defined on [α,β]× [α,β] by

G(t, s) =

{
(t−β)(s−α)

β−α , α 6 s 6 t;
(s−β)(t−α)

β−α , t 6 s 6 β.
(1.3)

The function G is convex in s, it is symmetric, so it is also convex in t. The function G is continuous in s
and continuous in t.
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Theorem 1.3 ([13]). Let f : [α,β] → R be a continuous convex function on the interval [α,β] and x =
(x1, ..., xm) , y = (y1, ...,ym) and w = (w1, ...,wm) be m-tuples such that xi, yi ∈ [α,β] and wi ∈ R

(i = 1, ...,m) which satisfies (1.2) and also G is defined in (1.3).
Then the following two statements are equivalent.

(i) For every continuous convex function f : [α,β]→ R, it holds
m∑
i=1

wif(yi) 6
m∑
i=1

wif(xi). (1.4)

(ii) For all τ ∈ [α,β], it holds
m∑
i=1

wiG (yi, τ) 6
m∑
i=1

wiG(xi, τ). (1.5)

Moreover, the statements (i) and (ii) are also equivalent if we change the sign of inequality in both inequalities, in
(1.4) and in (1.5).

As mentioned in [15], the complete reference about Abel-Gontscharoff polynomial and theorem for
’two-point right focal’ problem is given in [2]:

Remark 1.4. As a special choice the Abel-Gontscharoff polynomial for ’two-point right focal’ interpolating
polynomial for n = 2 can be given as

f(z) = f(α) + (z−α) f ′(β) +

∫β
α

GΩ,2(z,w)f ′′(w)dw, (1.6)

where GΩ,2(z,w) is the Green’s function for ’two-point right focal problem’ given as

G1(z,w) = GΩ,2(z,w) =
{

(α−w) , α 6 w 6 z,
(α− z) , z 6 w 6 β. (1.7)

Mehmood et al. [15] introduced some new types of Green functions by keeping in view Abel-
Gontscharoff Green’s function for ’two-point right focal problem’ that are:

G2(z,w) =
{

(z−β) , α 6 w 6 z,
(w−β) , z 6 w 6 β. (1.8)

G3(z,w) =
{

(z−α) , α 6 w 6 z,
(w−α) , z 6 w 6 β. (1.9)

G4(z,w) =
{

(β−w) , α 6 w 6 z,
(β− z) , z 6 w 6 β. (1.10)

Mehmood et al. [15] gave the following lemma, using this we obtain the new generalizations of majoriza-
tion inequality.

Lemma 1.5. Let f : [α,β] → R be a twice differentiable function and Gp, (p = 1, 2, 3, 4) be the new Green
functions defined above, then along with (1.6) the following identities holds:

f(z) = f(β) + (z−β)f ′(α) +

∫β
α

G2(z,w)f ′′(w)dw, (1.11)

f(z) = f(β) − (β−α)f ′(α) + (z−α)f ′(α) +

∫β
α

G3(z,w)f ′′(w)dw, (1.12)

f(z) = f(α) − (β−α)f ′(α) − (β− z)f ′(β) +

∫β
α

G4(z,w)f ′′(w)dw. (1.13)
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Bernstein had proved that if all the even derivatives are at least 0 in (a,b), then f has an analytic
continuation into the complex plane. Boas suggested to Widder that this might be proved by use of
the Lidstone series. This seemed plausible because the Lidstone series, a generalization of the Taylor
series, approximates a given function in the neighborhood of two points instead of one by using the even
derivatives. Such series have been studied by G. J. Lidstone (1929), H. Poritsky (1932), J. M. Wittaker
(1934) and others (see [3]).

Definition 1.6. Let f ∈ C∞([0, 1]), then the Lidstone series has the form
∞∑
k=o

(
f(2k)(0)Λk(1 − x) + f(2k)(1)Λk(x)

)
,

where, Λn is a polynomial of degree 2n+ 1 defined by the relations

Λ0(t) = t, Λ
′′
n(t) = Λn−1(t), Λn(0) = Λn(1) = 0, n > 1.

In [19], Widder proved the fundamental lemma:

Lemma 1.7. If f ∈ C2n([0, 1]), then

f(t) =

n−1∑
k=0

[
f(2k)(0)Λk(1 − t) + f(2k)Λk(t)

]
+

∫ 1

0
Gn(t, s)f(2n)(s)ds,

where,

G1(t, s) = G(t, s) =

{
(t− 1)s , s 6 t,
(s− 1)t, t 6 s,

is homogeneous Green’s function of the differential operator d2

ds2 on [0, 1], and with the successive iterates of G(t, s)

Gn(t, s) =
∫ 1

0
G1(t,p)Gn−1(p, s)dp, n > 2. (1.14)

The Lidstone polynomial can be expressed in terms of Gn(t, s) as

Λn(t) =

∫ 1

0
Gn(t, s)sds.

When dealing with functions with different degree of smoothness, divided differences are found to be
very useful.

Definition 1.8. Let f be a real-valued function defined on the segment [α,β]. The divided difference of
order n of the function f at distinct points x0, ..., xn ∈ [α,β] is defined recursively (see [2], [17]) by

f[xi] = f(xi), (i = 0, ...,n)

and

f[x0, ..., xn] =
f[x1, ..., xn] − f[x0, ..., xn−1]

xn − x0
.

The value f[x0, ..., xn] is independent of the order of the points x0, ..., xn.

The definition may be extended to include the case that some (or all) the points coincide. Assuming
that f(j−1)(x) exists, we define

f [x, ..., x]︸ ︷︷ ︸
j−times

=
f(j−1)(x)

(j− 1)!
. (1.15)

The notion of n-convexity goes back to Popoviciu [18]. We follow the definition given by Karlin [10]:
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Definition 1.9. A function f : [α,β]→ R is said to be n-convex on [α,β], n > 0 if for all choices of (n+ 1)
distinct points in [α,β], the n-th order divided difference of f satisfies

f[x0, ..., xn] > 0.

The Čebyšev functional has a long history and an extensive repertoire of applications in many fields
including numerical quadrature, transform theory, probability and statistical problems, and special func-
tions (see [4]). Its basic appeal stems from a desire to approximate, for example, information in the
form a particular measure of the product of functions in terms of the products of the individual function
measures. This inherently involves an error which may be bounded.

For two Lebesgue integrable functions f,h : [α,β]→ R, we consider the Čebyšev functional

Ω(f,h) =
1

β−α

∫β
α

f(t)h(t)dt−
1

β−α

∫β
α

f(t)dt .
1

β−α

∫β
α

h(t)dt.

In [5], the authors proved the following theorems.

Theorem 1.10. Let f : [α,β] → R be a Lebesgue integrable function and h : [α,β] → R be an absolutely
continuous function with (. −α)(β− .)[h

′
]2 ∈ L[α,β]. Then we have the inequality

| Ω(f,h) |6
1√
2
[Ω(f, f)]

1
2

1√
β−α

(∫β
α

(x−α)(β− x)
[
h
′
(x)
]2
dx

) 1
2

. (1.16)

The constant 1√
2

in (1.16) is the best possible.

Theorem 1.11. Assume that h : [α,β]→ R is monotonic nondecreasing on [α,β] and f : [α,β]→ R is absolutely
continuous with f

′ ∈ L∞[α,β]. Then we have the inequality

| Ω(f,h) |6
1

2(β−α)
‖ f′ ‖∞

∫β
α

(x−α)(β− x)dh(x). (1.17)

The constant 1
2 in (1.17) is the best possible.

We arrange the paper in this manner: In Section 2, we give several identities for the difference of
majorization inequality by using the newly defined Green functions and Lidstone’s polynomial. We
obtain the generalization of majorization theorem for the class of 2n-convex functions for both discrete
and integral case. We give bounds for identities related to the generalization of majorization inequality
by using Čebyšev functional and also obtain Grüss type inequality as well as Ostrowski-type inequality
for this functional.

In Section 3, we present the classical and weighted majorization theorems for the convex function f(x)
x .

We give Lagrange and Cauchy type mean value theorems related to the functional which is in fact the
difference of the majorization inequality. We also give n-exponential convexity which leads to exponential
convexity and then log-convexity for this defined functional.

Finally, in Section 4, we consider some analytical inequalities by using our generalized results and
also discuss some families of functions which enable us to construct a large families of functions that are
exponentially convex and also give Stolarsky type means with their monotonicity.

2. Generalized majorization inequality and their bounds via Green Function

We start with the following identity that is the equivalent statements between classical weighted ma-
jorization inequality and the inequality constructed by newly defined Green functions.
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Theorem 2.1. Let x = (x1, ..., xm), y = (y1, ...,ym) ∈ Im be two decreasing m-tuples and also w = (w1, ...,wm)

be a real m-tuple such that satisfying (1.2) and Gp (p = 1, 2, 3, 4) is defined as in (1.7)-(1.10), respectively. Then
the following statements are equivalent:

(i) For every continuous convex function f : [α,β]→ R, then

m∑
i=1

wi f (yi) 6
m∑
i=1

wi f (xi) . (2.1)

(ii) For s ∈ [α,β], the following inequality holds

m∑
i=1

wiGp (yi, s) 6
m∑
i=1

wiGp (xi, s) , p = 1, 2, 3, 4. (2.2)

Moreover, the statements (i) and (ii) are also equivalent if we change the sign of inequality in both inequalities,
in (2.1) and (2.2).

Proof.

”(i)⇒(ii)” Let the statement (i) holds. By fixing p = 1, 2, 3, 4, and as the functions Gp(., s) (s ∈ [α,β]) are
also continuous and convex, follows that these functions also hold inequality (2.1) for each fix p, i.e., (2.2)
holds.

”(ii)⇒ (i)” Let f : [α,β]→ R be a convex function, f ∈ C2 ([α,β]) and (ii) holds. Then we can represent the
function f in the form (1.6), (1.11), (1.12) and (1.13) for the functions Gp, p = 1, 2, 3, 4 respectively. By an
easy calculation we get for all s ∈ [α,β],

m∑
i=1

wi f (xi) −

m∑
i=1

wi f (yi) =

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
f ′′(s)ds p = 1, 2, 3, 4.

Since f is a convex function, then f
′′
(x) > 0 for all x ∈ [α,β]. So, if for every s ∈ [α,β] the inequality (2.2)

holds for each p = 1, 2, 3, 4, then it follows that for every convex function f : [α,β]→ R, with f ∈ C2[α,β],
inequality (2.1) holds.

At the end, note that it is not necessary to demand the existence of the second derivative of the
function f ([17], p.172). The differentiability condition can be directly eliminated by using the fact that it
is possible to approximate uniformly a continuous convex functions by convex polynomials.

We present the majorization difference as in terms of Lidstone’s interpolating polynomial and newly
defined Green functions.

Theorem 2.2. Let n ∈ N such that n > 3, x = (x1, ..., xm) , y = (y1, ...,ym) and w = (w1, ...,wm) be m-tuples
such that xi, yi ∈ [α,β] andwi ∈ R (i = 1, ...,m) be realm-tuple such that satisfying (1.2) and Gp (p = 1, 2, 3, 4)
is defined as in (1.7)-(1.10), respectively. Let also Gn be defined as in (1.14) and f ∈ C2n[α,β], then we have the
following identities for p = 1, 2, 3, 4,

m∑
i=1

wi f (xi) −

m∑
i=1

wi f (yi)

=

n−3∑
k=0

(β−α)2kf(2k+2)(α)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
β− s

β−α

)
ds (2.3)

+

n−3∑
k=0

(β−α)2kf(2k+2)(β)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
s−α

β−α

)
ds
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+ (β−α)2n−1
∫β
α

f(2n)(t)

(∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
G
′′
n

(
s−α

β−α
,
t−α

β−α

)
ds

)
dt,

where G
′′
n means second derivative with respect to ’s’.

Proof. Fix p = 1, 2, 3, 4, substituting the identities (1.6), (1.11), (1.12) and (1.13) into majorization difference,
we get

m∑
i=1

wi f (xi) −

m∑
i=1

wi f (yi) =

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
f ′′(s)ds. (2.4)

We use Widder’s Lemma for representation of function in the form

f(x) =

n−1∑
k=0

(β−α)2k
[
f(2k)(α)Λk

(
β− x

β−α

)
+ f(2k)(β)Λk

(
x−α

β−α

)]

+ (β−α)2n−1
∫β
α

Gn

(
x−α

β−α
,
t−α

β−α

)
f(2n)(t)dt,

where, Λk is a Lidstone polynomial.
Therefore, differentiating twice with respect to s, we get

f
′′
(s) =

n−3∑
k=0

(β−α)2k
[
f(2k+2)(α)Λk

(
β− s

β−α

)
+ f(2k+2)(β)Λk

(
s−α

β−α

)]

+ (β−α)2n−1
∫β
α

G
′′
n

(
s−α

β−α
,
t−α

β−α

)
f(2n)(t)dt.

(2.5)

Using value of f
′′
(s) from (2.5) in (2.4), we have

m∑
i=1

wi f (xi) −

m∑
i=1

wi f (yi)

=

n−3∑
k=0

(β−α)2kf(2k+2)(α)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
β− s

β−α

)
ds

+

n−3∑
k=0

(β−α)2kf(2k+2)(β)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
s−α

β−α

)
ds

+ (β−α)2n−1
∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)(∫β
α

G
′′
n

(
s−α

β−α
,
t−α

β−α

)
f(2n)(t)dt

)
ds,

after applying Fubini’s theorm we get (2.3).

Integral version of the above theorem can be stated as the following.

Theorem 2.3. Let n ∈ N such that n > 3, x,y : [a,b] → [α,β], w : [a,b] → R be continuous functions such
that satisfying ∫b

a

w(r)y(r)dr =

∫b
a

w(r)x(r)dr, (2.6)
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and Gp (p = 1, 2, 3, 4) is defined as in (1.7)-(1.10), respectively. Let also Gn be defined as in (1.14) and f ∈
C2n[α,β], then we have the following identities for p = 1, 2, 3, 4,∫b

a

w(r) f (x(r))dr−

∫b
a

w(r) f (y(r))dr

=

n−3∑
k=0

(β−α)2kf(2k+2)(α)

∫b
a

w(r)

[∫β
α

(Gp (x(r), s) −Gp(y(r), s))Λk

(
β− s

β−α

)
ds

]
dr

+

n−3∑
k=0

(β−α)2kf(2k+2)(β)

∫b
a

w(r)

[∫β
α

(Gp (x(r), s) −Gp(y(r), s))Λk

(
s−α

β−α

)
ds

]
dr

+ (β−α)2n−1
∫β
α

f(2n)(t)

[∫b
a

w(r)

(∫β
α

(Gp (x(r), s) −Gp(y(r), s)) G
′′
n

(
s−α

β−α
,
t−α

β−α

)
ds

)
dr

]
dt,

where G
′′
n means second derivative with respect to ’s’.

The following theorem is the generalization of majorization theorem i.e., Fuchs’s theorem.

Theorem 2.4. Let all the assumptions of Theorem 2.2 be true. If for all s ∈ [α,β]∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
G
′′
n

(
s−α

β−α
,
t−α

β−α

)
ds > 0, (2.7)

then for every (2n)-convex function f : [α,β]→ R, we have the following identities for p = 1, 2, 3, 4,

m∑
i=1

wi f (xi) −

m∑
i=1

wi f (yi)

>
n−3∑
k=0

(β−α)2kf(2k+2)(α)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
β− s

β−α

)
ds (2.8)

+

n−3∑
k=0

(β−α)2kf(2k+2)(β)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
s−α

β−α

)
ds.

If the reverse inequality in (2.7) holds, then also the reverse inequality in (2.8) holds.

Proof. Fix p = 1, 2, 3, 4. If the function f is 2n-convex, without loss of generality we can assume that f is
2n-times differentiable, we have f(2n)(x) > 0, for all x ∈ [α,β] (see [17], p. 19 and p. 293). Therefore
substituting (2.7) and f(2n)(x) > 0 in (2.3), we get (2.8).

Integral version of the above theorem which is in fact the generalization of the weighted integral
majorization theorem can be stated as follows.

Theorem 2.5. Let all the assumptions of Theorem 2.3 be true. If for all s ∈ [α,β]∫b
a

w(r)

(∫β
α

(Gp (x(r), s) −Gp(y(r), s)) G
′′
n

(
s−α

β−α
,
t−α

β−α

)
ds

)
dr > 0, (2.9)

then for every (2n)-convex function f : [α,β]→ R, we have the following identities for p = 1, 2, 3, 4,∫b
a

w(r) f (x(r))dr−

∫b
a

w(r) f (y(r))dr
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>
n−3∑
k=0

(β−α)2kf(2k+2)(α)

∫b
a

w(r)

[∫β
α

(Gp (x(r), s) −Gp(y(r), s))Λk

(
β− s

β−α

)
ds

]
dr (2.10)

+

n−3∑
k=0

(β−α)2kf(2k+2)(β)

∫b
a

w(r)

[∫β
α

(Gp (x(r), s) −Gp(y(r), s))Λk

(
s−α

β−α

)
ds

]
dr.

If the reverse inequality in (2.9) holds, then also the reverse inequality in (2.10) holds.

The following theorem is majorization theorem for 2n-convex function.

Theorem 2.6. Let n ∈ N such that n > 3 and x = (x1, ..., xm) , y = (y1, ...,ym) be two decreasing real m-tuples
with xi, yi ∈ [α,β] (i = 1, ...,m) and w = (w1, ...,wm) be a real m-tuple such that satisfying (1.1) and (1.2). Let
also Gp (p = 1, 2, 3, 4) is defined as in (1.7)-(1.10), respectively.

Consider the inequality (2.8) be satisfied and let F : [α,β]→ R be a function defined for p = 1, 2, 3, 4 as

F(.) :=
n−3∑
k=0

(β−α)2k f(2k+2)(α)

∫β
α

Λk

(
β− s

β−α

)
Gp(., s)ds

+

n−3∑
k=0

(β−α)2k f(2k+2)(β)

∫β
α

Λk

(
s−α

β−α

)
Gp(., s)ds.

(2.11)

If F is a convex function, then the right hand side of (2.8) is non-negative that is the following weighted majorization
inequality holds

m∑
i=1

wi f (yi) 6
m∑
i=1

wi f (xi) . (2.12)

Proof. We can easily get the equivalent form of the inequality (2.8) as

m∑
i=1

wi f (xi) −

m∑
i=1

wi f (yi) >
m∑
i=1

wi F (xi) −

m∑
i=1

wi F (yi) .

By using majorization conditions (1.1), (1.2) and the fact that F is a convex function, we can apply
weighted majorization inequality, which imply immediately the non-negativity of the right hand side
of (2.8) and we have the inequality (2.12).

The following theorem is majorization theorem for 2n-convex function in integral case.

Theorem 2.7. Let n ∈ N such that n > 3, x,y : [a,b] → [α,β] be decreasing and w : [a,b] → R be any
continuous functions satisfying ∫υ

a

w(r)y(r)dr 6
∫υ
a

w(r)x(r)dr, for υ ∈ [a,b]

and ∫b
a

w(r)y(r)dr =

∫b
a

w(r)x(r)dr.

Let also Gp (p = 1, 2, 3, 4) be defined as in (1.7)-(1.10), respectively.
Consider the inequality (2.10) be satisfied and let F : [α,β] → R be a function defined in (2.11) is a convex

function, then the right hand side of (2.10) is non-negative that is the following weighted majorization inequality in
integral case holds: ∫b

a

w(r)f(y(r))dr 6
∫b
a

w(r)f(x(r))dr.
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In the next part of this section, we give the upper bounds like Grüss-type and Ostrowki-type for our
generalized results.

Let x, y be two decreasing real m-tuples, let w = (w1,w2, ...,wm) be a real m-tuple such that satisfying
(1.2) and also Gn and Gp(p = 1, 2, 3, 4) defined as above, denote

Υ1(s) =

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
G
′′
n

(
s−α

β−α
,
t−α

β−α

)
ds, (2.13)

where p = 1, 2, 3, 4, ∀ s ∈ [α,β]. Similarly for x,y : [a,b] → [α,β] and w : [a,b] → R be continuous
functions such that satisfying (2.6) and also Gn and Gp(p = 1, 2, 3, 4) defined as above, denote

Υ2(s) =

∫b
a

w(r)

(∫β
α

(Gp (x(r), s) −Gp(y(r), s)) G
′′
n

(
s−α

β−α
,
t−α

β−α

)
ds

)
dr, (2.14)

where p = 1, 2, 3, 4, ∀ s ∈ [α,β].
Consider the Čebyšev functional defined as

Ω(Υu,Υu) =
1

β−α

∫β
α

Υ2
u(s)ds−

(
1

β−α

∫β
α

Υu(s)ds

)2

, u = 1, 2.

Theorem 2.8. Let n ∈ N such that n > 3 and f : [α,β] → R be such that f ∈ C2n[α,β] with (. − α)(β−

.)
[
f(2n+1)

]2 ∈ L[α,β], and also x, y be two decreasing real m-tuples such that xi,yi ∈ [α,β] and wi ∈ R
(i = 1, 2, ...,m) satisfying (1.2). Let also the functions Gp (p = 1, 2, 3, 4) be defined as in (1.7)-(1.10) respectively
and Υ1 be defined in (2.13). Then the remainder REM(f;α,β) defined for p = 1, 2, 3, 4 as

REM(f;α,β) =
m∑
i=1

wi f (xi) −

m∑
i=1

wi f (yi)

−

n−3∑
k=0

(β−α)2kf(2k+2)(α)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
β− s

β−α

)
ds

−

n−3∑
k=0

(β−α)2kf(2k+2)(β)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
s−α

β−α

)
ds

− (β−α)2n−2
(
f(2n−1)(β) − f(2n−1)(α)

) ∫β
α
Υ1(t)dt,

(2.15)

satisfies the estimation

|REM(f;α,β)| 6
(β−α)2n− 1

2
√

2
[Ω(Υ1,Υ1)]

1
2

∣∣∣∣∣
∫β
α

(t−α)(β− t)
[
f(2n+1)(t)

]2
dt

∣∣∣∣∣
1
2

. (2.16)

Proof. Comparing (2.15) and (2.3) we have

REM(f;α,β) = (β−α)Ω(Υ1, f(2n)).

Applying Theorem 1.10 on the functions Υ and f(2n), we obtain (2.16).

Integral case of the above theorem can be given:

Theorem 2.9. Let n ∈ N such that n > 3 and f : [α,β] → R be such that f ∈ C2n[α,β] with (. − α)(β−

.)
[
f(2n+1)

]2 ∈ L[α,β], and x,y : [a,b]→ [α,β], w : [a,b]→ R be continuous functions satisfying (2.6). Let also
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the functions Gp (p = 1, 2, 3, 4) be defined as in (1.7)-(1.10) respectively and Υ2 be defined as in (2.14). Then the
remainder R̃EM(f;α,β) defined for p = 1, 2, 3, 4 as

R̃EM(f;α,β) =
∫b
a
w(r) f (x(r))dr−

∫b
a
w(r) f (y(r))dr

−

n−3∑
k=0

(β−α)2kf(2k+2)(α)

∫b
a
w(r)

[∫β
α
(Gp (x(r), s) −Gp(y(r), s))Λk

(
β− s

β−α

)
ds

]
dr

−

n−3∑
k=0

(β−α)2kf(2k+2)(β)

∫b
a
w(r)

[∫β
α
(Gp (x(r), s) −Gp(y(r), s))Λk

(
s−α

β−α

)
ds

]
dr

− (β−α)2n−2
(
f(2n−1)(β) − f(2n−1)(α)

) ∫β
α
Υ2(s)ds,

(2.17)

satisfies the estimation

∣∣∣R̃EM(f;α,β)
∣∣∣ 6 (β−α)2n− 1

2
√

2
[Ω(Υ2,Υ2)]

1
2

∣∣∣∣∣
∫β
α

(t−α)(β− t)
[
f(2n+1)(t)

]2
dt

∣∣∣∣∣
1
2

.

Using Theorem 1.11, we obtain the following Grüss type inequality.

Theorem 2.10. Let n ∈ N such that n > 3 and f : [α,β] → R be such that f ∈ C2n[α,β] and also f(2n+1) > 0
on [α,β]. Let the function Υ1 be defined as in (2.13). Then the remainder REM(f;α,β) defined by (2.15) satisfies
the estimation

|REM(f;α,β)| 6 (β−α)2n−1 ∥∥Υ ′1∥∥∞{f(2n−1)(β) + f(2n−1)(α)

2
−
f(2n−2)(β) − f(2n−2)(α)

β−α

}
. (2.18)

Proof. Since REM(f;α,β) = (β−α)2nΩ(Υ1, f(2n)), applying Theorem 1.11 on the functions Υ1 and f(2n),
we get (2.18).

Integral version of the above theorem can be given as follows.

Theorem 2.11. Let n ∈N such that n > 3 and f : [α,β]→ R be such that f ∈ C2n[α,β] and also f(2n+1) > 0 on
[α,β]. Let also the function Υ2 be defined as in (2.14). Then the remainder R̃EM(f;α,β) defined by (2.17) satisfies
the estimation∣∣∣R̃EM(f;α,β)

∣∣∣ 6 (β−α)2n−1 ∥∥Υ ′2∥∥∞{f(2n−1)(β) + f(2n−1)(α)

2
−
f(2n−2)(β) − f(2n−2)(α)

β−α

}
.

We give the Ostrowski-type inequality related to our generalized result.

Theorem 2.12. Suppose that all the assumptions of Theorem 2.2 hold. Assume (u, v) is a pair of conjugate expo-
nents, that is 1 6 u, v 6 ∞, 1

u + 1
v = 1. Let

∣∣f(2n)
∣∣u : [α,β] → R be an R-integrable function for some n ∈ N.

Then we have the following identities for p = 1, 2, 3, 4∣∣∣∣∣
m∑
i=1

wi f (xi) −

m∑
i=1

wi f (yi)

−

n−3∑
k=0

(β−α)2kf(2k+2)(α)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
β− s

β−α

)
ds

−

n−3∑
k=0

(β−α)2kf(2k+2)(β)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
s−α

β−α

)
ds

∣∣∣∣∣
6 (β−α)2n−1

∥∥∥f(2n)
∥∥∥
u

(∫β
α

∣∣∣∣∣
∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
G
′′
n

(
s−α

β−α
,
t−α

β−α

)
ds

∣∣∣∣∣
v

dt

) 1
v

.

(2.19)

The constant on the right-hand side of (2.19) is sharp for 1 < u 6∞ and the best possible for u = 1.
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Proof. Let us denote

Ψ(t) = (β−α)2n−1
∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
G
′′
n

(
s−α

β−α
,
t−α

β−α

)
ds, for p = 1, 2, 3, 4.

Using the identity (2.3) and applying Hölder’s inequality, we obtain∣∣∣∣∣
m∑
i=1

wi f (xi) −

m∑
i=1

wi f (yi)

−

n−3∑
k=0

(β−α)2kf(2k+2)(α)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
β− s

β−α

)
ds

−

n−3∑
k=0

(β−α)2kf(2k+2)(β)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
s−α

β−α

)
ds

∣∣∣∣∣
=

∣∣∣∣∣
∫β
α

Ψ(t)f(2n)(t)dt

∣∣∣∣∣ 6 ∥∥∥f(2n)
∥∥∥
u

(∫β
α

|Ψ(t)|v dt

) 1
v

.

The proof of the sharpness of the constant
(∫β
α |Ψ(t)|v dt

) 1
v

is analog to one in proof of Theorem 11 in
[1].

Integral version of the above theorem can be stated as follows.

Theorem 2.13. Suppose that all the assumptions of Theorem 2.3 hold. Assume (u, v) is a pair of conjugate expo-
nents, that is 1 6 u, v 6 ∞, 1

u + 1
v = 1. Let

∣∣f(2n)
∣∣u : [α,β] → R be an R-integrable function for some n ∈ N.

Then we have the following identities for p = 1, 2, 3, 4∣∣∣∣∣
∫b
a
w(r) f (x(r))dr−

∫b
a
w(r) f (y(r))dr

−

n−3∑
k=0

(β−α)2kf(2k+2)(α)

∫b
a
w(r)

[∫β
α
(Gp (x(r), s) −Gp(y(r), s))Λk

(
β− s

β−α

)
ds

]
dr

−

n−3∑
k=0

(β−α)2kf(2k+2)(β)

∫b
a
w(r)

[∫β
α
(Gp (x(r), s) −Gp(y(r), s))Λk

(
s−α

β−α

)
ds

]
dr

∣∣∣∣∣
6 (β−α)2n−1

∥∥∥f(2n)
∥∥∥
u

(∫β
α

∣∣∣∣∣
∫b
a
w(r)

(∫β
α
(Gp (x(r), s) −Gp(y(r), s)) G

′′
n

(
s−α

β−α
,
t−α

β−α

)
ds

)
dr

∣∣∣∣∣
v

dt

) 1
v

.

(2.20)

The constant on the right-hand side of (2.20) is sharp for 1 < u 6∞ and the best possible for u = 1.

Motivated by the inequality (2.8) and (2.10), we define functionals Θ1(f) and Θ2(f) by

Θ1(f) =

m∑
i=1

wi f (xi) −

m∑
i=1

wi f (yi)

−

n−3∑
k=0

(β−α)2kf(2k+2)(α)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
β− s

β−α

)
ds

−

n−3∑
k=0

(β−α)2kf(2k+2)(β)

∫β
α

(
m∑
i=1

wiGp (xi, s) −
m∑
i=1

wiGp (yi, s)

)
Λk

(
s−α

β−α

)
ds,
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Θ2(f) =

∫b
a

w(r) f (x(r))dr−

∫b
a

w(r) f (y(r))dr

−

n−3∑
k=0

(β−α)2kf(2k+2)(α)

∫b
a

w(r)

[∫β
α

(Gp (x(r), s) −Gp(y(r), s))Λk

(
β− s

β−α

)
ds

]
dr

−

n−3∑
k=0

(β−α)2kf(2k+2)(β)

∫b
a

w(r)

[∫β
α

(Gp (x(r), s) −Gp(y(r), s))Λk

(
s−α

β−α

)
ds

]
dr.

Lagrange and Cauchy type mean value theorems related to defined functionals are given in the following
theorems.

Theorem 2.14. Let f : [α,β] → R be such that f ∈ C2n[α,β]. If the inequalities in (2.7) (i = 1), (2.9) (i = 2)
hold, then there exist ξi ∈ [α,β] such that

Θi(f) = f
(2n)(ξ)Θi(η), i = 1, 2,

where η(x) = x2n

(2n)! .

Proof. Similar to the proof of Theorem 7 in [3].

Theorem 2.15. Let f,g : [α,β]→ R be such that f,g ∈ C2n[α,β]. If the inequalities in (2.7) (i = 1), (2.9) (i = 2)
hold, then there exist ξi ∈ [α,β] such that

Θi(f)

Θi(g)
=
f(2n)(ξ)

g(2n)(ξ)
, i = 1, 2, (2.21)

provided that the denominators are not zero.

Proof. Similar to the proof of Corollary 12 in [3].

3. Further Generalized Results of Majorization Inequality via convex function f(x)
x

For example, in the papers [11] and [12] we gave the results about majorization in the form of n-
exponentially, exponentially and logarithmically convex functions as well as generalized Cauchy mean
value theorems for class of convex functions f, but now we present these results for the class of con-
vex functions f(x)/x and also an important thing is to construct examples for such type of results. So
first we give the classical results for convex function f(x)/x and then make functionals for obtaining
n-exponentially, exponentially and logarithmically convex functions.

Theorem 3.1. Let I+ ⊂ R be an interval and x = (x1, ..., xm), y = (y1, ...,ym) ∈ Im+ . Let f : I+ → R be
continuous function, then a function F : Im+ → R, defined by

F(x) =
m∑
i=1

f(xi)

xi
, (3.1)

is Schur-convex on Im+ iff f(x)x is convex on I+.

Proof. In this proof we use Abel’s transformation. Without loss of generality, assume that xi 6= yi, define

∆i =

f(yi)
yi

−
f(xi)
xi

yi − xi
, i = (1, ...,m).

Since the function f(x)
x is convex, and using x[i]’s and y[i]’s defined above, we get that ∆i+1 6 ∆i, for

(i = 1, 2, ...,m), which means that ∆i is decreasing. The proof follows from see pages 323-324 in [17].
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The weighted version of the above theorem is stated as follows.

Theorem 3.2. Let x, y be two decreasing positive m-tuples, let w = (w1,w2, ...,wm) be a real n-tuple such that

k∑
i=1

wi yi 6
k∑
i=1

wi xi for k = 1, ...,m− 1, (3.2)

and
m∑
i=1

wi yi =

m∑
i=1

wi xi. (3.3)

Then for every convex function f(x)
x : I+ → R , we have

m∑
i=1

wi
f (yi)

yi
6

m∑
i=1

wi
f (xi)

xi
. (3.4)

Proof. The proof is similar to the Theorem 3.1.

Motivated by the inequalities (3.1) and (3.4) that are linear in f, we define the linear functionals under
the assumptions of Theorem 3.1 and Theorem 3.2:

Λ1(x, y, f) =
m∑
i=1

f (xi)

xi
−

m∑
i=1

f (yi)

yi
, (3.5)

and

Λ2(x, y, f) =
m∑
i=1

wi
f (xi)

xi
−

m∑
i=1

wi
f (yi)

yi
. (3.6)

Under the assumptions of Theorem 3.1 and Theorem 3.2, it holds Λl(f) > 0, l = 1, 2, for all convex
functions f(x)x .

The following Lemma is given in [14]:

Lemma 3.3. Let f ∈ C2(I) for an interval I ⊂ R \ {0} and consider m,M ∈ R such that

m 6
x2f

′′
(x) − 2xf

′
(x) + 2f(x)

x3 6M.

Also, let f1, f2 be real valued functions defined on I as follows

f1(x) =M
x3

2
− f(x),

f2(x) = f(x) −m
x3

2
.

Then f1(x)
x and f2(x)

x are convex.

Lagrange and Cauchy type mean value theorems related to defined functionals are given in the fol-
lowing theorems:

Theorem 3.4. Let x, y be two real m-tuples.

· x � y for l = 1,
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· x, y be decreasing and let w = (w1,w2, ...,wm) be a real m-tuple such that satisfying (3.2) and (3.3) for
l = 2.

Let [α,β] ⊂ R+ and f ∈ C2([α,β]) then there exists ξl ∈ [α,β] such that

Λl(x, y, f) =
ξ2
lf
′′(ξl) − 2ξlf ′(ξl) + 2f(ξl)

2ξ3
l

Λl(x, y, x3), l = 1, 2. (3.7)

Proof. Fix l = 1, 2 (see Theorem 2.8 in [14]), by convexity of f1(x) and f2(x) from Lemma 3.3 therefore (3.1)
changes to

Λl(x, y, f) 6
M

2
Λl(x, y, x3), (3.8)

and
m

2
Λl(x, y, x3) 6 Λl(x, y, f). (3.9)

Since Λl(x, y, x3) 6= 0, so from (3.8) and (3.9) we have

m 6
2Λl(x, y, f)
Λl(x, y, x3)

6M.

Therefore we get the required result by using Lemma 3.3.

Theorem 3.5. Let x, y be two real m-tuples.

· x � y for l = 1,

· x, y be decreasing and let w = (w1,w2, ...,wm) be a real m-tuple such that satisfying (3.2) and (3.3) for
l = 2.

Let [α,β] ⊂ R+ and f,g ∈ C2([α,β]), then there exists ξl ∈ [α,β] such that

Λl(x, y, f)
Λl(x, y,g)

=
ξ2
lf
′′(ξl) − 2ξlf ′(ξl) + 2f(ξl)

ξ2
lg
′′(ξl) − 2ξlg ′(ξl) + 2g(ξl)

, l = 1, 2,

provided that denominators are non-zero.

Proof. Fix l = 1, 2 (Theorem 2.9 of [14]), define h ∈ C2([α,β]) in the way that

h = c1f− c2g, where c1 = Λl(x, y, g) and c2 = Λl(x, y, f).

Now using (3.7) with f = h, we have(
c1

(
ξ2f ′′(ξ) − 2ξf ′(ξ) + 2f(ξ)

2ξ3

)
− c2

(
ξ2g ′′(ξ) − 2ξg ′(ξ) + 2g(ξ)

2ξ3

))
Λl(x, y, x3) = 0.

Since Λl(x, y, x3) 6= 0, therefore we get the required result.

Now, we give the notion and some facts of exponentially convex functions (see [9]).

Definition 3.6. A function f : I→ R is n-exponentially convex in the Jensen sense on I if

n∑
k,l=1

αkαlf

(
xk + xl

2

)
> 0

holds for αk ∈ R and xk ∈ I, k = 1, 2, ...,n.
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A function f : I → R is n-exponentially convex on I if it is n-exponentially convex in the Jensen sense
and continuous on I. It is clear that 1-exponentially convex functions in the Jensen sense are in fact
non-negative functions. Also, n-exponentially convex functions in the Jensen sense are m-exponentially
convex in the Jensen sense for every m ∈N,m 6 n.

Proposition 3.7. If f : I→ R is an n-exponentially convex in the Jensen sense, then the matrix
[
φ
(
xk+xl

2

) ]m
k,l=1

is a positive semi-definite matrix for all m ∈N,m 6 n. Particularly,

det
[
f

(
xk + xl

2

)]m
k,l=1

> 0

for all m ∈N, m = 1, 2, ...,n.

A function f : I→ R is exponentially convex in the Jensen sense on I if it is n-exponentially convex in
the Jensen sense for all n ∈ N. A function f : I → R is exponentially convex if it is exponentially convex
in the Jensen sense and continuous.

Remark 3.8. It is easy to show that f : I→ R is log-convex in the Jensen sense if and only if

α2f(x) + 2αβf
(
x+ y

2

)
+β2f(y) > 0

holds for every α,β ∈ R and x,y ∈ I. It follows that a function is log-convex in the Jensen-sense if and
only if it is 2-exponentially convex in the Jensen sense.

Remark 3.9. Also, using basic convexity theory it follows that a function is log-convex if and only if it is
2-exponentially convex.

Corollary 3.10. If f : I→ (0,∞) is an exponentially convex function, then f is a log-convex function that is

f(λx+ (1 − λ)y) 6 fλ(x)f1−λ(y), for all x,y ∈ I, λ ∈ [0, 1].

In order to obtain results regarding the exponential convexity, we define the families of functions as
follows.

For every choice of t+ 1 mutually different points z0, ..., zt ∈ [α,β] we define

• F1 = {fv : [α,β] → R : v ∈ J and v 7→ [z0, ..., zt,
fv(x)

x ] is n-exponentially convex in the Jensen sense
on J}

• F2 = {fv : [α,β] → R : v ∈ J and v 7→ [z0, ..., zt,
fv(x)

x ] is exponentially convex in the Jensen sense on
J}

• F3 = {fv : [α,β]→ R : v ∈ J and v 7→ [z0, ..., zt,
fv(x)

x ] is 2-exponentially convex in the Jensen sense on
J}

Theorem 3.11. Let Λl (l = 1, 2) be the linear functionals defined by (3.5) and (3.6) associated with family F1.
Then the following statements hold:

(i) The function v 7→ Λl(fv) is an n-exponentially convex function in the Jensen sense on J and the matrix[
Λl

(
f vi+vj

2

)]p
i,j=1

is a positive semi-definite. Particularly

det
[
Λl

(
f vi+vj

2

)]p
i,j=1

> 0

holds for all p ∈N, p 6 n, v1, ..., vp ∈ J.
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(ii) If the function v 7→ Λl(fv) is continuous on J, then it is n-exponentially convex function on J.

Proof. (i) For fix l = 1, 2, ϑi ∈ R and vi ∈ J, i = 1, ...,n we define the function

δ(x) =

n∑
i,j=1

ϑiϑj

f vi+vj
2

(x)

x
.

Using the assumption we have

[z0, ..., zt, δ] =
n∑
i,j=1

ϑiϑj

[
z0, ..., zt,

f vi+vj
2

(x)

x

]
> 0,

which in turn implies the required results (see Theorem 10 in [14]).

The following corollaries are an immediate consequences of the above theorem.

Corollary 3.12. Let Λl (l = 1, 2) be the linear functionals defined by (3.5) and (3.6) associated with family F2.
Then the following statements hold:

(i) The function v 7→ Λl(fv) is an exponentially convex function in the Jensen sense on J.

(ii) If the function v 7→ Λl(fv) is continuous on J, then it is exponentially convex function on J.

Corollary 3.13. Let Λl (l = 1, 2) be the linear functionals defined by (3.5) and (3.6) associated with family F3.
Then the following statements hold:

(i) If the function v 7→ Λl(fv) is continuous on J, then it is 2-exponentially convex function on J. If v 7→ Λl(fv)
is additionally strictly positive, then it is log-convex on J. Furthermore, for every choice q,u,w ∈ J, such
that q < u < w, Lypunov’s inequality holds:

[Λl(fu)]
w−q 6 [Λl(fq)]

w−u [Λl(fw)]
u−q .

(ii) If the function v 7→ Λl(fv) is strictly positive and differentiable on J, then for every p,q,u,w ∈ J, such that
p 6 u and q 6 w, we have

µp,q (Λl,Φ) 6 µu,w (Λl,Φ) , (3.10)

where

µp,q (Λl,Φ) =


(
Λl(fp)
Λl(fq)

) 1
p−q

, p 6= q

exp
(

d
dpΛl(fp)

Λl(fq)

)
, p = q

. (3.11)

Proof.

(i) This is an immediate consequence of Theorem 3.11 and Remark 3.8.

(ii) Fix l = 1, 2, since v 7→ Λl(fv) is positive and continuous, by (i) we have that the function v 7→ Λl(fv) is
log-convex on J. So, for p,q,u,w ∈ J, such that p 6= q and u 6= w and p 6 u and q 6 w, we have

logΛl(fp) − logΛl(fq)
p− q

6
logΛl(fu) − logΛl(fw)

u−w
, (3.12)

i.e., we conclude that
µp,q (Λl,Φ) 6 µu,w (Λl,Φ) .

Cases p = q and u = w follows from (3.12) as limiting cases.
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Remark 3.14. Note that the results from Theorem 3.11, Corollary 3.12 and Corollary 3.13 still hold when
two of the points z0, ..., zt ∈ [α,β] coincide, say z1 = z0, for a family of differentiable functions fv such that
the function v 7→

[
z0, ..., zt,

fv(x)
x

]
is an n-exponentially convex in the Jensen sense (exponentially convex

in the Jensen sense, log-convex in the Jensen sense), and furthermore, they still hold when all (t + 1)
points coincide for a family of t differentiable functions with the same property. The proofs are obtained
by (1.15) and suitable characterization of convexity.

Remark 3.15. We can give the similar results as Theorem 3.11, Corollary 3.12, Corollary 3.13 and Remark
3.14 for (2t+ 1)-points as to prove (2n)-exponentially convex functions.

4. Applications

In this section, we give some applications of our generalized results about the upper bounds as well
as exponential convex functions.

Firstly, we consider some related inequalities by using our generalized results of upper bounds.

Example 4.1. By using Ostrowski-type inequality (2.19) for n = 3 as an upper bound of our generalized
results,

• let f(x) = ex, x ∈ R, then

0 6|

m∑
i=1

wie
xi −

m∑
i=1

wie
yi |6

(β−α)5

u
1
u

(euβ − euα)
1
u ‖ Gp ‖v,

• let f(x) = xr, [0,∞) for r > 1, then

0 6|

m∑
i=1

wix
r
i −

m∑
i=1

wiy
r
i |

6 (β−α)5 r(r− 1)(r− 2)(r− 3)(r− 4)(r− 5)

(u(r− 6) + 1)
1
u

(
βu(r−6)+1 −αu(r−6)+1

) 1
u ‖ Gp ‖v,

• let f(x) = x log x, x ∈ (0,∞), then

0 6|

m∑
i=1

wixi log xi −
m∑
i=1

wiyi logyi |6
24(β−α)5

(1 − 5u)
1
u

(
β1−5u −α1−5u) 1

u ‖ Gp ‖v,

• let f(x) = − log x, x ∈ (0,∞), then

0 6|

m∑
i=1

wi logyi −
m∑
i=1

wi log xi |6
120(β−α)5

(1 − 6u)
1
u

(
β1−6u −α1−6u) 1

u ‖ Gp ‖v,

where, Gp =
∫β
α (
∑m
i=1wiGp (xi, s) −

∑m
i=1wiGp (yi, s)) G

′′
3

(
s−α
β−α , t−αβ−α

)
ds, (p = 1, 2, 3, 4).

We can also give the particular cases of above results for u = 1 and v =∞.

Now, we construct exponentially convex function by using family of convex functions defined on
(0,∞).

Example 4.2. Let
E1 = {θv : (0,∞)→ (0,∞) : v ∈ R}

be a family of continuous convex functions defined by



N. Siddique, N. Latif, J. Pečarić, J. Nonlinear Sci. Appl., 11 (2018), 812–831 830

θv(x) =


xevx

v2 , v 6= 0;

x3

2 , v = 0.

We have v 7→
(
θv(x)
x

) ′′
(t ∈ R) is exponentially convex for every fixed x ∈ R. Using analogous arguing

as in the proof of Theorem 3.11 we also have that v 7→ θv[z0, ..., zt] is exponentially convex (and so expo-
nentially convex in the Jensen sense). Using Corollary 3.12 we conclude that v 7→ Λl(θv) is exponentially
convex in the Jensen sense. It is easy to verify that this mapping is continuous (although mapping v 7→ ψv
is not continuous for v = 0), so it is exponentially convex.

For this family of functions, µv,q (Θ,Λ2) from (3.11), becomes

µt,s (E1,Λ2) =

(
E1(θt)

E1(θs)

) 1
t−s

, t 6= s, t, s 6= 0;

µt,t (E1,Λ2) = exp
(∑n

i=1 pix
2
ie
txi −

∑n
i=1 piy

2
ie
tyi∑n

i=1 pixie
txi −

∑n
i=1 piyie

tyi
−

2
t

)
, t = s 6= 0;

µ0,0 (E1,Λ2) = exp
(

1
3

∑n
i=1 pix

4
i −
∑n
i=1 piy

4
i∑n

i=1 pix
3
i −
∑n
i=1 pix

3
i

)
.

Now using (3.10), µt,s is monotone function in parameters t and s.

We observe here that

(
d2θt
dx2
d2θs
dx2

) 1
t−s

(ln x) = x, so using Theorem 3.5 it follows that

Mt,s(E1,Λ2) = lnµt,s(E1,Λ2),

satisfies
α 6Mt,s(E1,Λ2) 6 β.

This shows that Mt,s(E1,Λ2) is mean. Because of the above inequality (3.10), this mean is also monotonic.

Remark 4.3. We can construct other examples for exponentially convex functions as Example 4.2 for the
families of continuous convex functions:

•
E2 = {µt : (0,∞)→ R : t ∈ R}

where,

µt(x) =



xt+1

t(t−1) , t 6= 0, 1;

−x log x, t = 0;

x2 log x, t = 1.

•
E3 = {χt : (0,∞)→ (0,∞) : t ∈ (0,∞)}

where,

χt(x) =


xt−x

log2 t
, t 6= 1;

x3

2 , t = 1.

•
E4 = {δt : (0,∞)→ (0,∞) : t ∈ (0,∞)}

where,

δt(x) :=
xe−x

√
t

t
.
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[17] J. Pečarić, F. Proschan, Y. L. Tong, Convex functions, Partial Orderings and Statistical Applications, Academic Press,

Boston, (1992). 1, 1, 1.8, 2, 2, 3
[18] T. Popoviciu, Sur l’approximation des fonctions convexes d’ordre superier, Mathematica, 10 (1934), 49–54. 1
[19] D. V. Widder, Completely convex function and Lidstone series, Trans. Amer. Math. Soc., 51 (1942), 387–398. 1

https://doi.org/10.1186/s13660-015-0935-6
https://doi.org/10.1186/s13660-015-0935-6
https://doi.org/10.1007/978-94-011-2026-5
https://doi.org/10.1007/978-94-011-2026-5
https://dx.doi.org/10.7153/mia-16-96
https://dx.doi.org/10.7153/mia-16-96
http://downloads.hindawi.com/books/9789775945389/9789774540738.pdf#page=282
http://downloads.hindawi.com/books/9789775945389/9789774540738.pdf#page=282
http://dx.doi.org/10.7153/jmi-08-10
http://dx.doi.org/10.7153/jmi-08-10
https://www.springer.com/gp/book/9780387980973
https://www.scopus.com/record/display.uri?eid=2-s2.0-0010164736&origin=inward&txGid=48b4a166e700be49563af30f1cad8227
https://mathscinet.ams.org/mathscinet-getitem?mr=0046395
https://mathscinet.ams.org/mathscinet-getitem?mr=0046395
http://www.heldermann.de/JCA/JCA20/JCA201/jca20011.htm
https://mathscinet.ams.org/mathscinet-getitem?mr=0230102
https://doi.org/10.1186/1029-242X-2012-105
http://scik.org/index.php/aia/article/view/1029
http://scik.org/index.php/aia/article/view/1029
http://www.math.bas.bg/infres/MathBalk/MB-27/MB-27-003-019.pdf
http://scik.org/index.php/jmcs/article/view/1886
http://scik.org/index.php/jmcs/article/view/1886
https://doi.org/10.1186/s13660-017-1379-y
https://doi.org/10.1186/s13660-017-1379-y
https://doi.org/10.1007/978-0-387-68276-1 
https://doi.org/10.1007/978-0-387-68276-1 
https://mathscinet.ams.org/mathscinet-getitem?mr=1162312
https://mathscinet.ams.org/mathscinet-getitem?mr=1162312
https://ictp.acad.ro/approximation-higher-order-convex-functions-i/
http://www.jstor.org/stable/1989952

	Introduction
	Generalized majorization inequality and their bounds via Green Function
	Further Generalized Results of Majorization Inequality via convex function 
	Applications

