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1. Introduction and main results

Let S* ! = {x € R™: [x| = 1} denote the unit sphere on R™ (n > 2) equipped with the normalized
Lebesgue measure do (x'), where x” denotes the unit vector in the direction of x and otn, > a1 > -+- >
1 > 1 be fixed real numbers.

Note that for each fixed x = (xq1,...,xn) € R™, the function

n 2

X4
Fixo) =) i

i=1

is a strictly decreasing function of p > 0. Hence, there exists a unique p = p (x) such that F (x, p) = 1. It is
clear that for each fixed x € R™, the function F (x, p) is a decreasing function in p > 0. Fabes and Riviére
[5] showed that (R™,p) is a metric space which is often called the mixed homogeneity space related to
{oi}i—. For t > 0, we let A be the diagonal n x n matrix

t* 0
At =diag[t™,..., t%] =
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Letpe (0,00)and 0 < o1 <2m, 0< @i <7, i=1,...,n—2. For any x = (xq,X2,...,%xn) € R™, set

(0§
X1 =P~ COS @1 - COS Pn—2COS P 1,

« .
X2 = P72 COS 1+ COS Pn 2SN Py _1,

Xn—1 = p*"! cos @1 sin @2,

Xn = p¥" sin 1.

Thus dx = p*~!J (x') dpdo(x'), where o« = Zocl, x' € S T (x Zocl 1), do is the element of
i=1
area of S ! and p*~1] (x') is the Jacobian of the above transform. Obv1ous1y, J(x') e C® (S“fl) and that

there exists M > 0 such that 1 < J (') < M and x’ € S™1,
Let P be a real n x n matrix, whose all the eigenvalues have positive real part. Let Ay = t¥ (t > 0),
and set y = trP. Then, there exists a quasi-distance p associated with P such that (see [4])

(1-1) p(Ax) =tp(x), t > 0 for every x € R™;

(1-2) p(0)=0,p(x—y)=p(y—x) =20, and p(x —y) < k(p(x—2z) +p(y —2));

(1-3) dx = p¥~'do (w)dp, where p = p(x), w = A,-1x, and do (w) is a measure on the unit ellipsoid
w:pw)=1%L

Then, {R™, p, dx} becomes a space of homogeneous type in the sense of Coifman-Weiss (see [4]) and a
homogeneous group in the sense of Folland-Stein (see [6]).

Denote by E (x, 1) the ellipsoid with center at x and radius r, more precisely, E (x,r)={y € R™ : p (x —y)
< r}. For k > 0, we denote kE (x,7) = {y € R™: p (x —y) < kr}. Moreover, by the property of p and the
polar coordinates transform above, we have

|E (x,7)] = J dy =vprt o =y pY,

p(x—y)<r

where |E(x, )| stands for the Lebesgue measure of E(x, 1) and v, is the volume of the unit ellipsoid on
R™. By EC(x,r) = R™\ E (x,1), we denote the complement of E (x,r). If we take oy =--- = o =1 and

P = I, then obviously p (x <Zx ) ,Y=n, (R"Yp) =(R™Y,|]), Er(x,7) = B(x,1), Ay = tl and
J (x') = 1. Moreover, in the standard parabolic case Py = diag|l,...,1,2] we have

/P I+
p(x) =

2 7

x=(X,xn).

Note that we deal not exactly with the parabolic metric, but with a general anisotropic metric p of
generalized homogeneity, the parabolic metric being its particular case, but we keep the term parabolic
in the title and text of the paper, the above existing tradition, see for instance [3].

Suppose that Q (x) is a real-valued and measurable function defined on R™. Suppose that S™~! is the
unit sphere on R™ (n > 2) equipped with the normalized Lebesgue surface measure do. Let Q € Ls(S™1)
with 1 < s < oo be homogeneous of degree zero with respect to Ay (Q (x) is At-homogeneous of degree
zero), that is, Q(A¢x) = Q(x), for any t > 0, x € R™. We define s’ = o forany s > 1.

In 1938, Morrey considered regularity of the solution of elliptic partial differential equations (PDEs)
in terms of the solutions themselves and their derivatives. This is a very famous work by Morrey [13].
We define parabolic Morrey spaces M, » p (R™) via the following norm. Let f € L,(R™), 0 < A <y, and
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1 < p < oo. Then define

A A
[fllp,  p(rr) = sUp sup v ? [[fll, (e (xr)) = supr » [Ifl[L, (e (xr))
x€R™ r>0 E
where E = E(x,7) stands for any ellipsoid with center at x and radius r. When A = 0, M, p (R")
coincides with the parabolic Lebesgue space L, p (R™). If P = I, then M 1(R™) = M, (R") and
Lp1 (R™) = L, (R™) are the classical Morrey and the Lebesgue spaces, respectively. Later many people
studied parabolic Morrey spaces from a various point of view. For example, Giirbiiz [10] has given a
criterion on the boundedness of anisotropic maximal functions on weighted anisotropic Morrey Spaces.
Let f € L}°¢ (R™). The parabolic fractional maximal operator M%, and the parabolic fractional integral
operator I (also known as the parabolic Riesz potential) are defined respectively by

MP f(x) = sup [E(x, )| 1Y J fy)ldy, O0<a<y,
t>0 E(ot)

f(y)
]Rn
Now, we list the results of the Adams type and Spanne type boundedness of the parabolic fractional
integral operator and also give the relation between the Adams inequality and the Spanne inequality on
parabolic Morrey spaces.
Spanne considered the boundedness of the parabolic fractional integral operator on parabolic Morrey
spaces. The following Theorem 1.1 is in [14].

& A_ M
3 and 5 =g Then we have

Theorem 1.1. Let0< a<vy,1<p< %, 0 < A <y — ap. Moreover, let % — %

HI];fHMq,p,P < C ||f||Mp,)\,P ‘

Later, Adams [1] proved the following Theorem 1.2.

Theorem 1.2. Let0<oc<y,1<p<%,0<A<y—o¢p,and%—%:ﬁ. Then we have

P
el < Sl e
Remark 1.3. The indices q1, qo, and p satisfy the following relations:

1 1 « 1 1 x oA

@ P v @ p y-AN @
Since q1 < qp, by Holder’s inequality we get
[ate <|

ey o < 16l

Thus, Theorem 1.2 is a sharper result than Theorem 1.1, in other words, Theorem 1.2 improves Theo-
rem 1.1 when 1 < p < Y22

HIZfHMqlru’p < HIEfHqu,y\y < C ||f”Mp,?\,P :
Recall that, for 0 < a < vy,
MEF(x) < v 1% (If]) (x)

holds (see [12, Remark 2.1]). Hence Theorems 1.1 and 1.2 also imply boundedness of the parabolic
fractional maximal operator M’;, where v, is the volume of the unit ellipsoid on R™.
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Now, provided that 0 < « <y and f € L}OC (R™), we recall the definitions of the parabolic fractional
integral operator with rough kernel If, , and a related parabolic fractional maximal operator with rough

kernel M(PL « as follows:

MP of(x) = sup [E(x, t)] 7 T¥ J 1Q (x —y)lIf(y)ldy
t>0 E(ot)

and
1) = | 2 cryay,

Rn
where Q € L;(S™1) with 1 < s < 0o be homogeneous of degree zero with respect to A.

If x =0, then M(P)’O = MY}, is the parabolic maximal operator with rough kernel and we also get the
parabolic Calder6n-Zygmund singular integral operator with rough kernel T = IE),O' It is obvious that
when O =1, M'f, « =M% and If’ « = ¥ are the parabolic fractional maximal operator and the parabolic
fractional integral operator, respectively. If P = I, then Mg, , = Mg « is the fractional maximal operator

with rough kernel, and Mb,o = Mg is the Hardy-Littlewood maximal operator with rough kernel.
On the other hand, in 1965, Calderén [2] introduced the commutator [A, B] on R which is defined by

[A,B]f (x) = A (x) Bf (x) — B (Af) (x],
where A € Lip (R) and the operator B := 4 o H, H denotes the Hilbert transform defined by

o0

1 f
Hf (x) =Py J XEJL dy.

—00

Note that the commutator [A, B] can be rewritten as [A, \/w, where A = d% is the Laplacian operator
on R. Thus, the study of the commutator [A,B] plays an important role in some characterizations of
function spaces and so on (see [8] for example).

Let b be a locally integrable function on R™, then for 0 < & < vy, we define commutators generated by
parabolic fractional maximal and integral operators with rough kernels and b as follows, respectively.

Mg,b,(x(f)(x)=Su18|E(X,t)I7H% J b (x) —b (YIQ (x —y)lIf(y)ldy,
t>
E(x,t)

(b, 1% JF(x) = b(x)1% o F(x) — I}, o (bf)(x) = J [b(x) — b(y)]
IRTI

Qx—vy)
—= 2 f(y)dy.
plx—y) " Wy

Now, we introduce the parabolic bounded mean oscillation space BMOp (R™) following the known
ideas of defining bounded mean oscillation space BMO(IR™) (see [9]) as follows.

Definition 1.4. For each b € Lll"c(lR“) we set

b = b(y)dy.
E(X,T‘) |E(X,T)| J (U) y

For every v > 0, we define

1
[blls = sup

xeRn, 10 [E(, T)] J Y E(x,r)dY

E(x,1)
and we say that b € BMOp(R™) if ||b||« < co. We also define
BMOp(R™) = {b € LI(R™) : ||b]|« < oo}.
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If one regards two functions whose difference is a constant as one, then the space BMOp(IR™) is a
Banach space with respect to norm || - ||..

In 1961 John and Nirenberg [11] established the following deep property of functions from BMOp.
Theorem 1.5 ([11, John-Nirenberg inequality]). If b € BMOp(R™) and E(x, 1) is an ellipsoid, then

[{x € E(x,1) 1 [b(x) = bl > E} SIE(x,1)[exp (—CHi‘ ) £>0,

where C depends only on the dimension .
Theorem 1.5 implies the following results:
Corollary 1.6 ([11]). Let b € BMOp(IR™). Then, for any p > 1,
1
P
| o)~ b ey (1.1)
E(x,1)

1
bll« = su _
el xE]R",pr>0 [E(x, )]

is valid.

Corollary 1.7. Let b € BMOp(R™). Then there is a constant C > 0 such that
t
‘bE(x,r) — bE(x,t)‘ < Cllb]|« (1 +In T'> for0<2r<t, (1.2)

and for any q > 1, it is easy to see that

Y t
o ®lel ) < Crifbl. (1+1n%),

where C is independent of b, x, r and t.

On the other hand, a recent trend in the theory of parabolic Morrey spaces is to generalize the param-
eter A to a function so that they can include the endpoint case and some generalized integral operators.
In this sense, the definition of parabolic generalized Morrey spaces is given as follows.

Definition 1.8 ([8, parabolic generalized Morrey space]). Let @(x, ) be a positive measurable function on
R™ x (0,00) and 1 < p < oo. Then, the parabolic generalized Morrey space My, o p = Mp o p(R™) is
defined by

1 .
f e Lloc(R™) :

_1
||f”Mp,(p,P = sup (p(xlr)il |E(X/T)| P HfHLp(E(X,r)) < 0
x€R™, r>0

Mp,o,p = Mp o p(R") =

Furthermore, the weak parabolic generalized Morrey space WM, ,, p = WM, , p(R™) is defined by

f e WL(R™) :

_1
Ifllwm, o =  sup @0, 7) HE DT Iflwe, () < o0
x€R™, r>0

WM, o p = WM, 4 p(R™) =

According to this definition, we recover the parabolic Morrey space My, 5 p and the weak parabolic
A—
Morrey space WM, 5 p under the choice @(x,1) = e

Mpap =Mpgp | Ay, WMpap =WMpop | Ay -

(x,7)=r"P
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We now make some conventions. Throughout this paper, we use the symbol F < G to denote that
there exists a positive constant C which is independent of the essential variables and not necessarily the
same one in each occurrence such that F < CG. If F < G and G < F we then write F ~ G and say that F and
G are equivalent. For a fixed p € [1, 00), p’ denotes the dual or conjugate exponent of p, namely, p’ = %

1

and we use the convention 1’ = co and oo’ = 1. Moreover, HQHLS(STH) = [ 1QE))° do(2)
Sn—1
Giirbiiz [8] proved Spanne type inequalities for parabolic sublinear operators with a rough kernel
generated by parabolic fractional integrals and their commutators on parabolic generalized Morrey spaces
under generic size conditions which are satisfied by most of the operators in harmonic analysis. His
results can be summarized as follows.

Theorem 1.9 ([8, Spanne type result]). Let Q € Lg(S™ 1), 1 < s < oo, be Ay-homogeneous of degree zero.
Let0<ax<vy,1<p< == l — % Let TB « be a parabolic sublinear operator satisfying condition (1.5)
in Theorem 1.11 below, bounde;l from L, (R™) to Lq(R™) for p > 1, and bounded from L;(R™) to WL4(IR™) for

p = 1. Let also, for s’ < p, p # 1, the pair ((pl, ©2) satzsﬁes the condition

t<tT<o0
d

7
tq+1

® essinf @1(x, T)T%
J t < C (PZ(X; T)/
.

and for q < s the pair (@1, @2) satisfies the condition

Y

]9 essinf @1 (x,T)T?
T

Y

< Coa(x,7)rs,

t<t<oo
dt

(y Yl

where C does not depend on x and r.
Then the operator T§, , is bounded from My, o, p t0 Mq,q,p for p > 1 and from My,q, p t0 WM, g, p for
p = 1. Moreover, we have for p > 1

1Tl .o S IFlnty g
and forp =1
HTB,ocfHWMq/(PZ,p S ||f||M1,<p1,P'

Theorem 1.10 ([8, Spanne type result]). Let Q € Lg(S™!), 1 < s < oo, be Ai-homogeneous of degree zero.
Let [b, Tg/ o) be a parabolic sublinear operator satisfying condition (1.9) in Theorem 1.15 below and bounded from
L, (R™) to Lq(R™). Let 1 <p <00, 0<ax< L, % = % — % and b € BMOp (R™). Let also, for s’ < p, the pair
(@1, @2) satisfies the condition

Y

w ¢ essinf @1(x,T)T?
J (1 +1In > tereoo dt < C@a(x,1),
T tEH

and for q < s the pair (@1, @2) satisfies the condition

x® ¢ essinf @1(x, T)T% 5
J (1 +1n ) ter=eo dt < C@a(x, 15,
T

—
T tq L+1

where C does not depend on x and .
Then the operator [b, TB, ol 18 bounded from My, , p to My ¢, p. Moreover,

16,75 adfll e, S I [l

P,91,P '
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Now motivated by the above background, it is natural to ask whether we can prove Adams type in-
equalities for parabolic sublinear operators with a rough kernel generated by parabolic fractional integrals
and their commutators on the parabolic generalized Morrey spaces. The purpose of this paper is to find
the answer to this question.

Our results can be stated as follows.

Theorem 1.11 (Adams type result). Suppose that Q € Ls(S™1), 1 < s < oo, is Ar-homogeneous of degree
zero. Let 1 <s' <p<q<oo 0<a< % and let @ (x,t) satisfies the conditions

sup t Y essinf ¢ (x,T)tY < Co (x,71) (1.3)
r<t<oo t<tT<@
and
T dt
Jt“(p (x,t)% T < Cr*q%, (1.4)
T

where C does not depend on x € R™ and v > 0. Let also TY | be a parabolic sublinear operator satisfying conditions

p |Q(x —y)l
T o001 S Rjn Lyl ay (15)
and
T8, o (FXE(xom)) ()] S TOMBT () (1.6)

for any ellipsoid E (xo,1).

Then the operator T is bounded from M~ 4
, P,

toM 1 and M to WM
obp 0 q’(pélpforp> and from Lot p 0 1 for

q,99,P
p = 1. Moreover, we have for p > 1

4

Mooty Sl
qe9d,pP p,oP P

and forp =1

IToafllwn , Sl
q,@ﬁ,p 1L, P ,P

Corollary 1.12. Under the conditions of Theorem 1.11, the operators M) & and 11 « are bounded from M .
' ’ PP,
to Mq/(P%,P for p > 1 and from My o p to WMq,@%,P forp =1.

In the case of @ (x,7) =T, 0 < A < vy, from Theorem 1.11 we get the following Adams type result
(see [1]) for the parabolic fractional maximal and integral operators with rough kernels.

Corollary 1.13. Suppose that Q € L¢(S™ 1), 1 < s < oo, is A-homogeneous of degree zero. Let 0 < o < 7,

1_1 _ P P
l<p< X sdf<p<q<oo0<A<y—apand 5T % Then the operators Mg, , and 1,  are

bounded from My, 5 p to Mg p.
In the case of ) =1 from Theorem 1.11, we get the following.

Corollary 1.14. Let 1 <p < o0, 0 < ax < %, p < q, and let also ¢ (x, t) satisfies conditions (1.3) and (1.4). Then
the operators M and T are bounded from M+ toM 1 forp > 1and from My ,p to WM 1 for
p,@P,P q,99,P q,99,P

p=1
In the case of @ (x,t) =t*Y,0 < A <y from Corollary 1.14 we get Theorem 1.2.

Theorem 1.15 (Adams type result). Suppose that Q € Ls(S™1), 1 < s < oo, is A-homogeneous of degree
zero. Let 1<s' <p<q<oo0<a< %, b € BMOp (R™) and let ¢ (x, t) satisfies the conditions

P
sup tr (1 +lnt> essinf ¢ (x, T) tv < Co (x,1), (1.7)

r<t<oo T t<t<oo
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and

J (l +ln:> t%p (x,t)% % < Cr™ qoip, (1.8)

where C does not depend on x € R™ and v > 0. Let also [b, TLP), o) be a sublinear operator satisfying conditions

[Q(x —y)l
1,78, 0700)1 < [ 1600 ) -2y (19)
p(x—y)
R™
and
[0, T3 ol (X)) ()] S TEME,pF (%) (1.10)
for any ellipsoid E (xo, 7). Then the operator [b, T}, ] is bounded from M Lo toM 1 o Moreover
4 P,or, q.e9,
100, T,y Sl Nl
qed,P p.eP P

Corollary 1.16. Under the conditions of Theorem 1.15, the operators M(Pl,b/ o and [b, 15/ o) are bounded from

M 1 toM 1 .
p,@P,P q,99,P

In the case of () =1, from Theorem 1.15, we get the following.

Corollary 1.17. Let 1 < p < 00, 0 < & < %, p < q, b € BMOp (R™) and let also ¢ (x,t) satisfies conditions

(1.7) and (1.8). Then the operators M,  and [b,1%] are bounded from M 1 , oM
' P q

1 .
PP, ,¢4d,P

2. Proofs of the main results

2.1. Proof of Theorem 1.11
Proof. Let1 <p <o00,0 < ax < %, p<qg,andfeM :.SetE =E(xp,r) for the parabolic ball (ellipsoid)

PP
centered at xp and of radius r and 2E = E (xg, 2r). We represent f as

f=1f1+1, f1(y) =f(y) xaxe (y), 2 (y) = 1Y) X ey (Y), r>0 (2.1)
and have
TS of ()] < [T8,of1 ()] + TG o2 (x)] -
For T, . fa (x), we have
If (Yl Q (x —y)
plx—y)*

Thatz S |
(2kE)€

dy.

By Fubini’s theorem, Holder’s inequality and (2.5) in [8], we get

(0.¢]

FIIQ (x—y) dt
| TS s | ekl | g
(2kE)€ (2kE)€ p(x—y)
T dt
<~ rwlex-wieg

2kr 2kr<p(x—y)<t

T dt
s | [ rwien-iagt

2kr E(x,t)
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T d
1—1_1 t
S| Il e 192 Oc= L g ey [E 6 O o
2]u<r
T d
1—1_1 t
S| I, e o) 19 Ge =)l e (x,0) [E (x, E)] Hievas (2.2)
2]“0'
T d
1—1_1 t
S| I, e o) 1 e =)l (e (0 [E (6, D75 PEvs
2]“0'
oy
< a—X—1
STl (e At
21u<1‘

Then from conditions (1.4), (1.6), and inequality (2.2) we get

o0
_Y_
Thaf 0] S TOMET 0+ [ 13 el e

2kr
T d
1 dt
< MBF) + [ e nr T
poP P t
2kr
q9—p
s xq
. _ o7 .,P n
Hence, choosing v = T}’}TT for every x € R™, we have
P < P ] 1=4
p(pﬁ,P

STOMBF (%) + 7707 [[f]| 0

1
PP P

Consequently the statement of the theorem follows in view of the boundedness of the maximal oper-

ator with rough kernel MY, in M . provided by Theorem 4.2 in [7] in virtue of condition (1.3).

0]
Therefore, we obtain

HTg,ocfHM , — sup @(X’t)iét_%HTg,CXfHLq(E(x,t))
qed,pP x€R™, t>0
1—F 1 vy P
SIfl® . sup @Gt ot 8 [MBAIE L,
p,eP P xERM, t>0
1-P 1y
it (L ot M)
p,eP P xERM™, t>0
1-3 P el
=l [IMafllye , S, o
p,cpﬁ,P p,(pi,P p,eP P
if1<p<q<ooand
HTg,ocfHM = Ssup (p(x,t)fétf% HTB,ocfHWLq(E(x,t))

wedp  XERM, >0

1—1 _1 vy P L
S, sup @ ()79t 9 MO (e n)

xE€R™, t>0

-4 1, P
:Hﬂ|Mliplp< sup @ (x,t) 't nHMQfHWLl(E(X,t))

x€R™, t>0

)

P
q

o=
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1—1 1
= HfHMlip,p HMBfH\j\/MLm,P 5 HfHMl,(p,P 4

if1<q < o0
Hence, the proof is completed. O

Before giving the proof of Theorem 1.15, we introduce some lemmas and theorems about the estimates
of the parabolic sublinear commutator of the parabolic fractional maximal operator with rough kernel on
the parabolic generalized Morrey spaces. In other words, for Adam type result, we need commutator
of the parabolic fractional maximal operator with rough kernel. Therefore, this commutator will also be
discussed.

Lemma 2.1. Let Q € Lg(S™ 1), 1 < s < o0, be A-homogeneous of degree zero. Let 1 < p < 00, 0 < & < %,
% = % — %, b € BMOp (R™) and Mgrb,“ is bounded from L, (R™) to Lq(IR™). Then for s’ < p, the inequality

Y t\ _«x»
Ml xS 0078 sup (14108 ) €l e
t>2kr

holds for any ellipsoid E(xo, ) and for all f € L%)C(R“).

1

Y 1 _
Proof. Let1 <p<oo,0<oc<p,and 4= 7

— 5 As in the proof of Theorem 1.11, we represent f in form
(2.1) and we have

HMKP),b,ocfHLq(E) < HMB,b,“leLq(E) + HMB,b,ffoHLq(E) :

From the boundedness of Mg,b, o« from L, (R™) to Ly (IR™) (see Corollary 0.1 in [8]) it follows that:

HMEl,b,ocﬁHLq(E) < HMEl,b,ocﬁHLq(]R“) < bl HflﬂLp(an) = b, ”fHLp(ZkE)-

For x € E, we have

1
MP, o af2 () < sup ———— J 1O (x—y)I1b (y) — b ()] 2 (y)] dy
>0 [E(x, )] YE( Y

X,

1
—sup———— J 1Q (x—y)l[b (y) — b (]IF ()] dy.
t>0 |E(x, )] v
E(x,t)N(2kE)€

Let x be an arbitrary point from E. If E (x,t) N {(ZkE)C} # (), then t > r. Indeed, if y € E(x,t) N
{(ZkE)C}, thent>p(x—y) > %p (xo—y)—pxo—x%x)>2r—r=r.

On the other hand, E (x,t) N (2kE)C C E(xo,2kt). Indeed, y € E(x,t)N (ZkE)C , then we get
&

p(xo—y) <kp(x—y)+kp(xo—x) < k(t+r1) < 2kt.
Hence

1
M@ o f2 (x) = sup ———— J 1Q (x —y)lIb(y) —b (xX)|If (y)ldy
>0 [E(x, t)] ™
E(x,t)N(2kE)€

< (2k)Y % sup L

——— Q(x— _
t=r |E(xo, 2kt)[ J 1Q (x —y)lIb (y) = b (I If (y)] dy

E(xo,2kt)

J 1Q (x—y)lIb (y) — b (I If (y)] dy.
E(xo,t)

<R

1
=(2K)Y " sup ————=
t>2kr [E(xo, t)|" Y
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Therefore, for all x € E, we have

_ 1
M b of2 (x) < (2k)Y “SUPﬁ J 1Q (x —y)lIb (y) —b () If (y)l dy.
t>2kr [E(xq, )" ¥
E(XOIt)
Then
a \a
1
IM&, b, P2l e J sup ————— j 10 (x—y)lb(y) —bIIf (y)ldy | dx
q t>2kr [E(xq, )" ¥
E F—(XO/t)
a \q
1
< J sup == J 1Q (x—y)lb(y) —Dbellf(y)ldy | dx
t>2kr [E(xq, )" ¥
E F—(XO/t)
a \aq
+ J — = J 1Q (x—y)lb(x) —bellf(y)ldy | dx
t>2kr [E(xo, )I Y
E E(X()/t)
=Ji1+]J2.

Let us estimate J;,
J 10 (x— )l b (y) — bel If ()| dy
E(XOIt]

~rhsup |10 (x=y)lIb (v) — bel I (y)] dy.
t>2kr

1
J1 =14 sup e 1S
t>2kr ‘E(X(), )‘ Y

E (XU/t)

Applying Holder’s inequality, by (2.8) in [8], (1.1), (1.2), and ﬁ + % + 1 =1, we get

< rh sup oY J 1O (x =)l [ (y) = be (x| IF ()] dy

t>2kr
E(xo,t)

Y _
£1% sup 7Y [be () — PE (et | J 0 (x— )l If (y)| dy

t>2kr E(xot)
Y _Y
SS9 sup 577 O =Yl e 0 10 ) = PEio,0) 1 (e o 00) 1Tl (E o0
t>2kr
Y _ 1—1_1
+719 sup t¥ y‘bE(XOrT)_bE(XO/t)‘HQ('_y)HLS(E(Xo,t)) HfHLp(E(xo,t))\E (xo, )7
t>2kr
b t v
Slollv¥ sup (117 ) ©F Il e
t>2kr T
In order to estimate ], note that
2= 100 = veru)l ey 9P 17 [ Ryl e
T

By (1.1), we get

Ja < [[bfl. ¥ sup <Y J O (x—y)lIf ()] dy.
t>2kr
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Thus, by (2.2) and (2.5) in [8],

Jo < bl v sup ta 11l e
t>2kr

X(]/t)) :

Summing up J; and J,, for all p € (1, 00) we get

M a2l S 0075 sup €5 (110 ) Il e

t>2kr

Finally, combining HMQ b, ‘ - and HMB,b, ocfg‘ . E)we have the following

Lq q

IME 5, fll e S Mo Il ey + 1Bl 7 sup - q(1+1n )llfllemw
t>2kr

Y _Y
<ol x¥ sup + (14105 ) Il e

t>2kr
which completes the proof. O
Similar to Lemma 2.1 the following lemma can also be proved.

Lemma 2.2. Let Q € Li(S™1), 1 < s < oo, be A-homogeneous of degree zero. Let 1 < p < 0o, b € BMOp (R™)
and Mg,b is bounded on L, (R™). Then for s’ < p, the inequality

t\ _»
Ml vy S 1017 sup (14108 ¢ e

t>2kr
holds for any ellipsoid E(xo, r) and for all f € L%’C(IR“).

The following theorem is true.

Theorem 2.3. Let Q € L(S™1), 1 < s < oo, be A-homogeneous of degree zero. Let 1 <p < 00, 0 < & < %,
% = % — %, b € BMOp (R™) and let (@1, @2) satisfies the condition

t
sup X (1 +lnr> essinf @1 (x,T)t tr < < Coo(x,71),

r<t<oo t<T<00

where C does not depend on x and r. Then for s’ < p, the operator I\/lQ b, 18 bounded from My, o, p to Mg, ¢, p-
Moreover

IM&,aflln,, ., S 101 Il

Proof. The statement of Theorem 2.3 follows by Lemma 2.1 in the same manner as in the proof of Theorem
4.11in[7]. 0

P,91,P :

In the case of « = 0 and p = ¢, we get the following corollary by Theorem 2.3.

Corollary 2.4. Let Q € Lg(S™ 1), 1 < s < oo, be A-homogeneous of degree zero. Let 1 < p < 0o, b €
BMOp (R™) and let (@1, @2) satisfies the condition

Y Y

sup t P (1 +In :) essinf @1 (x,t)t? < Coy(x, 1),

r<t<oo t<T<00

where C does not depend on x and r. Then for s’ < p, the operator Mg,b is bounded from My, o, p to Mg, ¢, p-
Moreover

IM&,u I, S 101 10

Now we are ready to return to the proof of Theorem 1.15.

P,91,P ’
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2.2. Proof of Theorem 1.15

Proof. Letl <p < o0, 0 < ax < X and = %—%,p <gqand fe M Lo As in the proof of Theorem
PO,
1.11, we represent f in form (2.1) and have
106, T [l ey < 100 T al il ) + 1110, TS 2l ey

For x € E we have

1O (x —y)

TEn0 S | b ) b lIr ) dy

(2kE)C

Analogously to Section 2.1, for all p € (1,00) and x € E, we get

t _y_
b, TQ Jf2 ()| S 1]l J <1+lnr> t 1||f||Lp(E(X,t))dt. (2.3)
2kr

Then from conditions (1.8), (1.10), and inequality (2.3) we get

o.¢]
t Y 1
10,1 0] ol MB 06+ ol [ (14102 75 el e
2kr
T d
t 1 dt
< ol MB )+ ol Il [ (14100 003 §
p,(pﬁ,P
2kr

S Iblr™ME o f () + bl a7 [[fllg

PP P
q-p

I,

3 — p.oP P n
Hence choosing 1 = M, (%) for every x € R™, we have

16, T8, JF ()] S o]l (MB o (x)) @ HfHM

73\»—-

Consequently the statement of the theorem follows in view of the boundedness of the commutator of
the parabolic maximal operator with rough kernel MP, | in M Io provided by Corollary 2.4 in virtue
' Per,

of condition (1.7).
Therefore, we have

I, T8y, = sup @Oty Tt [0, TA I ey
p xeR™, t>0

ol

Qe 7,

AN

ol Iflne® . sup @ U Tt KuMgbeL

p,eP P x€R", t>0

)

afg

1-B 1 Y

= [blls [ flln © | ( sup @ (x,1) Pt P [MAufl| e )))
p,eP P \XxERM, t>0

_r

Al IMB o fll5 < Il [l

PP

P®

o=

,P

o=

P.e



F. Giirbiiz, J. Nonlinear Sci. Appl., 11 (2018), 798-811 811

Acknowledgment

The author would like to express my deep gratitude to the referees for their invaluable comments and
suggestions. On the other hand, this study has been given as the plenary talk by the author at the “4th
International Conference on Pure and Applied Sciences (ICPAS 4)”, Gelisim University, Istanbul, Turkey,
23-25 November 2017.

References

—_———
N
—

[10]
(11]

(12]
(13]

(14]

D. R. Adams, A note on Riesz potentials, Duke Math. J., 42 (1975), 765-778. 1, 1

A.-P. Calderén, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A., 53 (1965), 1092-1099. 1
A.-P. Calderén, A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math., 16
(1975), 1-64. 1

R. R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces homoganes, Springer-Verlag, Berlin-
New York, (1971). 1

E. B. Fabes, N. M. Riviere, Singular integrals with mixed homogeneity, Studia Math., 27 (1966), 19-38. 1

G. B. Folland, E. M. Stein, Hardy Spaces on homogeneous groups, Princeton University Press, Princeton, New Jersey,
(1982). 1

V. S. Guliyev, A. S. Balakishiyev, Parabolic fractional maximal and integral operators with rough kernels in parabolic
generalized Morrey spaces, J. Math. Inequal., 9 (2015), 257-276. 2.1, 2.1

F. Gurbtiz, Parabolic generalized local Morrey space estimates of rough parabolic sublinear operators and commutators,
Adv. Math. (China), 46 (2017), 765-792. 1,1.8, 1, 1.9, 1.10, 2.1, 2.1, 2.1

F. Gurbtiz, Sublinear operators with rough kernel generated by Calderon-Zygmund operators and their commutators on
generalized Morrey spaces, Math. Notes, 101 (2017), 429—442. 1

F. Girbtiz, Weighted anisotropic Morrey Spaces estimates for anisotropic maximal operators, J. Adv. Appl. Math. JAAM),
2 (2017), 143-150. 1

F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426. 1, 1.5,
1.6

X. Li, D. Yang, Boundedness of some sublinear operators on Herz spaces, Illinois J. Math., 40 (1996), 484-501. 1

C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938),
126-166. 1

J. Peetre, On the theory of Ly, », J. Funct. Anal., 4 (1969), 71-87. 1


https://projecteuclid.org/euclid.dmj/1077311348
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC301378/
https://www.sciencedirect.com/science/article/pii/0001870875900997?via%3Dihub
https://www.sciencedirect.com/science/article/pii/0001870875900997?via%3Dihub
https://www.springer.com/us/book/9783540057031
https://www.springer.com/us/book/9783540057031
https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/27/1/96160/singular-integrals-with-mixed-homogeneity
https://books.google.com/books?id=1zR-YXRbvcAC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.com/books?id=1zR-YXRbvcAC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://jmi.ele-math.com/09-23/Parabolic-fractional-maximal-and-integral-operators-with-rough-kernels-in-parabolic-generalized-Morrey-spaces
http://jmi.ele-math.com/09-23/Parabolic-fractional-maximal-and-integral-operators-with-rough-kernels-in-parabolic-generalized-Morrey-spaces
http://advmath.pku.edu.cn/EN/abstract/abstract11954.shtml
http://advmath.pku.edu.cn/EN/abstract/abstract11954.shtml
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mzm&paperid=11253&option_lang=rus
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mzm&paperid=11253&option_lang=rus
http://www.isaacpub.org/1/1377/2/3/07/2017/JAAM.html
http://www.isaacpub.org/1/1377/2/3/07/2017/JAAM.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160140317
https://projecteuclid.org/euclid.ijm/1255986021
http://www.ams.org/journals/tran/1938-043-01/S0002-9947-1938-1501936-8/home.html
http://www.ams.org/journals/tran/1938-043-01/S0002-9947-1938-1501936-8/home.html
https://www.sciencedirect.com/science/article/pii/0022123669900226

	Introduction and main results
	Proofs of the main results
	Proof of Theorem 1.11
	Proof of Theorem 1.15


