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Abstract
We introduce the concept of the strong-positive cone in a lattice-ordered group (G,6, ·) and define the continuous lattice-

ordered group. We also investigate the C-topology and bi-C-topology given on a lattice-ordered group. The main results
obtained in this paper are as follows: (1) (G,6, ·) is a continuous lattice-ordered group if and only if (G,6) is a continuous
poset; (2) for the bi-C-topology τ in a continuous lattice-ordered group (G,6, ·), (G, ·, τ) is a topological group and (G,6, τ) is a
topological lattice.
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1. Introduction

Lattice-ordered groups (also called l-groups) are an important class of partially ordered algebraic
systems. The study of l-groups was initiated by Birkhoff [9, 12] and followed by many other researchers
[6, 16, 24]. The monographs [10, 15] gave a systematic account of the basic theory of l-groups. Recently,
l-groups have cropped up in many other areas of mathematics, for instance, in the theory of bézout
domains [36, 37], ordered fields [7, 15], category theory [11], topology theory [5, 8, 21] and others [22].

In the 1960s, Scott introduced domain theory [31], aiming to provide mathematical models for com-
puter program languages. Later, domain theory has got a great development in the areas of abstract
theories of computation [28, 32], the semantics of programming languages [29, 34], logic and lambda
calculus [3, 33], and in other branches of mathematics [14, 17]. Now, domain theory is still hot in lambda
calculus and programming languages [1, 2], stable domain theory [35, 38], category theory [20, 23], and
has many applications in classical mathematics [18, 25, 26, 30].

Based on the characteristics of l-group and domain, we introduce continuous l-group, aiming to estab-
lish the application of domain theory in algebraic structure and also broaden the study space of l-group
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theory. As we all know that domain is a continuous dcpo and the approximation is the core of continuity.
Therefore, in the course of the study of continuity, scholars pay more attention to the infinite case. And,
by Proposition 2.1 given soon afterwards, we know that an l-group G is an infinite set except that G = {e}.
Thus, in the research of l-groups, scholars tend to study in the infinite set. Due to this consideration, we
come up with an idea that we need to introduce continuity in l-group. In the field of mathematics, topol-
ogy theory has always been the focus of our concern. Especially in recent years, topologies on l-group
have received much more attention [8, 21, 22]. In this paper, the C-topology and bi-C-topology τ given on
an l-group are studied. We also obtain the result that if (G,6, ·) is a continuous l-group, then (G, ·, τ) is a
topological group and (G,6, τ) is a topological lattice.

The main task of this paper reads as follows. In Section 2, we shall first briefly introduce l-group and
related basic facts. In Section 3, we introduce the strong-positive cone C and give the definition of the
continuous l-group. And then some properties of the strong-positive cone and continuous l-group are
studied. Finally, we investigate the C-topology and bi-C-topology defined on an l-group.

2. Preliminaries

In this section, we shall recall some notions and notations used in this paper. Let X be a set and τ
a family of subsets of X. Then τ is called a topology on X if it satisfies: (1) both the empty set and X
are elements of τ; (2) any union of elements of τ is an element of τ; (3) any intersection of finitely many
elements of τ is an element of τ. If τ is a topology on X, then the pair (X, τ) is called a topological space.
The members of τ are called open sets in X. A subset of X is said to be closed if its complement is in τ.
A basis B for a topological space (X, τ) is a collection of open sets in τ such that every open set in τ can
be written as a union of elements of B. A function or map from one topological space to another is called
continuous if the inverse image of any open set is open.

Let P be a set. An order (a partial order) on P is a binary relation 6 on P such that, for all x,y, z ∈ P,
(1) x 6 x, (2) x 6 y and y 6 x imply x = y, (3) x 6 y and y 6 z imply x 6 z, are satisfied. A set P
equipped with an order relation 6 is said to be a partially ordered set (poset). A poset P is called a lattice
if the infimum and supermum of any pair of elements in P exist. A poset P is called a complete lattice if
the infimum and supermum of any subset of P exist. Let D be a non-empty subset of a poset P. Then D is
said to be directed if, for every pair of elements x,y ∈ D, there exists z ∈ D such that x 6 z and y 6 z. A
subset A ⊆ P is called an upper set if for every x ∈ A, y ∈ P with x 6 y, we have y ∈ A. Dually, a subset
A ⊆ P is called a lower set if for every x ∈ A, y ∈ P with x > y, we have y ∈ A. A subset A ⊆ P is called a
filter if A is a filtered upper set. For two elements x,y in a poset P, x∨y, x∧y denote the supermum and
infimum of {x,y}, respectively and for every subset A of P,

∨
A,

∧
A denote the supermum and infimum

of A, respectively. For x ∈ P, we write ↓x = {a ∈ P : a 6 x} and ↑x = {a ∈ P : x 6 a}.
A lattice-ordered group (G,6, ·) is a group (G, ·) with a binary relation 6 such that (G,6) is a lattice

and satisfies: x 6 y implies z ·x 6 z ·y and x ·z 6 y ·z for any x,y, z ∈ G. A quantale (S,6, ·) is a semigroup
(S, ·) with a binary relation 6 such that (S,6) is a complete lattice and satisfies: x · (

∨
i∈I
yi) =

∨
i∈I

(x · yi)

and (
∨
i∈I
yi) · x =

∨
i∈I

(yi · x). In the following paper, e represents the identity element of a group G. For

any x ∈ G, A,B ⊆ G, we write x ·A = {x ·a : a ∈ A}, A · x = {a · x : a ∈ A}, A ·B = {a · b : a ∈ A,b ∈ B} and
A−1 = {a−1 : a ∈ A}. Sometimes we will note an l-group (G,6, ·) as G.

Proposition 2.1. Let (G,6, ·) be an l-group. Then G = {e} or |G| is infinite, where |G| denotes the number of
elements of G.

Proof. It is obvious that G = {e} is an l-group. Assume that |G| > 1. Since G is a lattice, there exist a,b ∈ G
such that a < b. Denote c = a−1 · b and so c ∈ G, c > e. Then we can construct an infinite subset
{xn : n ∈ N} of G. Let x1 = c · c, x2 = x1 · x1, . . ., xn = xn−1 · xn−1, . . .. Now we will show that for
any n ∈ N, xn > e and xn is an increasing sequence. Since c > e, we have xn = c2n > c > e. Because
xn = xn−1 · xn−1 > xn−1, we have {xn} is an increasing sequence. Therefore {xn : n ∈ N} is an infinite
subset of G. Whence G = {e} or |G| is infinite.
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Definition 2.2 ([15, 24]). The element x of an l-group G is positive if x > e. The set of all positive elements
of G is called the positive cone.

Definition 2.3 ([17, 18]). Let P be a poset. For every x,y ∈ P, we say x� y if, for every directed subset D
of P for which

∨
D exists and y 6

∨
D, there exists d ∈ D such that x 6 d.

P is called a continuous poset, if for each x ∈ P, {y ∈ P : y� x} is directed and x =
∨
{y ∈ P : y� x}.

Proposition 2.4 ([24]). Let G be an l-group. Then (x∨ y)−1 = x−1 ∧ y−1 and (x∧ y)−1 = x−1 ∨ y−1 hold for
any x,y ∈ G.

Proposition 2.5 ([15, 24]). Let G be an l-group. If D is a directed subset of G with
∨
D exists, then for any

a,b ∈ G, a ·D · b = {a · d · b : d ∈ D} is directed and
∨
(a ·D · b) = a · (

∨
D) · b.

Proposition 2.6 ([15]). Let G be an l-group.

(1) If A,B ⊆ G with
∨
A,

∨
B exist, then

∨
(A ·B) =

∨
A ·

∨
B.

(2) If A,B ⊆ G with
∧
A,

∧
B exist, then

∧
(A ·B) =

∧
A ·

∧
B.

Proposition 2.7 ([15, 24]). Let G be an l-group. If D is a directed subset of G with
∨
D exists, then D−1 is a

filtered set and
∧
(D−1) = (

∨
D)−1. Dually, if F is a filtered subset of G with

∧
F exists, then F−1 is a directed set

and
∨
(F−1) = (

∧
F)−1.

Proposition 2.8 ([27]). Let X be a set and B a family of subsets of X. B is a basis of a topology of X if it satisfies:

(1)
⋃
{B : B ∈ B} = X;

(2) for any B1,B2 ∈ B and x ∈ B1 ∩B2, there exists B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2.

Definition 2.9 ([4]). (G, ·, τ(G)) is called a topological group if it satisfies:

(1) (G, ·) is a group and τ(G) is a topology on G;
(2) the map f : G×G→ G as mapping (x,y) to x · y is continuous with respect to τ(G×G) and τ(G);
(3) the map g : G→ G as mapping x to x−1 is continuous with respect to τ(G).

Definition 2.10 ([19]). (L,6, τ(L)) is called a topological lattice if it satisfies:

(1) (L,6) is a lattice and τ(L) is a topology on L;
(2) the map f : L× L→ L as mapping (x,y) to x∨ y is continuous with respect to τ(L× L) and τ(L);
(3) the map g : L× L→ L as mapping (x,y) to x∧ y is continuous with respect to τ(L× L) and τ(L).

3. Continuous lattice-ordered group

In this section, we introduce the strong-positive cone which is a subset of the positive cone of an l-
group. Furthermore, we study many properties of the strong-positive cone and give some good examples.
Based on the strong-positive cone, we put forward the definition of continuous l-group and show that the
direct product of two continuous l-groups is also a continuous l-group.

Definition 3.1. Let G be an l-group with the positive cone P. An x ∈ P is called a strong-positive element if
for any directed subset D of G with

∨
D exists and x =

∨
D, D∩ P 6= ∅ holds. The set of all strong-positive

elements in G is called the strong-positive cone.

In domain theory, for elements x,y in a poset L, we say x � y if, for every directed subset D of L for
which

∨
D exists and y 6

∨
D, there exists d ∈ D such that x 6 d. So for an element x in an l-group, e� x

means that for every directed subset D of G for which
∨
D exists and x 6

∨
D, there exists d ∈ D such that

e 6 d, that is D∩P 6= ∅. Therefore, for an element x in an l-group, e� x implies that x is a strong-positive
element. However, if x is a strong-positive element in an l-group, then we can’t get that e � x according
to the definitions. In the following paper, you can see that “e� x” and “x is a strong-positive element” in
an l-group are equivalent because of the particularity of l-groups. This will greatly simplify the definition
of “�” in l-group and continuous l-groups. For a deeper understanding of the strong-positive cone in an
l-group, we give the following remark.
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Remark 3.2. Let G be an l-group with the positive cone P and the strong-positive cone C. x ∈ P\C if and
only if x ∈ P and there is a directed subset D of G\P with

∨
D exists and x =

∨
D.

Example 3.3.

(1) Let (Z,6,+) be the additive group with the standard order of integer number Z. (Z,6,+) is an
l-group. The positive cone is {x ∈ Z : x > 0} and the strong-positive cone is {x ∈ Z : x > 0}.

(2) Let (R,6,+) be the additive group with the standard order of R. Obviously, (R,6,+) is an l-group.
The positive cone is {x ∈ R : x > 0} and the strong-positive cone is {x ∈ R : x > 0}.

(3) Let (Q+,6, ·) be the multiplicative group of positive rationals with the standard order. Then (Q+,6, ·)
is an l-group. The positive cone of (Q+,6, ·) is {x ∈ Q+ : x > 1} and the strong-positive cone is
{x ∈ Q+ : x > 1}.

(4) Let (Rn,+) be the real n-space with the standard additive operator. The partial order is defined on
(Rn,+) by (x1, x2, . . . , xn) 6 (y1,y2, . . . ,yn) if xi 6 yi for 1 6 i 6 n. The positive cone of (Rn,6,+) is
{(x1, x2, . . . , xn) : xi > 0} and the strong-positive cone is {(x1, x2, . . . , xn) : xi > 0}.

It must be noted that, the strong-positive cone in an l-group may be empty, as you can see in the
example below.

Example 3.4. Let X be an infinite set, G = F(X, R) be a set of all functions f : X → R with the coordinate
order: f 6 g for f,g ∈ G if f(x) 6 g(x) for all x ∈ X. Then G is an l-group under the partial order 6 and
the addition: (f+ g)(x) = f(x) + g(x). The positive cone P of G is {f ∈ G : f(x) > 0 for every x ∈ X}. The
strong-positive cone C of G is empty.

Proof. Let f ∈ P. For any finite set F ⊆ X, define fF ∈ G with fF(x) = f(x) for x ∈ F and fF(x) = −1 for
x ∈ X\F. Consider D = {fF : F ⊆fin X}. It is obvious that D ⊆ G\P. For any fF1 , fF2 ∈ D, fF1 6 fF1

⋃
F2 and

fF2 6 fF1
⋃
F2 , so D is directed and

∨
D = f. By Remark 3.2, f ∈ P\C. Therefore the strong-positive cone C

is empty.

In the following paper, we study the l-group in which the strong-positive cone is nonempty.

Proposition 3.5. Let G be an l-group with the positive cone P and the strong-positive cone C. Then,

(1) C is an upper set;
(2) P ·C ⊆ C, C · P ⊆ C;
(3) for any x ∈ G, x−1 ·C · x ⊆ C;
(4) for any x ∈ G, x ·C = C · x and for any A ⊆ G, A ·C = C ·A.

Proof.

(1) Let x ∈ C, y ∈ G with x 6 y. It is obvious that y ∈ P. Let D be a directed subset of G with
∨
D

exists and y =
∨
D. By Proposition 2.5, D ′ = x · y−1 ·D is directed and

∨
D ′ = x. Since x ∈ C, we have

D ′ ∩ P 6= ∅ by Definition 3.1. That is, there exists d ∈ D such that x · y−1 · d ∈ P. So x · y−1 · d > e. Since
y · x−1 > e, we have d = (y · x−1) · (x · y−1 · d) > e. So D∩ P 6= ∅ and by Definition 3.1, y ∈ C. Therefore C
is an upper set.

(2) Let x ∈ P, y ∈ C. Then x · y > y. By (1), x · y ∈ C. Thus P ·C ⊆ C. Similarly, C · P ⊆ C.

(3) Let y ∈ C. It is obvious that x−1 · y · x ∈ P. Suppose that D is a directed subset of G with
∨
D exists

and x−1 · y · x =
∨
D. By Proposition 2.5, D ′ = {x · d · x−1 : d ∈ D} is directed and

∨
D ′ = y. So there

exists d ∈ D such that x · d · x−1 ∈ P by Definition 3.1. Hence d ∈ P and D∩ P 6= ∅. Thus x−1 · y · x ∈ C by
Definition 3.1. Therefore x−1 ·C · x ∈ C.

(4) Let x ∈ G, a ∈ C. By (3), x · a · x−1 ∈ C. So x · a = (x · a · x−1) · x ∈ C · x. Thus x ·C ⊆ C · x. Similarly,
C · x ⊆ x ·C. Therefore x ·C = C · x. Let A ⊆ G. Since for any x ∈ G, x ·C = C · x, we have A ·C = C ·A.
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Proposition 3.6. Let G be an l-group with the strong-positive cone C. For any x,y ∈ G, if x 6 y, then x ·C−1 ⊆
y ·C−1 and y ·C ⊆ x ·C.

Proof. Let x,y ∈ G with x 6 y. For any z ∈ x · C−1, we have z−1 · x ∈ C. Since x 6 y, we have
z−1 · x 6 z−1 · y. Thus z−1 · y ∈ C by Proposition 3.5 and z ∈ y · C−1. Therefore x · C−1 ⊆ y · C−1.
Since x 6 y, we have y−1 6 x−1. Hence y−1 · C−1 ⊆ x−1 · C−1. Because x−1 · C−1 = (C · x)−1, we have
(C · y)−1 ⊆ (C · x)−1 and C · y ⊆ C · x. Hence y ·C ⊆ x ·C by Proposition 3.5 (4).

Proposition 3.7. Let G be an l-group with the positive cone P and the strong-positive cone C. Then C is a filter.

Proof. By Proposition 3.5 (3), C is an upper set. Let x,y ∈ C. We will show that x∧ y ∈ C. Suppose
that D is a directed subset of G with

∨
D exists and

∨
D = x∧ y. Consider D1 = x · (x∧ y)−1 ·D. By

Proposition 2.5, D1 is directed and
∨
D1 = x. Since x ∈ C, we have D1 ∩ P 6= ∅. That is, there exists

d1 ∈ D such that x · (x∧ y)−1 · d1 ∈ P. Thus d1 > (x∧ y) · x−1. Similarly, there exists d2 ∈ D such that
d2 > (x∧ y) · y−1. Since D is directed, there exists d ∈ D such that d > (x∧ y) · x−1 and d > (x∧ y) · y−1.
So d · (x∧ y)−1 > x−1 and d · (x∧ y)−1 > y−1. Hence d · (x∧ y)−1 > x−1 ∨ y−1. By Proposition 2.4,
x−1 ∨ y−1 = (x∧ y)−1. So d · (x∧ y)−1 > (x∧ y)−1 and d > e. Thus D∩ P 6= ∅ and x∧ y ∈ C. Therefore
C is a filter.

Definition 3.8. Let G be an l-group with the strong-positive cone C. G is called a continuous l-group if,∧
C exists and e =

∧
C.

Comparing with the definition of continuous in domain theory, this definition is more simple and
one can judge whether an l-group is continuous more quickly. Of course, by Theorem 3.14 given soon
afterward, you can see these two definitions in an l-group are equivalent.

Example 3.9.

(1) Every totally ordered group is a continuous l-group.

(2) Let G be an l-group with the strong-positive cone C. If e ∈ C, then G is a continuous l-group.

(3) Consider the Example 3.3 (4). In (Rn,6,+), the strong-positive cone is {(x1, x2, · · · , xn) : xi > 0}. Since∧
{(x1, x2, · · · , xn) : xi > 0 for 1 6 i 6 n} = (0, 0, · · · , 0), (Rn,6,+) is a continuous l-group.

(4) Consider the Example 3.4. In (G,6,+), the strong-positive cone is empty. Since there does not exist
the largest element in (G,6,+), we have

∧
∅ does not exist. Thus (G,6,+) is not a continuous l-group.

Proposition 3.10. Let G be an l-group with the strong-positive cone C. If there exists a set F ⊆ C such that∧
F = e, then G is a continuous l-group.

Proof. It is obvious that e is a lower bound of C. Suppose that x is another lower bound of C. Since F ⊆ C,
we have e, x are lower bounds of F.

∧
F = e, so x 6 e. Thus e is the largest lower bound of C. Hence G is

a continuous l-group by Definition 3.8.

Proposition 3.11. Let G be a continuous l-group with the strong-positive cone C. Then for any x ∈ G, x ·C−1 is
directed and

∨
(x ·C−1) = x.

Proof. By Proposition 3.7, we have C is filtered. SinceG is a continuous l-group,
∧
C = e. So C−1 is directed

and
∨
C−1 = e by Proposition 2.7. Hence for any x ∈ G, the set x ·C−1 is directed and

∨
(x ·C−1) = x by

Proposition 2.5.

Proposition 3.12. Let G be a continuous l-group with the strong-positive cone C. For any x ∈ C, if D is a directed
subset of G with

∨
D exists and x =

∨
D, then D∩C 6= ∅.

Proof. Assume that x ∈ C and D is a directed subset of G with
∨
D exists and x =

∨
D. By Proposition

3.11, we have C−1 is directed and
∨
C−1 = e. So D ·C−1 is directed and

∨
(D ·C−1) = x by Proposition

2.6. Hence (D ·C−1) ∩ P 6= ∅ by Definition 3.1. That is, there exists d ∈ D,a ∈ C such that d · a−1 > e.
Thus d > a. Since C is an upper set by Proposition 3.5 (1), we have d ∈ C and D∩C 6= ∅.
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Proposition 3.13. Let G be a continuous l-group with the strong-positive cone C. Then C · C = {x1 · x2 : x1 ∈
C, x2 ∈ C} = C.

Proof. Since C ⊆ P, we have C ·C ⊆ P ·C ⊆ C by Proposition 3.5 (2). Thus C ·C ⊆ C. For any x ∈ C, x ·C−1

is directed and
∨
(x ·C−1) = x by Proposition 3.11. Hence (x ·C−1) ∩C 6= ∅ by Proposition 3.12. That is,

there exists a ∈ C such that x · a−1 ∈ C. Since x = (x · a−1) · a ∈ C · C, we have C ⊆ C · C. Therefore
C ·C = C.

Theorem 3.14. Let (G,6, ·) be an l-group. Then (G,6, ·) is a continuous l-group if and only if (G,6) is a
continuous poset.

Proof. Let P be the positive cone of G, C the strong-positive cone of G. We will show that for any x ∈ G,
{y ∈ G : y� x} = x ·C−1. Let y ∈ G with y� x. Assume that D is a directed subset of G with

∨
D exists

and y−1 · x =
∨
D. By Proposition 2.5, y ·D is directed and x =

∨
(y ·D). Hence there exists d ∈ D such

that y 6 y · d by Definition 2.3. So d ∈ P and D ∩ P 6= ∅. Thus y−1 · x ∈ C by Definition 3.1. Because
y = x · (y−1 · x)−1, we have y ∈ x ·C−1. Hence {y ∈ G : y � x} ⊆ x ·C−1. Let a ∈ C. We will show that
x · a−1 � x. Assume that D is a directed subset of G with

∨
D exists and x 6

∨
D. By Proposition 2.5,

a · (
∨
D)−1 ·D is directed and a =

∨
(a · (

∨
D)−1 ·D). So (a · (

∨
D)−1 ·D) ∩ P 6= ∅ by Definition 3.1. That

is, there exists d ∈ D such that a · (
∨
D)−1 · d > e. Hence d > (

∨
D) · a−1 > x · a−1. We have x · a−1 � x

by Definition 2.3. Thus x ·C−1 ⊆ {y ∈ G : y� x}. Therefore {y ∈ G : y� x} = x ·C−1.

“⇒ ” : Assume that (G,6, ·) is a continuous l-group. Then for any x ∈ G, x ·C−1 is a directed set and∨
(x ·C−1) = x by Proposition 3.11. Since {y ∈ G : y � x} = x ·C−1, we have {y ∈ G : y � x} is directed

and x =
∨
{y ∈ G : y� x}. Hence (G,6) is a continuous poset by Definition 2.3.

“⇐ ” : Since (G,6) is a continuous poset and for any x ∈ G, {y ∈ G : y � x} = x ·C−1, we have x ·C−1

is directed and x =
∨
(x · C−1). Hence e =

∨
C−1 by Proposition 2.5 and e =

∧
C by Proposition 2.7.

Therefore (G,6, ·) is a continuous l-group.

Proposition 3.15. Let (G1,61, ·) and (G2,62, ∗) be l-groups with the positive cones P1 and P2, respectively. Then
the direct product (G1×G2,6, ?) with (a1,b1) 6 (a2,b2) defined by a1 61 a2, b1 62 b2 and (a1,b1) ? (a2,b2) =
(a1 · b1,a2 ∗ b2) is an l-group and the positive cone of G1×G2 is P1× P2. If C1,C2 are the strong-positive cones of
G1,G2, respectively, then in G1 ×G2 the strong-positive cone C is C1 ×C2.

Proof. It is obvious that G1 ×G2 is an l-group and the positive cone is P1 × P2. Now we will show that
the strong-positive cone C = C1 ×C2. Let (x1, x2) ∈ C. Suppose that D1 is a directed subset of G1 with
x1 =

∨
D1. Then D1 × {x2} is a directed subset of G1 ×G2. Since (x1, x2) ∈ C, there exists d1 ∈ D1 such

that (d1, x2) ∈ P1 × P2 which implies d1 ∈ P1. Thus x1 ∈ C1. Similarly, x2 ∈ C2. Therefore C ⊆ C1 ×C2.
Let (x1, x2) ∈ C1 ×C2. Suppose that D1 ×D2 is a directed subset of G1 ×G2 with (x1, x2) =

∨
(D1 ×D2).

So D1 is a directed subset of G1 with x1 =
∨
D1 and D2 is a directed subset of G2 with x2 =

∨
D2. Since

(x1, x2) ∈ C1 × C2, D1 ∩ P1 6= ∅ and D2 ∩ P2 6= ∅. So (D1 ×D2) ∩ (P1 × P2) 6= ∅. Thus (x1, x2) ∈ C and
C1 ×C2 ⊆ C. Therefore C = C1 ×C2.

Theorem 3.16. Let (G1,61, ·) and (G2,62, ∗) be continuous l-groups. Then the direct product G1 × G2 is a
continuous l-group.

Proof. This result can be proved by Proposition 3.15.

4. A topology on lattice-ordered groups

In this section, the C-topology and bi-C-topology τ given on an l-group are studied. We investi-
gate some properties of these topologies and obtain that for a continuous l-group (G,6, ·), (G, ·, τ) is a
topological group and (G,6, τ) is a topological lattice.
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Proposition 4.1. Let G be an l-group with the strong-positive cone C. The sets of the form x ·C, x ∈ G, constitute
a basis of a topology on G (we call this topology the C-topology and denote it by β(G)).

Proof. Let x ∈ G and y ∈ x ·C−1. Then there exists a ∈ C such that y = x · a−1. Thus x = y · a ∈ y ·C ⊆⋃
{x ·C : x ∈ G}. Therefore G ⊆

⋃
{x ·C : x ∈ G} ⊆ G and G =

⋃
{x ·C : x ∈ G}. Let x,y ∈ G. Since G is an

l-group, x∨ y exists. By Proposition 3.6, (x∨ y) ·C ⊆ x ·C and (x∨ y) ·C ⊆ y ·C. Hence {x ·C : x ∈ G}
constitutes a basis of a topology on G by Proposition 2.8.

Example 4.2.

(1) Consider Example 3.3 (1). In (Z,6,+), the basis of the C-topology is {[x,+∞) : x ∈ Z}.

(2) Consider Example 3.3 (4). In (Rn,6,+), the basis of the C-topology is {(↑(x1, x2, . . . , xn)) \ (x1, x2, . . . ,
xn) : xi(16i6n) ∈ R}.

Proposition 4.3. Let G be an l-group with the strong-positive cone C.

(1) U ∈ β(G) if and only if U = U ·C.

(2) If U ∈ β(G), then x ·U ∈ β(G).
(3) If A is a closed set in β(G), then for every x ∈ G, x ·A is also a closed set.

Proof.

(1) “ ⇒ ” : Let U ∈ β(G). Then U =
⋃

x∈A⊆G
x · C = A · C by Proposition 4.1. So U · C = A · C · C. By

Proposition 3.13, C ·C = C. Hence U ·C = A ·C. Therefore U = U ·C.
“⇐ ” : Since U = U ·C =

⋃
u∈U

u ·C, we have U ∈ β(G) by Proposition 4.1.

(2) By (1), U = U ·C. Thus x ·U = x ·U ·C = (x ·U) ·C. Hence x ·U is also an open set by (1).

(3) We will show that x · (G\A) = G\(x · A). Let a ∈ G\A which implies a 6∈ A. So x · a 6∈ x · A,
that is x · a ∈ G\(x ·A). Thus x · (G\A) ⊆ G\(x ·A). Let a ∈ G\(x ·A) which implies a 6∈ x ·A. So
x−1 · a 6∈ A, that is x−1 · a ∈ G\A. Thus a = x · (x−1 · a) ∈ x · (G\A) and G\(x ·A) ⊆ x · (G\A). Therefore
x · (G\A) = G\(x ·A). Since A is a closed set, we have G\A is an open set. Thus x · (G\A) is also an open
set by (2). Hence G\(x ·A) is an open set and x ·A is a closed set.

Definition 4.4. A quantale G is called completely distributive if for any family {xj,k : j ∈ J,k ∈ K(j)} in G
the identity ∧

j∈J

∨
k∈K(j)

xj,k =
∨

f∈M

∧
j∈J
xj,f(j)

holds, where M is the set of choice functions defined on J with values f(j) ∈ K(j).

Proposition 4.5 ([13]). Let P be a non-empty poset. P is a complete lattice if and only if P has a least element and∨
S exists in P for any non-empty subset S of P.

Proposition 4.6. Let (G,6, ·) be an l-group with the strong-positive cone C. (β(G),⊆, ·) is a completely distribu-
tive quantale, where U1 ·U2 = {u1 · u2 : u1 ∈ U1,u2 ∈ U2} for any U1,U2 ∈ β(G).

Proof. By Proposition 4.5, we have (β(G),⊆) is a complete lattice in which for Ui(i∈I) ∈ β(G)∨
i∈I
Ui =

⋃
i∈I
Ui,

∧
i∈I
Ui =

⋃
{V ∈ β(G) : V ⊆

⋂
i∈I
Ui}.

For any U1,U2 ∈ β(G), U1 ·U2 = U1 · C ·U2 · C. By Proposition 3.5 (4), C ·U2 = U2 · C. So U1 ·U2 =
U1 · U2 · C · C. By Proposition 3.13, C · C = C. So U1 · U2 = U1 · U2 · C and by Proposition 4.3 (1),
U1 ·U2 ∈ β(G). Thus (β(G), ·) is a semigroup. Let A,Bi(i∈I) ∈ β(G). We have A · (

∨
i∈I
Bi) = A · (

⋃
i∈I
Bi) =
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A · (
⋃
i∈I
Bi) · C =

⋃
i∈I

(A · Bi · C) =
⋃
i∈I

(A · Bi) =
∨
i∈I

(A · Bi). Thus A · (
∨
i∈I
Bi) =

∨
i∈I

(A · Bi). Similarly,

(
∨
i∈I
Bi) ·A =

∨
i∈I

(Bi ·A). Therefore (β(G),⊆, ·) is a quantale.

Then we will show that G is completely distributive. For any family {Uj,k : j ∈ J,k ∈ K(j)} in G,
the inequality

∧
j∈J

∨
k∈K(j)

Uj,k >
∨

f∈M

∧
j∈J
Uj,f(j) holds in any complete lattice. So we only need to show

that
∧
j∈J

∨
k∈K(j)

Uj,k 6
∨

f∈M

∧
j∈J
Uj,f(j), i.e.,

∧
j∈J

∨
k∈K(j)

Uj,k ⊆
∨

f∈M

∧
j∈J
Uj,f(j). For any x ∈

∧
j∈J

∨
k∈K(j)

Uj,k,

there exists y ∈
∧
j∈J

∨
k∈K(j)

Uj,k such that x ∈ y · C by Proposition 4.3 (1). Since
∧
j∈J

∨
k∈K(j)

Uj,k =
⋃
{V ∈

β(G) : V ⊆
⋂
j∈J

(
∨

k∈K(j)

Uj,k)}, we have y ∈
∨

k∈K(j)

Uj,k for any j ∈ J. Because
∨

k∈K(j)

Uj,k =
⋃

k∈K(j)

Uj,k,

we conclude that for any j ∈ J there exists kj ∈ K(j) such that y ∈ Uj,kj
. We denote this kj by f(j). By

these choices we have found a function f ∈ M such that y ∈
⋂
j∈J
Uj,f(j). Since Uj,f(j) ∈ β(G), we have

y ·C ⊆ Uj,f(j) for any j ∈ J by Proposition 4.3 (1). Thus y ·C ⊆
⋂
j∈J
Uj,f(j). Because y ·C ∈ β(G), we have

y · C ⊆
∧
j∈J
Uj,f(j) =

⋃
{V ∈ β(G) : V ⊆

⋂
j∈J
Uj,f(j)}. Thus y · C ⊆

∨
f∈M

∧
j∈J
Uj,f(j) and x ∈

∨
f∈M

∧
j∈J
Uj,f(j).

Hence
∧
j∈J

∨
k∈K(j)

Uj,k ⊆
∨

f∈M

∧
j∈J
Uj,f(j). Therefore

∧
j∈J

∨
k∈K(j)

Uj,k =
∨

f∈M

∧
j∈J
Uj,f(j).

From the above discussion, we have (β(G),⊆, ·) is a completely distributive quantale.

Definition 4.7 ([18]). Let P be a poset. We say that U ⊆ P is Scott-open (open for the Scott topology of P)
if it satisfies the following two conditions:

(1) U is an upper set;
(2)

∨
D ∈ U implies D∩U 6= ∅, for any directed subset D of P with

∨
D exists.

Lemma 4.8 ([18]). Let P be a poset. For any x ∈ P, ↓x is closed in the Scott topology of P.

Theorem 4.9. Let G be an l-group with the strong-positive cone C. Then the following conditions are equivalent:

(1) ↓e is closed in the C-topology;
(2) G is a continuous l-group;
(3) the C-topology β(G) is equivalent to the Scott topology of (G,6).

Proof.

(1)⇒(2) Since C ⊆ P, e is a lower bound of C. Assume that x ∈ G is another lower bound of C. Then we
will show that x 6 e. Suppose x 
 e. By (1), G\↓e is open which contains x. So there exists y ∈ G\↓e such
that x ∈ y ·C by Proposition 4.3 (1). Thus y−1 · x ∈ C. Since x is a lower bound of C, we have x 6 y−1 · x.
Hence y 6 e which is in contradiction with y ∈ G\↓e. So x 6 e and e is the largest lower bound of C.
Therefore G is a continuous l-group.

(2)⇒(3) Let U ∈ β(G) and x ∈ U, y ∈ G with x 6 y. Then there exist u ∈ U, a ∈ C such that x = u · a
by Proposition 4.3 (1). Since x = u · a 6 y, we have a 6 u−1 · y. So u−1 · y ∈ C by Proposition 3.5 (1).
Thus y = u · (u−1 · y) ∈ u · C ⊆ U. Hence y ∈ U and U is an upper set. Assume that D is a directed
subset of G with

∨
D exists and

∨
D ∈ U. Then there exists u ∈ U such that

∨
D ∈ u ·C by Proposition 4.3

(1). So u−1 · (
∨
D) ∈ C. By Proposition 2.5, u−1 ·D is directed and

∨
(u−1 ·D) = u−1 · (

∨
D) ∈ C. Hence

(u−1 ·D)∩C 6= ∅ by Proposition 3.12. That is, there exists d ∈ D such that u−1 ·d ∈ C. Thus d ∈ u ·C ⊆ U
and D∩U 6= ∅. Therefore U is Scott open.

Conversely, let U be Scott open. Suppose that x ∈ U,a ∈ C. Then x · a > x and x · a ∈ U because U is
an upper set. Thus U ·C ⊆ U. By Proposition 3.11, for any x ∈ G, x ·C−1 is directed and

∨
(x ·C−1) = x.

Hence (x · C−1) ∩ U 6= ∅ by Proposition 4.7. That is, there exists c ∈ C such that x · c−1 ∈ U. So
x = (x · c−1) · c ∈ U · c ⊆ U ·C. Thus U ⊆ U ·C. Hence U = U ·C and U ∈ β(G) by Proposition 4.3 (1).

From the above discussion, we conclude that if (G,6, ·) is a continuous l-group, the C-topology β(G)
is equivalent to the Scott topology of (G,6).
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(3)⇒(1) This result can be proved by Lemma 4.8.

Lemma 4.10 ([27]). Let (X, τ) be a topological space and A ⊆ X. A ∈ τ if and only if for any x ∈ A, there exists
U ∈ τ such that x ∈ U ⊆ A.

Proposition 4.11. LetG1,G2 be continuous l-groups with the strong-positive cones C1,C2, respectively. A function
f : G1 → G2 is continuous with respect to the C-topologies of G1 and G2 if and only if for any x ∈ G1, f(x) =∨
{f(w) : w ∈ x ·C1

−1}.

Proof.

“⇒ ” : Firstly, we will show that f(x) is an upper bound of {f(w) : w ∈ x ·C1
−1}. Assume that there exists

w0 ∈ x ·C1
−1 such that f(w0) 
 f(x). By Proposition 4.9 and Proposition 4.3 (3), f(x) · ↓e = ↓f(x) is closed

and so, V = G2\↓f(x) is an open set and f(w0) ∈ V , f(x) 6∈ V . Since f is continuous, U = f−1(V) is an
open set and w0 ∈ U, x 6∈ U. Hence w0 ·C1 ⊆ U by Proposition 4.3 (1). We have x ∈ w0 ·C1 ⊆ U. This
contradicts x 6∈ U. Thus for any w ∈ x ·C1

−1, f(w) 6 f(x).
Then we will show that f(x) is the least upper bound of {f(w) : w ∈ x · C1

−1}. Suppose that t ∈ G2
is another upper bound of {f(w) : w ∈ x · C1

−1}. We only need to show that f(x) 6 t. Assume that
f(x) 
 t. Then G2\↓t is an open set and f(x) ∈ G2\↓t. Since f is continuous, f−1(G2\↓t) is an open
set and x ∈ f−1(G2\↓t). Hence there exists d ∈ f−1(G2\↓t) such that x ∈ d · C1 by Proposition 4.3 (1).
We have f(d) ∈ G2\↓t and d ∈ x · C1

−1. Thus f(d) 
 t. This contradicts that t is an upper bound of
{f(w) : w ∈ x ·C1

−1}. Therefore f(x) =
∨
{f(w) : w ∈ x ·C1

−1}.

“⇐ ” : Let x,y ∈ G1 with x 6 y. By Proposition 3.6, we have {f(w) : w ∈ x ·C1
−1} ⊆ {f(w) : w ∈ y ·C1

−1}.
Thus f(x) =

∨
{f(w) : w ∈ x ·C1

−1} 6 f(y) =
∨
{f(w) : w ∈ y ·C1

−1} and so, f is monotone.
Let U ∈ β(G2) and x ∈ f−1(U). By Proposition 3.11, x ·C1

−1 is directed in G1. Since f is monotone,
we have {f(w) : w ∈ x · C1

−1} is directed in G2. Hence y−1 · {f(w) : w ∈ x · C1
−1} is directed and∨

(y−1 · {f(w) : w ∈ x ·C1
−1}) = y−1 · f(x) by Proposition 2.5. Because f(x) ∈ U, there exists y ∈ U such

that f(x) ∈ y ·C2 ⊆ U by Proposition 4.3 (1). So y−1 · f(x) ∈ C2. Thus (y−1 · {f(w) : w ∈ x ·C1
−1})∩C2 6= ∅

by Proposition 3.12. This means that there exists w ∈ x ·C1
−1 such that y−1 · f(w) ∈ C2. Hence x ∈ w ·C1

and f(w) ∈ y ·C2 ⊆ U. Now we will show that w ·C1 ⊆ f−1(U). Let z ∈ w ·C1, i.e., w ∈ z ·C−1
1 . Then

f(w) 6 f(z) for f(z) =
∨
{f(w) : w ∈ z · C1

−1}. By Proposition 3.5, we have y · C2 is an upper set. Thus
f(z) ∈ y ·C2 ⊆ U and z ∈ f−1(U). Hence w ·C1 ⊆ f−1(U). Since x ∈ w ·C1 and w ·C1 ∈ β(G1), we have
f−1(U) ∈ β(G1) by Proposition 4.10. Therefore f is continuous.

Proposition 4.12. Let G be an l-group with the strong-positive cone C. The sets of the form x · C−1, x ∈ G,
constitute a basis of a topology on G (we call this topology the C−1-topology).

Proof. Let x ∈ G and y ∈ x ·C. Then there exists a ∈ C such that y = x · a. Thus x = y · a−1 ∈ y ·C−1 ⊆⋃
u∈G

(u ·C−1). Therefore G ⊆
⋃

x∈G
(x ·C−1) ⊆ G and G =

⋃
x∈G

(x ·C−1). Let x,y ∈ G. Since G is an l-group,

we conclude that x∧ y exists and (x∧ y) ·C−1 ⊆ x ·C−1 and (x∧ y) ·C−1 ⊆ y ·C−1 by Proposition 3.6.
Hence the family {x ·C−1 : x ∈ G} constitutes a basis of a topology on G by Proposition 2.8.

If G = (G,6, ·) is an l-group with the positive cone P, the strong-positive cone C and Gop = (G,>, ·)
denotes the dual of G, then in Gop the positive cone is P−1 and the strong-positive cone is C−1. So the
C−1-topology of G is equivalent to the C-topology of Gop. Thus we denote the C−1-topology of G by
β(Gop). Moreover, if G is a continuous l-group, then Gop is also a continuous l-group. So we have the
following properties:

Proposition 4.13. Let G be an l-group with the strong-positive cone C. U is an open set in the C−1-topology if and
only if U = U ·C−1.

Proposition 4.14. LetG1,G2 be continuous l-groups with the strong-positive cones C1,C2, respectively. A function
f : G1 → G2 is continuous with respect to the C−1-topologies of G1 and G2 if and only if for any x ∈ G1,
f(x) =

∧
{f(w) : w ∈ x ·C1}.
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Definition 4.15. Let G be an l-group with the strong-positive cone C. Then the common refinement of the
C-topology and the C−1-topology is called the bi-C-topology.

Obviously, the bi-C-topology has a basis {U ∩ V : U ∈ β(G),V ∈ β(Gop)}, where β(G) denotes the
C-topology of G and β(Gop) denotes the C−1-topology of G.

Corollary 4.16. Let G1,G2 be continuous l-groups with the strong-positive cones C1,C2, respectively. If a function
f : G1 → G2 satisfies: for any x ∈ G1, f(x) =

∨
{f(w) : w ∈ x ·C1

−1} =
∧
{f(w) : w ∈ x ·C1}, then f is continuous

with respect to the bi-C-topologies of G1 and G2.

Proof. This result can be proved by Proposition 4.11 and Proposition 4.14.

Remark 4.17. In an l-group G, a basis of the bi-C-topology is {U∩ V : U ∈ β(G),V ∈ β(Gop)}, where β(G)
denotes the C-topology of G. So a basis of the bi-C-topology of Gop is {U ∩ V : U ∈ β(Gop),V ∈ β(G)},
where β(G) denotes the C-topology of G. Therefore, open sets in the bi-C-topology of G and open sets in
the bi-C-topology of Gop are exactly the same.

Thus we have the following corollary.

Corollary 4.18. Let G1,G2 be continuous l-groups with the strong-positive cones C1,C2, respectively. If a function
f : G1 → G2 satisfies: for any x ∈ G1, f(x) =

∧
{f(w) : w ∈ x ·C1

−1} =
∨
{f(w) : w ∈ x ·C1}, then f is continuous

with respect to the bi-C-topologies of G1 and G2.

Proposition 4.19. Let G be a continuous l-group with the strong-positive cone C. Then the mapping

f : G×G→ G, (x,y) 7→ x · y

is continuous with respect to the C-topologies and the bi-C-topologies of G×G and G.

Proof. Let (x,y) ∈ G × G. Because
∨
(x · C−1) = x and

∨
(y · C−1) = y by Proposition 3.11, we have∨

(x · C−1 · y · C−1) =
∨
(x · C−1) ·

∨
(y · C−1) = x · y by Proposition 2.6. Since {f(w1,w2) : (w1,w2) ∈

(x,y) · (C×C)−1} = {w1 ·w2 : w1 ∈ x ·C−1,w2 ∈ y ·C−1} = x ·C−1 · y ·C−1, we conclude that
∨
{f(w1,w2) :

(w1,w2) ∈ x · C−1,w2 ∈ y · C−1} = x · y = f(x,y). Therefore f is a continuous map with respect to the
C-topologies of G×G and G by Proposition 4.11.

Because
∧
(x ·C) = x and

∧
(y ·C) = y by Proposition 3.11, we have

∧
(x ·C ·y ·C) =

∧
(x ·C) ·

∧
(y ·C) =

x · y by Proposition 2.6. Since {f(w1,w2) : (w1,w2) ∈ (x,y) ·C×C} = {w1 ·w2 : w1 ∈ x ·C,w2 ∈ y ·C} =
x ·C · y ·C, we have

∧
{f(w1,w2) : (w1,w2) ∈ x ·C,w2 ∈ y ·C} = x · y = f(x,y). Therefore f is a continuous

map with respect to the bi-C-topologies of G×G and G by Corollary 4.16.

Proposition 4.20. Let G be a continuous l-group with the strong-positive cone C. Then the mapping

f : G→ G, x 7→ x−1

is continuous with respect to the bi-C-topology.

Proof. Let x ∈ G. Then
∧
{f(w) : w ∈ x ·C−1} =

∧
{w−1 : w ∈ x ·C−1} =

∧
(x−1 ·C) = x−1 = f(x). Similarly,∨

{f(w) : w ∈ x ·C} = f(x). Hence f is continuous with respect to the bi-C-topology by Corollary 4.18.

Lemma 4.21 ([13]). Let L be a lattice and A,B ⊆ L. If
∨
A,

∨
B exist in L, then

∨
{a∨ b : a ∈ A,b ∈ B} =

(
∨
A)∨ (

∨
B). Dually, if

∧
A,

∧
B exist in L, then

∧
{a∧ b : a ∈ A,b ∈ B} = (

∧
A)∧ (

∧
B).

Lemma 4.22 ([18]). Let P be a continuous poset and D1,D2 are directed subsets of P. If
∨
D1,

∨
D2 exist in P, then∨

{d1 ∧ d2 : d1 ∈ D1,d2 ∈ D2} = (
∨
D1)∧ (

∨
D2). Dually, let F1, F2 be filtered subsets of P. If

∧
F1,

∧
F2 exist in

P, then
∧
{f1 ∨ f2 : f1 ∈ F1, f2 ∈ F2} = (

∧
F1)∨ (

∧
F2).

Theorem 4.23. Let G be a continuous l-group with the bi-C-topology τ. Then (G, ·, τ) is a topological group and
(G,6, τ) is a topological lattice.
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Proof. We have (G, ·, τ) is a topological group by Proposition 4.19 and Proposition 4.20.
Let (x,y) ∈ G × G. We will show that f : G × G → G by (x,y) 7→ x ∨ y and g : G × G → G by

(x,y) 7→ x∧ y are continuous with respect to the bi-C-topologies of G×G and G.
Since

∨
(x ·C−1) = x and

∨
(y ·C−1) = y by Proposition 3.11 and

∨
{f(w1,w2) : (w1,w2) ∈ (x,y) · (C×

C)−1} =
∨
{w1 ∨w2 : w1 ∈ x ·C−1,w2 ∈ y ·C−1}, we conclude that

∨
{f(w1,w2) : (w1,w2) ∈ (x,y) · (C×

C)−1} = x∨y = f(x,y) by Lemma 4.21. By the continuity of G, x ·C, y ·C are filtered sets and
∧
(x ·C) = x,∧

(y ·C) = y. Because
∧
{f(w1,w2) : (w1,w2) ∈ (x,y) ·C×C} =

∧
{w1 ∨w2 : w1 ∈ x ·C,w2 ∈ y ·C}, we

have
∧
{f(w1,w2) : (w1,w2) ∈ (x,y) ·C×C} = x∨ y = f(x,y) by Theorem 3.14 and Lemma 4.22. Hence f

is continuous with respect to the bi-C-topologies of G×G and G by Corollary 4.16.
By Proposition 3.11, x · C−1, y · C−1 are directed sets and

∨
(x · C−1) = x,

∨
(y · C−1) = y. Because∨

{g(w1,w2) : (w1,w2) ∈ (x,y) · (C×C)−1} =
∨
{w1 ∧w2 : w1 ∈ x ·C−1,w2 ∈ y ·C−1}, we have

∨
{g(w1,w2) :

(w1,w2) ∈ (x,y) · (C× C)−1} = x∧ y = g(x,y) by Theorem 3.14 and Lemma 4.22. Since
∧
(x · C) = x

and
∧
(y ·C) = y by the continuity of G and

∧
{g(w1,w2) : (w1,w2) ∈ (x,y) ·C×C} =

∧
{w1 ∧w2 : w1 ∈

x ·C,w2 ∈ y ·C}, we conclude that
∧
{g(w1,w2) : (w1,w2) ∈ (x,y) ·C×C} = x∧y = g(x,y) by Lemma 4.21.

Hence g is continuous with respect to the bi-C-topologies of G×G and G by Corollary 4.16. Therefore
(G,6, τ) is a topological lattice.
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