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The aim of this paper is to give Adams-Spanne type estimates for parabolic sublinear operators and their commutators

by with rough kernels generated by parabolic fractional integral operators under generic size conditions which are satisfied by
most of the operators in harmonic analysis. Their endpoint estimates are also disposed.

Keywords: Parabolic sublinear operator, parabolic fractional integral operator, parabolic fractional maximal operator, rough
kernel, parabolic generalized Morrey space, parabolic BMO space, commutator.

2010 MSC: 42B20, 42B25, 42B35.
c©2018 All rights reserved.

1. Introduction and main results

Let Sn−1 = {x ∈ Rn : |x| = 1} denote the unit sphere on Rn (n > 2) equipped with the normalized
Lebesgue measure dσ (x′), where x′ denotes the unit vector in the direction of x and αn > αn−1 > · · · >
α1 > 1 be fixed real numbers.

Note that for each fixed x = (x1, . . . , xn) ∈ Rn, the function

F (x, ρ) =
n∑
i=1

x2
i

ρ2αi

is a strictly decreasing function of ρ > 0. Hence, there exists a unique ρ = ρ (x) such that F (x, ρ) = 1. It is
clear that for each fixed x ∈ Rn, the function F (x, ρ) is a decreasing function in ρ > 0. Fabes and Riviére
[5] showed that (Rn,ρ) is a metric space which is often called the mixed homogeneity space related to
{αi}

n
i=1. For t > 0, we let At be the diagonal n×n matrix

At = diag [tα1 , . . . , tαn ] =

t
α1 0

. . .
0 tαn

 .
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Let ρ ∈ (0,∞) and 0 6 ϕn−1 6 2π, 0 6 ϕi 6 π, i = 1, . . . ,n− 2. For any x = (x1, x2, . . . , xn) ∈ Rn, set

x1 = ρα1 cosϕ1 · · · cosϕn−2 cosϕn−1,
x2 = ρα2 cosϕ1 · · · cosϕn−2 sinϕn−1,

...
xn−1 = ραn−1 cosϕ1 sinϕ2,
xn = ραn sinϕ1.

Thus dx = ρα−1J (x′)dρdσ(x′), where α =

n∑
i=1

αi, x′ ∈ Sn−1, J (x′) =

n∑
i=1

αi
(
x′i
)2, dσ is the element of

area of Sn−1 and ρα−1J (x′) is the Jacobian of the above transform. Obviously, J (x′) ∈ C∞ (Sn−1
)

and that
there exists M > 0 such that 1 6 J (x′) 6M and x′ ∈ Sn−1.

Let P be a real n× n matrix, whose all the eigenvalues have positive real part. Let At = tP (t > 0),
and set γ = trP. Then, there exists a quasi-distance ρ associated with P such that (see [4])

(1-1) ρ (Atx) = tρ (x), t > 0 for every x ∈ Rn;
(1-2) ρ (0) = 0, ρ (x− y) = ρ (y− x) > 0, and ρ (x− y) 6 k (ρ (x− z) + ρ (y− z));
(1-3) dx = ργ−1dσ (w)dρ, where ρ = ρ (x), w = Aρ−1x, and dσ (w) is a measure on the unit ellipsoid

{w : ρ (w) = 1}.

Then, {Rn, ρ,dx} becomes a space of homogeneous type in the sense of Coifman-Weiss (see [4]) and a
homogeneous group in the sense of Folland-Stein (see [6]).

Denote by E (x, r) the ellipsoid with center at x and radius r, more precisely, E (x, r)= {y ∈ Rn : ρ (x− y)

< r}. For k > 0, we denote kE (x, r) = {y ∈ Rn : ρ (x− y) < kr}. Moreover, by the property of ρ and the
polar coordinates transform above, we have

|E (x, r)| =
∫

ρ(x−y)<r

dy = υρr
α1+···+αn = υρr

γ,

where |E(x, r)| stands for the Lebesgue measure of E(x, r) and υρ is the volume of the unit ellipsoid on
Rn. By EC(x, r) = Rn\ E (x, r), we denote the complement of E (x, r). If we take α1 = · · · = αn = 1 and

P = I, then obviously ρ (x) = |x| =

(
n∑
i=1

x2
i

) 1
2

, γ = n, (Rn, ρ) = (Rn, |·|), EI(x, r) = B (x, r), At = tI and

J (x′) ≡ 1. Moreover, in the standard parabolic case P0 = diag [1, . . . , 1, 2] we have

ρ (x) =

√√√√ |x′|2 +

√
|x′|4 + x2

n

2
, x =

(
x′, xn

)
.

Note that we deal not exactly with the parabolic metric, but with a general anisotropic metric ρ of
generalized homogeneity, the parabolic metric being its particular case, but we keep the term parabolic
in the title and text of the paper, the above existing tradition, see for instance [3].

Suppose that Ω (x) is a real-valued and measurable function defined on Rn. Suppose that Sn−1 is the
unit sphere on Rn (n > 2) equipped with the normalized Lebesgue surface measure dσ. LetΩ ∈ Ls(Sn−1)
with 1 < s 6 ∞ be homogeneous of degree zero with respect to At (Ω (x) is At-homogeneous of degree
zero), that is, Ω(Atx) = Ω(x), for any t > 0, x ∈ Rn. We define s′ = s

s−1 for any s > 1.
In 1938, Morrey considered regularity of the solution of elliptic partial differential equations (PDEs)

in terms of the solutions themselves and their derivatives. This is a very famous work by Morrey [13].
We define parabolic Morrey spaces Mp,λ,P (R

n) via the following norm. Let f ∈ Lp(Rn), 0 6 λ < γ, and
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1 < p <∞. Then define

‖f‖Mp,λ,P(Rn) = sup
x∈Rn

sup
r>0

r−
λ
p ‖f‖Lp(E(x,r)) ≡ sup

E

r−
λ
p ‖f‖Lp(E(x,r)),

where E = E(x, r) stands for any ellipsoid with center at x and radius r. When λ = 0, Mp,λ,P (R
n)

coincides with the parabolic Lebesgue space Lp,P (R
n). If P = I, then Mp,λ,I(R

n) ≡ Mp,λ(R
n) and

Lp,I (R
n) ≡ Lp (Rn) are the classical Morrey and the Lebesgue spaces, respectively. Later many people

studied parabolic Morrey spaces from a various point of view. For example, Gürbüz [10] has given a
criterion on the boundedness of anisotropic maximal functions on weighted anisotropic Morrey Spaces.

Let f ∈ Lloc1 (Rn). The parabolic fractional maximal operator MP
α and the parabolic fractional integral

operator IPα (also known as the parabolic Riesz potential) are defined respectively by

MP
αf(x) = sup

t>0
|E(x, t)|−1+α

γ

∫
E(x,t)

|f(y)|dy, 0 6 α < γ,

IPαf (x) =

∫
Rn

f (y)

ρ (x− y)γ−α
dy, 0 < α < γ.

Now, we list the results of the Adams type and Spanne type boundedness of the parabolic fractional
integral operator and also give the relation between the Adams inequality and the Spanne inequality on
parabolic Morrey spaces.

Spanne considered the boundedness of the parabolic fractional integral operator on parabolic Morrey
spaces. The following Theorem 1.1 is in [14].

Theorem 1.1. Let 0 < α < γ, 1 < p < γ
α , 0 < λ < γ−αp. Moreover, let 1

p − 1
q = α

γ and λ
p = µ

q . Then we have∥∥IPαf∥∥Mq,µ,P
6 C ‖f‖Mp,λ,P

.

Later, Adams [1] proved the following Theorem 1.2.

Theorem 1.2. Let 0 < α < γ, 1 < p < γ−λ
α , 0 < λ < γ−αp, and 1

p − 1
q = α

γ−λ . Then we have∥∥IPαf∥∥Mq,µ,P
6 C ‖f‖Mp,λ,P

.

Remark 1.3. The indices q1, q2, and µ satisfy the following relations:

1
q1

=
1
p
−
α

γ
,

1
q2

=
1
p
−

α

γ− λ
,

µ

q1
=
λ

p
.

Since q1 < q2, by Hölder’s inequality we get∥∥IPαf∥∥Mq1,µ,P
6
∥∥IPαf∥∥Mq2,λ,P

.

Thus, Theorem 1.2 is a sharper result than Theorem 1.1, in other words, Theorem 1.2 improves Theo-
rem 1.1 when 1 < p < γ−λ

α : ∥∥IPαf∥∥Mq1,µ,P
6
∥∥IPαf∥∥Mq2,λ,P

6 C ‖f‖Mp,λ,P
.

Recall that, for 0 < α < γ,
MP
αf (x) 6 ν

α
γ−1
n IPα (|f|) (x)

holds (see [12, Remark 2.1]). Hence Theorems 1.1 and 1.2 also imply boundedness of the parabolic
fractional maximal operator MP

α, where υn is the volume of the unit ellipsoid on Rn.
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Now, provided that 0 < α < γ and f ∈ Lloc1 (Rn), we recall the definitions of the parabolic fractional
integral operator with rough kernel IPΩ,α and a related parabolic fractional maximal operator with rough
kernel MP

Ω,α as follows:

MP
Ω,αf(x) = sup

t>0
|E(x, t)|−1+α

γ

∫
E(x,t)

|Ω (x− y)| |f(y)|dy

and

IPΩ,αf(x) =

∫
Rn

Ω(x− y)

ρ (x− y)γ−α
f(y)dy,

where Ω ∈ Ls(Sn−1) with 1 < s 6∞ be homogeneous of degree zero with respect to At.
If α = 0, then MP

Ω,0 ≡ MP
Ω is the parabolic maximal operator with rough kernel and we also get the

parabolic Calderón–Zygmund singular integral operator with rough kernel TPΩ = IPΩ,0. It is obvious that
when Ω ≡ 1, MP

1,α ≡ MP
α and IP1,α ≡ IPα are the parabolic fractional maximal operator and the parabolic

fractional integral operator, respectively. If P = I, then MI
Ω,α ≡MΩ,α is the fractional maximal operator

with rough kernel, and MI
Ω,0 ≡MΩ is the Hardy-Littlewood maximal operator with rough kernel.

On the other hand, in 1965, Calderón [2] introduced the commutator [A,B] on R which is defined by

[A,B] f (x) = A (x)Bf (x) −B (Af) (x) ,

where A ∈ Lip (R) and the operator B := d
dx ◦H, H denotes the Hilbert transform defined by

Hf (x) = p.v.
1
π

∞∫
−∞

f (y)

x− y
dy.

Note that the commutator [A,B] can be rewritten as
[
A,
√
−∆
]
, where ∆ = d2

dx2 is the Laplacian operator
on R. Thus, the study of the commutator [A,B] plays an important role in some characterizations of
function spaces and so on (see [8] for example).

Let b be a locally integrable function on Rn, then for 0 < α < γ, we define commutators generated by
parabolic fractional maximal and integral operators with rough kernels and b as follows, respectively.

MP
Ω,b,α (f) (x) = sup

t>0
|E(x, t)|−1+α

γ

∫
E(x,t)

|b (x) − b (y)| |Ω (x− y)| |f(y)|dy,

[b, IPΩ,α]f(x) ≡ b(x)IPΩ,αf(x) − I
P
Ω,α(bf)(x) =

∫
Rn

[b(x) − b(y)]
Ω(x− y)

ρ (x− y)γ−α
f(y)dy.

Now, we introduce the parabolic bounded mean oscillation space BMOP(Rn) following the known
ideas of defining bounded mean oscillation space BMO(Rn) (see [9]) as follows.

Definition 1.4. For each b ∈ Lloc
1 (Rn) we set

bE(x,r) =
1

|E(x, r)|

∫
E(x,r)

b(y)dy.

For every r > 0, we define

‖b‖∗ = sup
x∈Rn, r>0

1
|E(x, r)|

∫
E(x,r)

|b(y) − bE(x,r)|dy <∞,

and we say that b ∈ BMOP(Rn) if ‖b‖∗ <∞. We also define

BMOP(R
n) = {b ∈ Lloc

1 (Rn) : ‖b‖∗ <∞}.
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If one regards two functions whose difference is a constant as one, then the space BMOP(Rn) is a
Banach space with respect to norm ‖ · ‖∗.

In 1961 John and Nirenberg [11] established the following deep property of functions from BMOP.

Theorem 1.5 ([11, John-Nirenberg inequality]). If b ∈ BMOP(Rn) and E(x, r) is an ellipsoid, then

∣∣{x ∈ E (x, r) : |b(x) − bE(x,r)| > ξ
}∣∣ 6 |E (x, r) | exp

(
−

ξ

C‖b‖∗

)
, ξ > 0,

where C depends only on the dimension γ.

Theorem 1.5 implies the following results:

Corollary 1.6 ([11]). Let b ∈ BMOP(Rn). Then, for any p > 1,

‖b‖∗ ≈ sup
x∈Rn, r>0

 1
|E(x, r)|

∫
E(x,r)

|b(y) − bE(x,r)|
pdy


1
p

(1.1)

is valid.

Corollary 1.7. Let b ∈ BMOP(Rn). Then there is a constant C > 0 such that

∣∣bE(x,r) − bE(x,t)
∣∣ 6 C‖b‖∗(1 + ln

t

r

)
for 0 < 2r < t, (1.2)

and for any q > 1, it is easy to see that

‖b− (b)E‖Lq(E) 6 Cr
γ
q ‖b‖∗

(
1 + ln

t

r

)
,

where C is independent of b, x, r and t.

On the other hand, a recent trend in the theory of parabolic Morrey spaces is to generalize the param-
eter λ to a function so that they can include the endpoint case and some generalized integral operators.
In this sense, the definition of parabolic generalized Morrey spaces is given as follows.

Definition 1.8 ([8, parabolic generalized Morrey space]). Let ϕ(x, r) be a positive measurable function on
Rn × (0,∞) and 1 6 p < ∞. Then, the parabolic generalized Morrey space Mp,ϕ,P ≡ Mp,ϕ,P(R

n) is
defined by

Mp,ϕ,P ≡Mp,ϕ,P(R
n) =

 f ∈ Lloc
p (Rn) :

‖f‖Mp,ϕ,P = sup
x∈Rn, r>0

ϕ(x, r)−1 |E(x, r)|−
1
p ‖f‖Lp(E(x,r)) <∞

 .

Furthermore, the weak parabolic generalized Morrey space WMp,ϕ,P ≡WMp,ϕ,P(R
n) is defined by

WMp,ϕ,P ≡WMp,ϕ,P(R
n) =

 f ∈WLloc
p (Rn) :

‖f‖WMp,ϕ,P = sup
x∈Rn, r>0

ϕ(x, r)−1 |E(x, r)|−
1
p ‖f‖WLp(E(x,r)) <∞

 .

According to this definition, we recover the parabolic Morrey space Mp,λ,P and the weak parabolic

Morrey space WMp,λ,P under the choice ϕ(x, r) = r
λ−γ
p :

Mp,λ,P =Mp,ϕ,P |
ϕ(x,r)=r

λ−γ
p

, WMp,λ,P =WMp,ϕ,P |
ϕ(x,r)=r

λ−γ
p

.
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We now make some conventions. Throughout this paper, we use the symbol F . G to denote that
there exists a positive constant C which is independent of the essential variables and not necessarily the
same one in each occurrence such that F 6 CG. If F . G and G . Fwe then write F ≈ G and say that F and
G are equivalent. For a fixed p ∈ [1,∞), p′ denotes the dual or conjugate exponent of p, namely, p′ = p

p−1

and we use the convention 1′ =∞ and∞′ = 1. Moreover, ‖Ω‖Ls(Sn−1) :=

( ∫
Sn−1

|Ω (z′)|s dσ (z′)

) 1
s

.

Gürbüz [8] proved Spanne type inequalities for parabolic sublinear operators with a rough kernel
generated by parabolic fractional integrals and their commutators on parabolic generalized Morrey spaces
under generic size conditions which are satisfied by most of the operators in harmonic analysis. His
results can be summarized as follows.

Theorem 1.9 ([8, Spanne type result]). Let Ω ∈ Ls(Sn−1), 1 < s 6 ∞, be At-homogeneous of degree zero.
Let 0 < α < γ, 1 6 p < γ

α , 1
q = 1

p − α
γ . Let TPΩ,α be a parabolic sublinear operator satisfying condition (1.5)

in Theorem 1.11 below, bounded from Lp(R
n) to Lq(Rn) for p > 1, and bounded from L1(R

n) to WLq(Rn) for
p = 1. Let also, for s′ 6 p, p 6= 1, the pair (ϕ1,ϕ2) satisfies the condition

∞∫
r

essinf
t<τ<∞ϕ1(x, τ)τ

γ
p

t
γ
q+1

dt 6 Cϕ2(x, r),

and for q < s the pair (ϕ1,ϕ2) satisfies the condition

∞∫
r

essinf
t<τ<∞ϕ1(x, τ)τ

γ
p

t
γ
q−

γ
s+1

dt 6 Cϕ2(x, r)r
γ
s ,

where C does not depend on x and r.
Then the operator TPΩ,α is bounded from Mp,ϕ1,P to Mq,ϕ2,P for p > 1 and from M1,ϕ1,P to WMq,ϕ2,P for

p = 1. Moreover, we have for p > 1 ∥∥TPΩ,αf
∥∥
Mq,ϕ2,P

. ‖f‖Mp,ϕ1,P
,

and for p = 1 ∥∥TPΩ,αf
∥∥
WMq,ϕ2,P

. ‖f‖M1,ϕ1,P
.

Theorem 1.10 ([8, Spanne type result]). Let Ω ∈ Ls(Sn−1), 1 < s 6 ∞, be At-homogeneous of degree zero.
Let [b, TPΩ,α] be a parabolic sublinear operator satisfying condition (1.9) in Theorem 1.15 below and bounded from
Lp(R

n) to Lq(Rn). Let 1 < p <∞, 0 < α < γ
α , 1

q = 1
p − α

γ and b ∈ BMOP (Rn). Let also, for s′ 6 p, the pair
(ϕ1,ϕ2) satisfies the condition

∞∫
r

(
1 + ln

t

r

) essinf
t<τ<∞ϕ1(x, τ)τ

γ
p

t
γ
q+1

dt 6 Cϕ2(x, r),

and for q < s the pair (ϕ1,ϕ2) satisfies the condition

∞∫
r

(
1 + ln

t

r

) essinf
t<τ<∞ϕ1(x, τ)τ

γ
p

t
γ
q−

γ
s+1

dt 6 Cϕ2(x, r)r
γ
s ,

where C does not depend on x and r.
Then the operator [b, TPΩ,α] is bounded from Mp,ϕ1,P to Mq,ϕ2,P. Moreover,∥∥[b, TPΩ,α]f

∥∥
Mq,ϕ2,P

. ‖b‖∗ ‖f‖Mp,ϕ1,P
.
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Now motivated by the above background, it is natural to ask whether we can prove Adams type in-
equalities for parabolic sublinear operators with a rough kernel generated by parabolic fractional integrals
and their commutators on the parabolic generalized Morrey spaces. The purpose of this paper is to find
the answer to this question.

Our results can be stated as follows.

Theorem 1.11 (Adams type result). Suppose that Ω ∈ Ls(Sn−1), 1 < s 6 ∞, is At-homogeneous of degree
zero. Let 1 6 s′ < p < q <∞, 0 < α < γ

p and let ϕ (x, t) satisfies the conditions

sup
r<t<∞ t−γ essinf

t<τ<∞ϕ (x, τ) tγ 6 Cϕ (x, r) (1.3)

and ∞∫
r

tαϕ (x, t)
1
p
dt

t
6 Cr−

αp
q−p , (1.4)

where C does not depend on x ∈ Rn and r > 0. Let also TPΩ,α be a parabolic sublinear operator satisfying conditions

|TPΩ,αf(x)| .
∫

Rn

|Ω(x− y)|

ρ (x− y)γ−α
|f(y)|dy (1.5)

and ∣∣TPΩ,α
(
fχE(x0,r)

)
(x)
∣∣ . rαMP

Ωf (x) (1.6)

for any ellipsoid E (x0, r).
Then the operator TPΩ,α is bounded from M

p,ϕ
1
p ,P

to M
q,ϕ

1
q ,P

for p > 1 and from M
1,ϕ

1
p ,P

to WM
q,ϕ

1
q ,P

for

p = 1. Moreover, we have for p > 1 ∥∥TPΩ,αf
∥∥
M
q,ϕ

1
q ,P

. ‖f‖M
p,ϕ

1
p ,P

,

and for p = 1 ∥∥TPΩ,αf
∥∥
WM

q,ϕ
1
q ,P

. ‖f‖M
1,ϕ

1
p ,P

.

Corollary 1.12. Under the conditions of Theorem 1.11, the operators MP
Ω,α and IPΩ,α are bounded from M

p,ϕ
1
p ,P

to M
q,ϕ

1
q ,P

for p > 1 and from M1,ϕ,P to WM
q,ϕ

1
q ,P

for p = 1.

In the case of ϕ (x, r) = rλ−γ, 0 < λ < γ, from Theorem 1.11 we get the following Adams type result
(see [1]) for the parabolic fractional maximal and integral operators with rough kernels.

Corollary 1.13. Suppose that Ω ∈ Ls(Sn−1), 1 < s 6 ∞, is At-homogeneous of degree zero. Let 0 < α < γ,
1 < p < γ

α , s′ < p < q < ∞, 0 < λ < γ− αp and 1
p − 1

q = α
γ−λ . Then the operators MP

Ω,α and IPΩ,α are
bounded from Mp,λ,P to Mq,λ,P.

In the case of Ω = 1 from Theorem 1.11, we get the following.

Corollary 1.14. Let 1 6 p <∞, 0 < α < γ
p , p < q, and let also ϕ (x, t) satisfies conditions (1.3) and (1.4). Then

the operators Mα and Tα are bounded from M
p,ϕ

1
p ,P

to M
q,ϕ

1
q ,P

for p > 1 and from M1,ϕ,P to WM
q,ϕ

1
q ,P

for
p = 1.

In the case of ϕ (x, t) = tλ−γ, 0 < λ < γ from Corollary 1.14 we get Theorem 1.2.

Theorem 1.15 (Adams type result). Suppose that Ω ∈ Ls(Sn−1), 1 < s 6 ∞, is At-homogeneous of degree
zero. Let 1 < s′ < p < q <∞, 0 < α < γ

p , b ∈ BMOP (Rn) and let ϕ (x, t) satisfies the conditions

sup
r<t<∞ t

−γ
p

(
1 + ln

t

r

)p
essinf
t<τ<∞ϕ (x, τ) t

γ
p 6 Cϕ (x, r) , (1.7)
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and ∞∫
r

(
1 + ln

t

r

)
tαϕ (x, t)

1
p
dt

t
6 Cr−

αp
q−p , (1.8)

where C does not depend on x ∈ Rn and r > 0. Let also [b, TPΩ,α] be a sublinear operator satisfying conditions

|[b, TPΩ,α]f(x)| .
∫

Rn

|b(x) − b(y)|
|Ω(x− y)|

ρ (x− y)γ−α
|f(y)|dy (1.9)

and ∣∣[b, TPΩ,α]
(
fχE(x0,r)

)
(x)
∣∣ . rαMP

Ω,bf (x) (1.10)

for any ellipsoid E (x0, r). Then the operator [b, TPΩ,α] is bounded from M
p,ϕ

1
p ,P

to M
q,ϕ

1
q ,P

. Moreover∥∥[b, TPΩ,α]f
∥∥
M
q,ϕ

1
q ,P

. ‖b‖∗ ‖f‖M
p,ϕ

1
p ,P

.

Corollary 1.16. Under the conditions of Theorem 1.15, the operators MP
Ω,b,α and [b, IPΩ,α] are bounded from

M
p,ϕ

1
p ,P

to M
q,ϕ

1
q ,P

.

In the case of Ω = 1, from Theorem 1.15, we get the following.

Corollary 1.17. Let 1 < p < ∞, 0 < α < γ
p , p < q, b ∈ BMOP (Rn) and let also ϕ (x, t) satisfies conditions

(1.7) and (1.8). Then the operators MP
b,α and [b, IPα] are bounded from M

p,ϕ
1
p ,P

to M
q,ϕ

1
q ,P

.

2. Proofs of the main results

2.1. Proof of Theorem 1.11
Proof. Let 1 < p <∞, 0 < α < γ

p , p < q, and f ∈M
p,ϕ

1
p

. Set E = E (x0, r) for the parabolic ball (ellipsoid)

centered at x0 and of radius r and 2E = E (x0, 2r). We represent f as

f = f1 + f2, f1 (y) = f (y)χ2kE (y) , f2 (y) = f (y)χ(2kE)C (y) , r > 0 (2.1)

and have ∣∣TPΩ,αf (x)
∣∣ 6 ∣∣TPΩ,αf1 (x)

∣∣+ ∣∣TPΩ,αf2 (x)
∣∣ .

For TPΩ,αf2 (x) , we have ∣∣TPΩ,αf2 (x)
∣∣ . ∫

(2kE)C

|f (y)| |Ω (x− y)|

ρ (x− y)γ−α
dy.

By Fubini’s theorem, Hölder’s inequality and (2.5) in [8], we get

∫
(2kE)C

|f (y)| |Ω (x− y)|

ρ (x− y)γ−α
dy ≈

∫
(2kE)C

|f (y)| |Ω (x− y)|

∞∫
ρ(x−y)

dt

tγ+1−αdy

≈
∞∫

2kr

∫
2kr6ρ(x−y)6t

|f (y)| |Ω (x− y)|dy
dt

tγ+1−α

.

∞∫
2kr

∫
E(x,t)

|f (y)| |Ω (x− y)|dy
dt

tγ+1−α
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.

∞∫
2kr

‖f‖Lp(E(x,t)) ‖Ω (x− ·)‖Ls(E(x,t)) |E (x, t)|1−
1
p−

1
s

dt

tγ+1−α

.

∞∫
2kr

‖f‖Lp(E(x,t)) ‖Ω (x− ·)‖Ls(E(x,t)) |E (x, t)|1−
1
p−

1
s

dt

tγ+1−α (2.2)

.

∞∫
2kr

‖f‖Lp(E(x,t)) ‖Ω (x− ·)‖Ls(E(x,t)) |E (x, t)|1−
1
p−

1
s

dt

tγ+1−α

.

∞∫
2kr

tα−
γ
p−1 ‖f‖Lp(E(x,t)) dt.

Then from conditions (1.4), (1.6), and inequality (2.2) we get

∣∣TPΩ,αf (x)
∣∣ . rαMP

Ωf (x) +

∞∫
2kr

tα−
γ
p−1 ‖f‖Lp(E(x,t)) dt

6 rαMP
Ωf (x) + ‖f‖M

p,ϕ
1
p ,P

∞∫
2kr

tαϕ (x, t)
1
p
dt

t
. rαMP

Ωf (x) + r
− αp
q−p ‖f‖M

p,ϕ
1
p ,P

.

Hence, choosing r =

‖f‖Mp,ϕ
1
p ,P

MP
Ωf(x)


q−p
αq

for every x ∈ Rn, we have

∣∣TPΩ,αf (x)
∣∣ . (MP

Ωf (x)
)p
q ‖f‖

1−p
q

M
p,ϕ

1
p ,P

.

Consequently the statement of the theorem follows in view of the boundedness of the maximal oper-
ator with rough kernel MP

Ω in M
p,ϕ

1
p ,P

provided by Theorem 4.2 in [7] in virtue of condition (1.3).

Therefore, we obtain∥∥TPΩ,αf
∥∥
M
q,ϕ

1
q ,P

= sup
x∈Rn, t>0

ϕ (x, t)−
1
q t−

γ
q
∥∥TPΩ,αf

∥∥
Lq(E(x,t))

. ‖f‖
1−p

q

M
p,ϕ

1
p ,P

sup
x∈Rn, t>0

ϕ (x, t)−
1
q t−

γ
q
∥∥MP

Ωf
∥∥pq
Lp(E(x,t))

= ‖f‖
1−p

q

M
p,ϕ

1
p ,P

(
sup

x∈Rn, t>0
ϕ (x, t)−

1
p t−

γ
p
∥∥MP

Ωf
∥∥
Lp(E(x,t))

)p
q

= ‖f‖
1−p

q

M
p,ϕ

1
p ,P

∥∥MP
Ωf
∥∥pq
M
p,ϕ

1
p ,P

. ‖f‖M
p,ϕ

1
p ,P

,

if 1 < p < q <∞ and∥∥TPΩ,αf
∥∥
M
q,ϕ

1
q ,P

= sup
x∈Rn, t>0

ϕ (x, t)−
1
q t−

γ
q
∥∥TPΩ,αf

∥∥
WLq(E(x,t))

. ‖f‖
1− 1

q

M1,ϕ,P
sup

x∈Rn, t>0
ϕ (x, t)−

1
q t−

γ
q
∥∥MP

Ωf
∥∥ 1
q

WL1(E(x,t))

= ‖f‖
1− 1

q

M1,ϕ,P

(
sup

x∈Rn, t>0
ϕ (x, t)−1 t−n

∥∥MP
Ωf
∥∥
WL1(E(x,t))

) 1
q



F. Gürbüz, J. Nonlinear Sci. Appl., 11 (2018), 798–811 807

= ‖f‖
1− 1

q

M1,ϕ,P

∥∥MP
Ωf
∥∥ 1
q

WM1,ϕ,P
. ‖f‖M1,ϕ,P

,

if 1 < q <∞.
Hence, the proof is completed.

Before giving the proof of Theorem 1.15, we introduce some lemmas and theorems about the estimates
of the parabolic sublinear commutator of the parabolic fractional maximal operator with rough kernel on
the parabolic generalized Morrey spaces. In other words, for Adam type result, we need commutator
of the parabolic fractional maximal operator with rough kernel. Therefore, this commutator will also be
discussed.

Lemma 2.1. Let Ω ∈ Ls(Sn−1), 1 < s 6 ∞, be At-homogeneous of degree zero. Let 1 < p < ∞, 0 < α < γ
p ,

1
q = 1

p − α
γ , b ∈ BMOP (Rn) and MP

Ω,b,α is bounded from Lp(R
n) to Lq(Rn). Then for s′ < p, the inequality

‖MP
Ω,b,αf‖Lq(E(x0,r)) . ‖b‖∗ r

γ
q sup
t>2kr

(
1 + ln

t

r

)
t−

γ
q ‖f‖Lp(E(x0,t))

holds for any ellipsoid E(x0, r) and for all f ∈ Lloc
p (Rn).

Proof. Let 1 < p <∞, 0 < α < γ
p , and 1

q = 1
p − α

γ . As in the proof of Theorem 1.11, we represent f in form
(2.1) and we have ∥∥MP

Ω,b,αf
∥∥
Lq(E)

6
∥∥MP

Ω,b,αf1
∥∥
Lq(E)

+
∥∥MP

Ω,b,αf2
∥∥
Lq(E)

.

From the boundedness of MP
Ω,b,α from Lp(R

n) to Lq(Rn) (see Corollary 0.1 in [8]) it follows that:∥∥MP
Ω,b,αf1

∥∥
Lq(E)

6
∥∥MP

Ω,b,αf1
∥∥
Lq(Rn)

. ‖b‖∗ ‖f1‖Lp(Rn) = ‖b‖∗ ‖f‖Lp(2kE) .

For x ∈ E, we have

MP
Ω,b,αf2 (x) . sup

t>0

1

|E(x, t)|1−
α
γ

∫
E(x,t)

|Ω (x− y)| |b (y) − b (x)| |f2 (y)|dy

= sup
t>0

1

|E(x, t)|1−
α
γ

∫
E(x,t)∩(2kE)C

|Ω (x− y)| |b (y) − b (x)| |f (y)|dy.

Let x be an arbitrary point from E. If E (x, t) ∩
{
(2kE)C

}
6= ∅, then t > r. Indeed, if y ∈ E (x, t) ∩{

(2kE)C
}

, then t > ρ (x− y) > 1
kρ (x0 − y) − ρ (x0 − x) > 2r− r = r.

On the other hand, E (x, t) ∩
{
(2kE)C

}
⊂ E (x0, 2kt). Indeed, y ∈ E (x, t) ∩

{
(2kE)C

}
, then we get

ρ (x0 − y) 6 kρ (x− y) + kρ (x0 − x) < k (t+ r) < 2kt.
Hence

MP
Ω,b,αf2 (x) = sup

t>0

1

|E(x, t)|1−
α
n

∫
E(x,t)∩(2kE)C

|Ω (x− y)| |b (y) − b (x)| |f (y)|dy

6 (2k)γ−α sup
t>r

1

|E(x0, 2kt)|1−
α
γ

∫
E(x0,2kt)

|Ω (x− y)| |b (y) − b (x)| |f (y)|dy

= (2k)γ−α sup
t>2kr

1

|E(x0, t)|1−
α
γ

∫
E(x0,t)

|Ω (x− y)| |b (y) − b (x)| |f (y)|dy.
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Therefore, for all x ∈ E, we have

MP
Ω,b,αf2 (x) 6 (2k)γ−α sup

t>2kr

1

|E(x0, t)|1−
α
γ

∫
E(x0,t)

|Ω (x− y)| |b (y) − b (x)| |f (y)|dy.

Then

∥∥MP
Ω,b,αf2

∥∥
Lq(E)

.

∫
E

 sup
t>2kr

1

|E(x0, t)|1−
α
γ

∫
E(x0,t)

|Ω (x− y)| |b (y) − b (x)| |f (y)|dy


q

dx


1
q

6

∫
E

 sup
t>2kr

1

|E(x0, t)|1−
α
γ

∫
E(x0,t)

|Ω (x− y)| |b (y) − bE| |f (y)|dy


q

dx


1
q

+

∫
E

 sup
t>2kr

1

|E(x0, t)|1−
α
γ

∫
E(x0,t)

|Ω (x− y)| |b (x) − bE| |f (y)|dy


q

dx


1
q

= J1 + J2.

Let us estimate J1,

J1 = r
γ
q sup
t>2kr

1

|E(x0, t)|1−
α
γ

∫
E(x0,t)

|Ω (x− y)| |b (y) − bE| |f (y)|dy

≈ r
γ
q sup
t>2kr

tα−γ
∫

E(x0,t)

|Ω (x− y)| |b (y) − bE| |f (y)|dy.

Applying Hölder’s inequality, by (2.8) in [8], (1.1), (1.2), and 1
µ + 1

p + 1
s = 1, we get

J1 . r
γ
q sup
t>2kr

tα−γ
∫

E(x0,t)

|Ω (x− y)|
∣∣b (y) − bE(x0,t)

∣∣ |f (y)|dy
+ r

γ
q sup
t>2kr

tα−γ
∣∣bE(x0,r) − bE(x0,t)

∣∣ ∫
E(x0,t)

|Ω (x− y)| |f (y)|dy

. r
γ
q sup
t>2kr

tα−
γ
p ‖Ω (·− y)‖Ls(E(x0,t))

∥∥(b (·) − bE(x0,t)
)∥∥
Lµ(E(x0,t)) ‖f‖Lp(E(x0,t))

+ r
γ
q sup
t>2kr

tα−γ
∣∣bE(x0,r) − bE(x0,t)

∣∣ ‖Ω (·− y)‖Ls(E(x0,t)) ‖f‖Lp(E(x0,t)) |E (x0, t)|1−
1
p−

1
s

. ‖b‖∗ r
γ
q sup
t>2kr

(
1 + ln

t

r

)
t−

γ
q ‖f‖Lp(E(x0,t)).

In order to estimate J2 note that

J2 =
∥∥(b (·) − bE(x0,t)

)∥∥
Lq(E(x0,t)) sup

t>2kr
tα−γ

∫
E(x0,t)

|Ω (x− y)| |f (y)|dy.

By (1.1), we get

J2 . ‖b‖∗ r
γ
q sup
t>2kr

tα−γ
∫

E(x0,t)

|Ω (x− y)| |f (y)|dy.
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Thus, by (2.2) and (2.5) in [8],
J2 . ‖b‖∗ r

γ
q sup
t>2kr

t−
γ
q ‖f‖Lp(E(x0,t)) .

Summing up J1 and J2, for all p ∈ (1,∞) we get∥∥MP
Ω,b,αf2

∥∥
Lq(E)

. ‖b‖∗ r
γ
q sup
t>2kr

t−
γ
q

(
1 + ln

t

r

)
‖f‖Lp(E(x0,t)) .

Finally, combining
∥∥∥MP

Ω,b,αf1

∥∥∥
Lq(E)

and
∥∥∥MP

Ω,b,αf2

∥∥∥
Lq(E)

we have the following

∥∥MP
Ω,b,αf

∥∥
Lq(E)

. ‖b‖∗ ‖f‖Lp(2kE) + ‖b‖∗ r
γ
q sup
t>2kr

t−
γ
q

(
1 + ln

t

r

)
‖f‖Lp(E(x0,t))

. ‖b‖∗ r
γ
q sup
t>2kr

t−
γ
q

(
1 + ln

t

r

)
‖f‖Lp(E(x0,t)) ,

which completes the proof.

Similar to Lemma 2.1 the following lemma can also be proved.

Lemma 2.2. LetΩ ∈ Ls(Sn−1), 1 < s 6∞, beAt-homogeneous of degree zero. Let 1 < p <∞, b ∈ BMOP (Rn)
and MP

Ω,b is bounded on Lp(Rn). Then for s′ < p, the inequality

‖MP
Ω,bf‖Lp(E(x0,r)) . ‖b‖∗ r

γ
q sup
t>2kr

(
1 + ln

t

r

)
t−

γ
p ‖f‖Lp(E(x0,t))

holds for any ellipsoid E(x0, r) and for all f ∈ Lloc
p (Rn).

The following theorem is true.

Theorem 2.3. Let Ω ∈ Ls(Sn−1), 1 < s 6 ∞, be At-homogeneous of degree zero. Let 1 < p < ∞, 0 6 α < γ
p ,

1
q = 1

p − α
γ , b ∈ BMOP (Rn) and let (ϕ1,ϕ2) satisfies the condition

sup
r<t<∞ t

α−γ
p

(
1 + ln

t

r

)
essinf
t<τ<∞ϕ1 (x, τ) t

γ
p 6 Cϕ2 (x, r) ,

where C does not depend on x and r. Then for s′ < p, the operator MP
Ω,b,α is bounded from Mp,ϕ1,P to Mq,ϕ2,P.

Moreover ∥∥MP
Ω,b,αf

∥∥
Mq,ϕ2,P

. ‖b‖∗ ‖f‖Mp,ϕ1,P
.

Proof. The statement of Theorem 2.3 follows by Lemma 2.1 in the same manner as in the proof of Theorem
4.1 in [7].

In the case of α = 0 and p = q, we get the following corollary by Theorem 2.3.

Corollary 2.4. Let Ω ∈ Ls(Sn−1), 1 < s 6 ∞, be At-homogeneous of degree zero. Let 1 < p < ∞, b ∈
BMOP (R

n) and let (ϕ1,ϕ2) satisfies the condition

sup
r<t<∞ t

−γ
p

(
1 + ln

t

r

)
essinf
t<τ<∞ϕ1 (x, τ) t

γ
p 6 Cϕ2 (x, r) ,

where C does not depend on x and r. Then for s′ < p, the operator MP
Ω,b is bounded from Mp,ϕ1,P to Mq,ϕ2,P.

Moreover ∥∥MP
Ω,bf

∥∥
Mq,ϕ2,P

. ‖b‖∗ ‖f‖Mp,ϕ1,P
.

Now we are ready to return to the proof of Theorem 1.15.
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2.2. Proof of Theorem 1.15
Proof. Let 1 < p < ∞, 0 < α < γ

p and 1
q = 1

p − α
γ , p < q and f ∈ M

p,ϕ
1
p ,P

. As in the proof of Theorem

1.11, we represent f in form (2.1) and have∥∥[b, TPΩ,α]f
∥∥
Lq(E)

6
∥∥[b, TPΩ,α]f1

∥∥
Lq(E)

+
∥∥[b, TPΩ,α]f2

∥∥
Lq(E)

.

For x ∈ E we have ∣∣[b, TPΩ,α]f2 (x)
∣∣ . ∫

(2kE)C

|Ω (x− y)|

ρ (x− y)γ−α
|b (y) − b (x)| |f (y)|dy.

Analogously to Section 2.1, for all p ∈ (1,∞) and x ∈ E, we get

∣∣[b, TPΩ,α]f2 (x)
∣∣ . ‖b‖∗ ∞∫

2kr

(
1 + ln

t

r

)
tα−

γ
p−1 ‖f‖Lp(E(x,t)) dt. (2.3)

Then from conditions (1.8), (1.10), and inequality (2.3) we get

∣∣[b, TPΩ,α]f (x)
∣∣ . ‖b‖∗rαMP

Ω,bf (x) + ‖b‖∗

∞∫
2kr

(
1 + ln

t

r

)
tα−

γ
p−1 ‖f‖Lp(E(x,t)) dt

6 ‖b‖∗rαMP
Ω,bf (x) + ‖b‖∗ ‖f‖M

p,ϕ
1
p ,P

∞∫
2kr

(
1 + ln

t

r

)
tαϕ (x, t)

1
p
dt

t

. ‖b‖∗rαMP
Ω,bf (x) + ‖b‖∗r

− αp
q−p ‖f‖M

p,ϕ
1
p ,P

.

Hence choosing r =

‖f‖Mp,ϕ
1
p ,P

MP
Ω,bf(x)


q−p
αq

for every x ∈ Rn, we have

∣∣[b, TPΩ,α]f (x)
∣∣ . ‖b‖∗ (MP

Ω,bf (x)
)p
q ‖f‖

1−p
q

M
p,ϕ

1
p ,P

.

Consequently the statement of the theorem follows in view of the boundedness of the commutator of
the parabolic maximal operator with rough kernel MP

Ω,b in M
p,ϕ

1
p ,P

provided by Corollary 2.4 in virtue

of condition (1.7).
Therefore, we have∥∥[b, TPΩ,α]f

∥∥
M
q,ϕ

1
q ,P

= sup
x∈Rn, t>0

ϕ (x, t)−
1
q t−

γ
q
∥∥[b, TPΩ,α]f

∥∥
Lq(E(x,t))

. ‖b‖∗ ‖f‖
1−p

q

M
p,ϕ

1
p ,P

sup
x∈Rn, t>0

ϕ (x, t)−
1
q t−

γ
q
∥∥MP

Ω,bf
∥∥pq
Lp(E(x,t))

= ‖b‖∗ ‖f‖
1−p

q

M
p,ϕ

1
p ,P

(
sup

x∈Rn, t>0
ϕ (x, t)−

1
p t−

γ
p
∥∥MP

Ω,bf
∥∥
Lp(E(x,t))

)p
q

= ‖b‖∗ ‖f‖
1−p

q

M
p,ϕ

1
p ,P

∥∥MP
Ω,bf

∥∥pq
M
p,ϕ

1
p

. ‖b‖∗ ‖f‖M
p,ϕ

1
p ,P

.
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