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Abstract
This paper is concerned with the existence of multiple positive almost periodic solutions for a nonlinear integral equation.

By using Avery-Henderson and Leggett-Williams multiple fixed point theorems on cones, the existence theorems of multiple
positive almost periodic solutions for the addressed integral equation are established under some sufficient assumptions. An
example is given to illustrate our results.
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1. Introduction and preliminaries

Recently, the existence of almost periodic type solutions for various kinds of integral equations has
been of great interest for many authors (see, e.g., [1–6, 8, 10–13, 15, 17, 18] and references therein). Es-
pecially, in [1, 17], Agarwal, O’Regan, and Meehan studied the existence of single or multiple almost
periodic solutions for the following Fredholm integral equation:

y(t) = h(t) +

∫
R

k(t, s)f(s,y(s))ds, t ∈ R. (1.1)

Stimulated by [1, 17], in this paper, we aim to investigate the existence of multiple positive almost
periodic solutions for the following more general integral equation:

y(t) = e(t,y(t))
[
h(t) +

∫
R

k(t, s)f(s,y(s))ds
]

, t ∈ R. (1.2)
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As for the existence of single periodic and almost periodic solutions, the authors in [10, 11, 15, 16] have
made extensive studies on equation (1.2) and its variants. However, it seems that there is few result
concerning multiple periodic and almost periodic solutions for equation (1.2). In fact, to the best of our
knowledge, even for equation (1.1), the work of Agarwal and O’Regan [1] is the only known result about
multiple periodic and almost periodic solutions. That is another motivation of this work. We will utilize
Avery-Henderson and Leggett-Williams multiple fixed point theorems on cones to obtain our main results.
This is different from [1], where ”single fixed point” theorem was used twice to obtain the existence of
two periodic and almost periodic solutions.

Throughout the rest of this paper, if there is no special statement, we denote by R the set of real
numbers, by X a Banach space, by C(R,X) the set of all continuous functions from R to X, and denote by
Lip(R×R, R+) the set of all functions f : R×R → R+ satisfying that there exists a constant L > 0 such
that

|f(t, x) − f(t,y)| 6 L|x− y|, t ∈ R, x,y ∈ R.

Moreover, for every f ∈ Lip(R×R, R+),

Lf := sup
t∈R,x 6=y

|f(t, x) − f(t,y)|
|x− y|

.

Next, let us recall some notations about cones and two fixed point theorems. For more details, we
refer the reader to [7, 14].

Let X be a real Banach space. A closed convex set K in X is called a cone if the following conditions
are satisfied:

(i) if x ∈ K, then λx ∈ K for any λ > 0;

(ii) if x ∈ K and −x ∈ K, then x = 0.

A non-negative continuous functional ψ is said to be a concave on K if ψ is continuous and

ψ(µx+ (1 − µ)y) > µψ(x) + (1 − µ)ψ(y), x,y ∈ K, µ ∈ [0, 1].

Letting c1, c2, c3 be three positive constants, and φ be a nonnegative continuous functional on K, we denote

Kc1 = {y ∈ K : ||y|| < c1}, Kc1 = {y ∈ K : ||y|| 6 c1},

K(φ, c1) := {x ∈ K : φ(x) < c1}, K(φ, c1) := {x ∈ K : φ(x) 6 c1},
∂K(φ, c1) := {x ∈ K : φ(x) = c1}, K(φ, c2, c3) = {y ∈ K : c2 6 φ(y), ||y|| 6 c3}.

In addition, we call that φ is increasing on K if φ(x) > φ(y) for all x,y ∈ K with x− y ∈ K.

Lemma 1.1 ([7]). Let K be a cone in a real Banach space X, α and ϕ be two increasing, nonnegative, and continuous
functionals on K, and ρ be a nonnegative continuous functional on K with ρ(0) = 0 such that for some c > 0 and
M > 0,

ϕ(x) 6 ρ(x) 6 α(x), ‖x‖ 6Mϕ(x), x ∈ K(ϕ, c).

Moreover, suppose that there exists a completely continuous operator Φ : K(ϕ, c) → K and 0 < a < b < c such
that

ρ(λx) 6 λρ(x), 0 6 λ 6 1, x ∈ ∂K(ρ,b),

and

(i) ϕ(Φx) > c for all x ∈ ∂K(ϕ, c);
(ii) ρ(Φx) < b for all x ∈ ∂K(ρ,b);

(iii) K(α,a) 6= ∅ and α(Φx) > a for all x ∈ ∂K(α,a).
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Then Φ has at least two fixed points x1, x2 belonging to K(ϕ, c) such that

a < α(x1), ρ(x1) < b, and b < ρ(x2), ϕ(x2) < c.

Lemma 1.2 ([14]). Let K be a cone in a real Banach space X, c4 be a positive constant, Φ : Kc4 → Kc4 be a
completely continuous mapping, and ψ be a concave nonnegative continuous functional on K with ψ(u) 6 ||u|| for
all u ∈ Kc4 . Suppose that there exist three constants c1, c2, c3 with 0 < c1 < c2 < c3 6 c4 such that

(i) {u ∈ K(ψ, c2, c3) : ψ(u) > c2} 6= ∅, and ψ(Φu) > c2 for all u ∈ K(ψ, c2, c3);
(ii) ||Φu|| < c1 for all u ∈ Kc1 ;

(iii) ψ(Φu) > c2 for all u ∈ K(ψ, c2, c4) with ||Φu|| > c3.

Then Φ has at least three fixed points u1,u2,u3 in Kc4 . Furthermore, ||u1|| < c1 < ||u2||, and ψ(u2) < c2 < ψ(u3).

We also need to recall some notations and properties about almost periodic functions and equi-almost
periodic functions. For more details, we refer the reader to [9].

Definition 1.3. A set E ⊂ R is called relatively dense if there exists a number l > 0 such that

(a,a+ l)∩ E 6= ∅

for every a ∈ R.

Definition 1.4. A function f ∈ C(R,X) is called almost periodic if for every ε > 0 there exists a relatively
dense set T(f, ε) ⊂ R such that

‖f(t+ τ) − f(t)‖ < ε
for all t ∈ R and τ ∈ T(f, ε). We denote the set of all such functions by AP(R,X). Also, we denote
AP(R, R) by AP(R) for convenience.

Definition 1.5. A set F ⊂ C(R,X) is called equi-almost periodic if for every ε > 0, there exists a relatively
dense set T(F, ε) ⊂ R such that

‖f(t+ τ) − f(t)‖ < ε
for all f ∈ F, t ∈ R, and τ ∈ T(F, ε).

Definition 1.6. Let Ω ⊂ X. A continuous function f : R×Ω→ X is called almost periodic in t uniformly
for x ∈ Ω if for every ε > 0 and for every compact subset K ⊂ Ω, there exists a relatively dense set
T(f,K, ε) such that

‖f(t+ τ, x) − f(t, x)‖ < ε for all t ∈ R, x ∈ K, τ ∈ T(f,K, ε).

We denote by AP(R×Ω,X) the set of all such functions.

Remark 1.7. It is easy to see that f ∈ AP(R×Ω,X) is equivalent to the fact that for every compact subset
K ⊂ Ω, {f(·, x)}x∈K is equi-almost periodic.

Lemma 1.8 ([9]). The following assertions hold true:
(a) AP(R,X) is Banach space under the supremum norm;
(b) f,g ∈ AP(R, R) implies that f · g ∈ AP(R, R);
(c) f ∈ AP(R×Ω,X) and g ∈ AP(R,X) imply that f(·,g(·)) ∈ AP(R,X) provided that {g(t) : t ∈ R} ⊂ Ω;
(d) every finite set F ⊂ AP(R,X) is equi-almost periodic.

Lemma 1.9 ([9]). The necessary and sufficient condition that F ⊂ AP(R,X) be precompact is that the following
properties hold true:

(i) for every t ∈ R, {f(t) : f ∈ F} is precompact in X;
(ii) F is equi-continuous and equi-almost periodic.

Moreover, we clarify what is called Carathéodory function.

Definition 1.10. A function f : R×R → R is called a Carathéodory function if the map t → f(t,u) is
measurable for all u ∈ R, and the map u→ f(t,u) is continuous for almost all t ∈ R.
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2. Multiple almost periodic solutions

Throughout the rest of this paper, let 1 6 p 6 ∞, q be such that 1
p + 1

q = 1, and ξ,η, c,M be fixed
positive constants. Moreover, assume that

f(t, x) = ξf̃(t, x) + g(t, x), t, x ∈ R,

where f̃,g : R×R→ R+ are two Carathéodory functions satisfying the following assumptions:

(H0) e ∈ AP(R×R, R)
⋂
Lip(R×R, R+) and 0 < inf

t∈R,x∈R+
e(t, x) 6 sup

t∈R,x∈R+

e(t, x) < +∞.

(H1) For every r > 0, there exists a function µr ∈ Lp(R) such that |x| 6 r implies that f̃(t, x) 6 µr(t) for
almost all t ∈ R. In addition, there exists g ∈ Lp(R) such that g(t, x) > ηg(t) for all x > c and
almost all t ∈ R, and g(t, x) 6Mg(t) for all x ∈ R and almost all t ∈ R.

(H2) Let k : R×R → R+ be such that (i) there exists a function m ∈ Lq(R) such that |k(t, s)| 6 m(s)
for all t ∈ R and almost all s ∈ R; (ii) the map t → k(t, ·) is an almost periodic function from R to
Lq(R).

(H3) h ∈ AP(R), inf
t∈R

h(t) > 0 and η · inf
t∈R

∫
R
k(t, s)g(s)ds+ inf

t∈R
h(t) > c

inf
t∈R,x∈R+

e(t,x) .

(H4) There exists b ∈ (0, c) such that g(t, x) 6 g(t) for all x 6 b and almost all t ∈ R, and

‖h‖+ ξ‖m‖q‖µb‖p + ‖m‖q‖g‖p <
b

sup
t∈R,x∈R+

e(t, x)
.

Theorem 2.1. Assume that (H0)-(H4) hold. Then, there exists L∗ > 0 such that equation (1.2) has at least two
positive almost periodic solutions provided that Le < L∗ and

lim
r→+∞ ‖µr‖pr = 0.

Proof. Since
lim
σ→0

σ‖µ c
σ
‖p = 0, inf

t∈R
h(t) > 0,

and
0 < inf

t∈R,x∈R+
e(t, x) 6 sup

t∈R,x∈R+

e(t, x) < +∞,

one can choose σ ∈ (0, 1) such that

σ‖h‖+ σ ·M‖m‖q‖g‖p + σ · ξ‖m‖q‖µ c
σ
‖p 6 inf

t∈R
h(t) ·

inf
t∈R,x∈R+

e(t, x)

sup
t∈R,x∈R+

e(t, x)
. (2.1)

Now, we introduce a set
K = {u ∈ AP(R) : inf

t∈R
u(t) > σ‖u‖}.

It is not difficult to verify that K is a cone in AP(R). Denote

ϕ(u) = inf
t∈R

u(t), ρ(u) = α(u) = ‖u‖, u ∈ K.

It is clear that ϕ, ρ and α are increasing, nonnegative, and continuous functionals on K with ρ(0) = 0.
Moreover, we have

‖u‖ 6 1
σ

inf
t∈R

u(t) = σ−1ϕ(u), ρ(λu) = λρ(u)

for all u ∈ K and 0 6 λ 6 1.
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Fix y ∈ K(ϕ, c). Define an operator Φy on AP(R) by

(Φyu)(t) = e(t,u(t))
[
h(t) +

∫
R

k(t, s)f(s,y(s))ds
]

, t ∈ R, u ∈ AP(R).

By (H1) and (H2), it is not difficult to see that t →
∫

R
k(t, s)f(s,y(s))ds belongs to AP(R). Then, noting

that h ∈ AP(R) and e(·,u(·)) ∈ AP(R) for every u ∈ AP(R), by Lemma 1.8, we conclude that Φy maps
AP(R) into AP(R). Moreover, for every u, v ∈ AP(R), by using (H1) and the fact that ‖y‖ 6 c

σ since
y ∈ K(ϕ, c), we have

|(Φyu)(t) − (Φyv)(t)| 6 Le|u(t) − v(t)| ·
∣∣∣∣h(t) + ∫

R

k(t, s)f(s,y(s))ds
∣∣∣∣

6 Le‖u− v‖ ·
[
‖h‖+

∫
R

m(s)
(
ξµ c

σ
(s) +Mg(s)

)
ds

]
6 Le‖u− v‖ ·

[
‖h‖+ ξ‖µ c

σ
‖p‖m‖q +M‖g‖p‖m‖q

]
.

Letting L∗ = 1
‖h‖+ξ‖µ c

σ
‖p‖m‖q+M‖g‖p‖m‖q , we get

‖Φyu−Φyv‖ 6
Le

L∗
‖u− v‖,

which means that Φy has a unique fixed point uy ∈ AP(R) provided that Le < L∗.
Now, define an operator Φ on K(ϕ, c) by Φy = uy, i.e.,

(Φy)(t) = uy(t) = e(t,uy(t))
[
h(t) +

∫
R

k(t, s)f(s,y(s))ds
]

, t ∈ R, y ∈ K(ϕ, c).

Next, let us verify all the assumptions of Lemma 1.1. First, let us prove that Φ maps K(ϕ, c) into K. From
the above proof, we know that Φy = uy ∈ AP(R) for all y ∈ K(ϕ, c). For every y ∈ K(ϕ, c), since ‖y‖ 6 c

σ ,
by (H1) and (2.1), we get

(Φu)(t) > inf
t∈R,x∈R+

e(t, x) · inf
t∈R

h(t) > σ · sup
t∈R,x∈R+

e(t, x)
[
‖h‖+ ‖m‖q

(
ξ‖µ c

σ
‖p +M‖g‖p

)]
> σ‖Φu‖

for all t ∈ R. Thus, Φu ∈ K. This means that Φ is a mapping from K(ϕ, c) to K.
Next, let us show that Φ : K(ϕ, c)→ K is completely continuous. Let yn → y in K(ϕ, c). Noting that

|(Φyn)(t) − (Φy)(t)|

=

∣∣∣∣e(t, (Φyn)(t)) [h(t) + ∫
R

k(t, s)f(s,yn(s))ds
]
− e(t, (Φy)(t))

[
h(t) +

∫
R

k(t, s)f(s,y(s))ds
]∣∣∣∣

6

∣∣∣∣e(t, (Φyn)(t)) [h(t) + ∫
R

k(t, s)f(s,yn(s))ds
]
− e(t, (Φyn)(t))

[
h(t) +

∫
R

k(t, s)f(s,y(s))ds
]∣∣∣∣

+

∣∣∣∣e(t, (Φyn)(t)) [h(t) + ∫
R

k(t, s)f(s,y(s))ds
]
− e(t, (Φy)(t))

[
h(t) +

∫
R

k(t, s)f(s,y(s))ds
]∣∣∣∣

6 |e(t, (Φyn)(t))|
∫

R

k(t, s)|f(s,yn(s)) − f(s,y(s))|ds+
Le

L∗
|(Φyn)(t) − (Φy)(t)|

6 sup
t∈R,x∈R+

e(t, x)
∫

R

m(s)|f(s,yn(s)) − f(s,y(s))|ds+
Le

L∗
‖Φyn −Φy‖,

which yields that

‖Φyn −Φy‖ 6 L∗

L∗ − Le
· sup
t∈R,x∈R+

e(t, x) ·
∫

R

m(s)|f(s,yn(s)) − f(s,y(s))|ds.
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Then, noting that |f(s,yn(s)) − f(s,y(s))| 6 2µ c
σ
(s) for almost all s ∈ R, by using the dominated conver-

gence theorem, we conclude that Φyn → Φy. Thus, Φ is continuous. In order to show that Φ is compact,
by Lemma 1.9, we only need to verify that {(Φy)(t) : y ∈ K(ϕ, c)} is uniformly bounded, equi-continuous,
and equi-almost periodic. The uniform boundedness of {(Φy)(t) : y ∈ K(ϕ, c)} obviously holds. For all
t1, t2 ∈ R, and y ∈ K(ϕ, c), we have

|(Φy)(t1) − (Φy)(t2)|

=

∣∣∣∣e(t1, (Φy)(t1))

[
h(t1) +

∫
R

k(t1, s)f(s,y(s))ds
]
− e(t2, (Φy)(t2))

[
h(t2) +

∫
R

k(t2, s)f(s,y(s))ds
]∣∣∣∣

6

∣∣∣∣e(t1, (Φy)(t1))

[
h(t1) +

∫
R

k(t1, s)f(s,y(s))ds
]
− e(t1, (Φy)(t1))

[
h(t2) +

∫
R

k(t2, s)f(s,y(s))ds
]∣∣∣∣

+

∣∣∣∣e(t1, (Φy)(t1))

[
h(t2) +

∫
R

k(t2, s)f(s,y(s))ds
]
− e(t2, (Φy)(t2))

[
h(t2) +

∫
R

k(t2, s)f(s,y(s))ds
]∣∣∣∣

6 sup
t∈R,x∈R+

e(t, x)
[
|h(t1) − h(t2)|+

∫
R

|k(t1, s) − k(t2, s)|µ c
σ
(s)ds

]
+ |e(t1, (Φy)(t1)) − e(t2, (Φy)(t2))| ·

[
‖h‖+ ‖m‖q

(
ξ‖µ c

σ
‖p +M‖g‖p

)]
6 sup
t∈R,x∈R+

e(t, x)
[
|h(t1) − h(t2)|+ ‖k(t1, ·) − k(t2, ·)‖q‖µ c

σ
‖p
]

+
Le|(Φy)(t1) − (Φy)(t2)|+ |e(t1, (Φy)(t1)) − e(t2, (Φy)(t1))|

L∗
,

which gives that

|(Φy)(t1) − (Φy)(t2)| 6

sup
t∈R,x∈R+

e(t, x) · L∗

L∗ − Le
·
[
|h(t1) − h(t2)|+ ‖k(t1, ·) − k(t2, ·)‖q‖µ c

σ
‖p
]

+
|e(t1, (Φy)(t1)) − e(t2, (Φy)(t1))|

L∗ − Le
.

Combining this with the fact that h(t) is uniformly continuous on R, the map t → k(t, ·) is uniformly
continuous on R, e(·, x) is uniformly continuous on R uniformly for x belonging to bounded sets, we
conclude that {(Φy)(t) : y ∈ K(ϕ, c)} is equi-continuous. In addition, noting that h ∈ AP(R), the map
t → k(t, ·) is an almost periodic function from R to Lq(R), and e ∈ AP(R×R, R), it follows from (d) of
Lemma 1.8 that for every ε > 0,

T(h, ε)
⋂
T(k̃, ε)

⋂
T(e,RΦ, ε)

is relatively dense in R, where

k̃(t) = k(t, ·), RΦ =

0, sup
t∈R,y∈K(ϕ,c)

(Φy)(t)

 .

Also, similar to the above proof of equi-continuity, one can obtain

|(Φy)(t) − (Φy)(t+ τ)|

6

sup
t∈R,x∈R+

e(t, x) · L∗

L∗ − Le
·
[
|h(t) − h(t+ τ)|+ ‖k(t, ·) − k(t+ τ, ·)‖q‖µ c

σ
‖p
]

+
|e(t, (Φy)(t)) − e(t+ τ, (Φy)(t))|

L∗ − Le
, t ∈ R, τ ∈ T(h, ε)

⋂
T(k̃, ε)

⋂
T(e,RΦ, ε),
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which means that {(Φy)(t) : y ∈ K(ϕ, c)} is equi-almost periodic. This completes the proof ofΦ : K(ϕ, c)→
K being completely continuous.

It remains to show that the assumptions (i)-(iii) of Lemma 1.1 hold. Let y ∈ ∂K(ϕ, c). Then, y(t) >
inf
t∈R

y(t) = ϕ(y) = c for all t ∈ R, which means that g(t,y(t)) > ηg(t) for all t ∈ R by (H1). Combining

this with (H3), we conclude that

ϕ(Φy) = inf
t∈R

(
e(t,uy(t))

[
h(t) +

∫
R

k(t, s)f(s,y(s))ds
])

> inf
t∈R,x∈R+

e(t, x) ·
[

inf
t∈R

∫
R

k(t, s)f(s,y(s))ds+ inf
t∈R

h(t)

]
> inf
t∈R,x∈R+

e(t, x) ·
[

inf
t∈R

∫
R

k(t, s)g(s,y(s))ds+ inf
t∈R

h(t)

]
> inf
t∈R,x∈R+

e(t, x) ·
[
η inf
t∈R

∫
R

k(t, s)g(s)ds+ inf
t∈R

h(t)

]
> c,

which means that (i) of Lemma 1.1 holds. Let y ∈ ∂K(ρ,b). Noting that ‖y‖ = b, by (H4), g(t,y(t)) 6 g(t)
for all t ∈ R. Then, again by (H4), we have

ρ(Φy) = sup
t∈R

∣∣∣∣e(t,uy(t)) [h(t) + ∫
R

k(t, s)f(s,y(s))ds
]∣∣∣∣

6 sup
t∈R,x∈R+

e(t, x) ·
[
‖h‖+

∫
R

|m(s)| · |ξµb(s) + g(s)|ds
]

6 sup
t∈R,x∈R+

e(t, x) · [‖h‖+ ξ‖m‖q‖µb‖p + ‖m‖q‖g‖p] < b.

This shows that (ii) of Lemma 1.1 holds. Finally, by choosing

a =
1
2

min
{

inf
t∈R,x∈R+

e(t, x) · inf
t∈R

h(t),b
}

,

it is easy to verify (iii) of Lemma 1.1.
Now, by applying Lemma 1.1, there exist at least two fixed points u1,u2 ∈ K(ϕ, c), which satisfy

ui(t) = e(t,ui(t))
[
h(t) +

∫
R

k(t, s)f(s,ui(s))ds
]

, t ∈ R, i = 1, 2,

i.e., u1,u2 are two almost periodic solutions to equation (1.2). Moreover, by Lemma 1.1, there holds

‖u1‖, ‖u2‖ > a,

which yields that
u1(t),u2(t) > σa > 0, t ∈ R.

Thus, the two almost periodic solutions u1,u2 are both positive solutions.

Interestingly, by applying Lemma 1.2, we can get a ”better” result for equation (1.2).

Theorem 2.2. Assume that (H0)-(H4) hold. Then, there exists L∗ > 0 such that equation (1.2) has at least three
positive almost periodic solutions provided that Le < L∗ and

lim
r→+∞ ‖µr‖pr = 0.
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Proof. Since lim
r→+∞ ‖µr‖pr = 0, one can choose σ ∈ (0, 1) such that (2.1) holds and

sup
t∈R,x∈R+

e(t, x) ·
[
‖h‖+ ξ‖m‖q‖µ c

σ
‖p +M‖m‖q‖g‖p

]
6
c

σ
. (2.2)

Let K and Φ be the same as in the proof of Theorem 2.1, i.e.,

K = {y ∈ AP(R) : inf
t∈R

y(t) > σ‖y‖},

and

(Φy)(t) = uy(t) = e(t,uy(t))
[
h(t) +

∫
R

k(t, s)f(s,y(s))ds
]

, t ∈ R, y ∈ Kc4 .

Then, it follows from the proof of Theorem 2.1 that Φ : Kc4 → K is completely continuous.
Denote

c1 = b, c2 = c, c3 = c4 =
c

σ
.

Then, 0 < c1 < c2 < c3 6 c4. Denote ψ(u) = inf
t∈R

u(t) for all u ∈ K, t ∈ R. It is easy to see that ψ is a

concave nonnegative continuous functional on K and ψ(u) 6 ‖u‖.
For every u ∈ Kc4 , we have u ∈ K and ‖u‖ 6 c4. By (H1) and (2.2), we get

‖Φ(u)‖ 6 sup
t∈R,x∈R+

e(t, x) · [‖h‖+ ξ‖m‖q‖µc4‖p +M‖m‖q‖g‖p] 6 c4.

On the other hand, for every u ∈ Kc4 , it follows from (2.1) that

(Φu)(t) > inf
t∈R,x∈R+

e(t, x) · inf
t∈R

h(t) > σ sup
t∈R,x∈R+

e(t, x) · [‖h‖+ ‖m‖q (ξ‖µc4‖p +M‖g‖p)] > σ‖Φu‖

for all t ∈ R. Thus, we show that Φ maps Kc4 into Kc4 . Similarly, for every u ∈ Kc1 , since ‖u‖ 6 c1 = b,
we have g(t,u(t)) 6 g(t) for all t ∈ R, and

‖Φ(u)‖ 6 sup
t∈R,x∈R+

e(t, x) ·
(
‖h‖+ ξ‖m‖q‖µc1‖p + ‖m‖q‖g‖p

)
< b = c1,

i.e., the condition (ii) of Lemma 1.2 holds. By the definition of K and c3, it is easy to see that the condition
(iii) of Lemma 1.2 holds. In addition, for every u ∈ K(ψ, c2, c3), we have inf

t∈R
u(t) = ψ(u) > c2 = c, which

means g(t,u(t)) > ηg(t) for all t ∈ R, and thus by (H3)

ψ(Φu) > inf
t∈R,x∈R+

e(t, x) ·
(

inf
t∈R

∫
R

k(t, s)f(s,u(s))ds+ inf
t∈R

h(t)

)
> inf
t∈R,x∈R+

e(t, x) ·
(
η inf
t∈R

∫
R

k(t, s)g(s)ds+ inf
t∈R

h(t)

)
> c = c2.

This verifies (i) of Lemma 1.2. Then, it follows from Lemma 1.2 that Φ has at least three fixed points in
Kc4 , and thus equation (1.2) has at least three nonnegative almost periodic solutions v1, v2, v3. Moreover,
by Lemma 1.2, there holds

||v1|| 6 b < ||v2||, ψ(v2) < c < ψ(v3).

Noting that inf
t∈R

h(t) > 0 and inf
t∈R,x∈R+

e(t, x) > 0, we know that v1, v2, v3 are not 0. So

vi(t) > σ‖vi‖ > 0, i = 1, 2, 3, t ∈ R,

which means v1, v2, v3 are three positive almost periodic solutions to equation (1.2).
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Remark 2.3. It is needed to note that the σ in Theorem 2.2 is less than or equal to the σ in Theorem 2.1.
Thus, in most cases, the L∗ in Theorem 2.2 is less than or equal to the L∗ in Theorem 2.1. So we do not
think that the assumptions of Theorem 2.2 are equal to the assumptions of Theorem 2.1.

Example 2.4. Let e(t, x) = 1 + λ sin2[x cos t+ x cosπt], λ > 0 is a constant,

h(t) = 2 + cos2 πt+ cos2 t, k(t, s) =
(2 + | cos

√
2t+ cos t|)e−s

2

4
,

f̃(t, x) =

√
|x| sin2(xet

2
)

20(1 + t2)
, g(t, x) =


e−t

2
, x 6 9,

(19x− 170)e−t
2
, 9 < x < 10,

20e−t
2
, x > 10,

and
p = 1, q =∞, ξ = 1, η =M = 20, c = 10.

It is easy to see that (H0) holds with Le 6 2λ. By some direct calculations, one can show that (H1) holds
with

µr(t) =

√
r

20(1 + t2)
, g(t) = e−t

2
.

Moreover, we have

‖µr‖1 =
π

20
√
r, lim

r→∞ ‖µr‖1

r
= 0.

By choosing m(s) = e−s
2
, (H2) holds. It follows from

inf
t∈R,x∈R+

e(t, x) ·
[
η inf
t∈R

∫
R

k(t, s)g(s)ds+ inf
t∈R

h(t)

]
> 5
√

2π+ 2 > 10

that (H3) holds. Let b = 9. Then (H4) holds since

sup
t∈R,x∈R+

e(t, x) · [‖h‖+ ξ‖m‖q‖µb‖p + ‖m‖q‖g‖p] 6 (1 + λ)(4 +
3π
20

+
√
π) < 9 = b,

provided that λ < 9
4+ 3π

20 +
√
π
− 1. By using Theorem 2.2, there exists L∗ > 0 such that equation (1.2) have

three positive almost periodic solutions if λ < L∗

2 .
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[13] H.-S. Ding, G. M. N’Guérékata, A note on the existence of positive bounded solutions for an epidemic model, Appl. Math.

Lett., 26 (2013), 881–885. 1
[14] R. W. Leggett, L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana

Univ. Math. J., 28 (1979), 673–688. 1, 1.2
[15] W. Long, W.-H. Pan, Asymptotically almost periodic solution to a class of Volterra difference equations, Adv. Difference

Equ., 2012 (2012), 12 pages. 1, 1
[16] W. Long, X.-J. Zheng, L. Li, Existence of periodic solutions for a class of functional integral equations, Electron. J. Qual.

Theory Differ. Equ., 2012 (2012), 11 pages. 1
[17] D. O’Regan, M. Meehan, Periodic and almost periodic solutions of integral equations, Appl. Math. Comput., 105 (1999),

121–136. 1, 1
[18] A. Sadrati, A. Zertiti, Existence and uniqueness of positive almost periodic solutions for systems of nonlinear delay integral

equations, Electron. J. Differential Equations, 2015 (2015), 12 pages. 1

https://www.sciencedirect.com/science/article/abs/pii/S0096300315002350
https://www.sciencedirect.com/science/article/abs/pii/S0096300315002350
https://link.springer.com/article/10.1155/2009/127510
https://link.springer.com/article/10.1155/2009/127510
https://mathscinet.ams.org/mathscinet-getitem?mr=1820851
https://mathscinet.ams.org/mathscinet-getitem?mr=1820851
https://ejde.math.txstate.edu/Volumes/2015/100/abstr.html
https://ejde.math.txstate.edu/Volumes/2015/100/abstr.html
https://bookstore.ams.org/chel-331/
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1267
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1267
https://ejde.math.txstate.edu/
https://ejde.math.txstate.edu/
https://www.sciencedirect.com/science/article/pii/S0307904X15006782?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0307904X15006782?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0893965913000967?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0893965913000967?via%3Dihub
http://www.iumj.indiana.edu/docs/28046/28046.asp
http://www.iumj.indiana.edu/docs/28046/28046.asp
https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2012-199
https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2012-199
http://www.math.u-szeged.hu/ejqtde/
http://www.math.u-szeged.hu/ejqtde/
https://www.sciencedirect.com/science/article/abs/pii/S0096300398100954
https://www.sciencedirect.com/science/article/abs/pii/S0096300398100954
https://ejde.math.txstate.edu/Volumes/2015/116/sadrati.pdf
https://ejde.math.txstate.edu/Volumes/2015/116/sadrati.pdf

	Introduction and preliminaries
	Multiple almost periodic solutions

