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Abstract
In this paper, a general system of variational inclusions in Banach Spaces is introduced. An iterative method for finding

solutions of a general system of variational inclusions with inverse-strongly accretive mappings and common set of fixed points
for a λ-strict pseudocontraction is established. Under certain conditions, by forward-backward splitting method, we prove strong
convergence theorems in uniformly convex and 2-uniformly smooth Banach spaces. The results presented in the paper improve
and extend various results in the existing literatures. Moreover, some applications to monotone variational inequality problem
and convex minimization problem are presented.
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1. Introduction

Let E be a real Banach space. We study the following variational inclusion problem: find x∗ ∈ E such
that

0 ∈ Ax∗ +Mx∗, (1.1)

where A : E→ E is an operator and M : E→ 2E is a set-valued operator. This problem includes, as special
cases, convex programming, variational inequalities, split feasibility problem, and minimization problem.
To be more precise, some concrete problems in machine learning, image processing, and linear inverse
problem can be modeled mathematically as this form (1.1) (see examples in [4]).

A classical method for solving the problem (1.1) is the forward-backward splitting method [8, 10, 16]
which is defined by the following manner: for any fixed x1 ∈ E and for r > 0,

xn+1 = (I+ rM)−1(xn − rAxn), ∀n > 0.

We see that each step of the iteration involves only with A as the forward step and M as the backward
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step, but not the sum of M. In fact, this method includes, in particular, the proximal point algorithm [5]
and the gradient method.

In 2015, Cholamjiak [6] introduced the following Halpern-type forward-backward method: x1 ∈ X and

xn+1 = αnu+ λnxn + δnJ
M
rn
(xn − rnAxn) + en, n > 1, (1.2)

where JMrn = (I+ rnM)−1, X is a uniformly convex and q-uniformly smooth Banach space, A : X → X

and M : X → 2X are nonlinear mappings such that Ω := (A+M)−1 6= ∅. He prove that sequence {xn}

generated by (1.2) strongly converges to a zero point of the sum of A and M under some appropriate
conditions. There have been many works concerning the problem of finding zero points of the sum of
two monotone operators (in Hilbert spaces) and accretive operators (in Banach spaces) (see[7, 15]).

In 2010, Qin et al. [11] considered the following system of variational inclusions. Find (x∗,y∗) ∈ X×X
such that {

0 ∈ x∗ − y∗ + ρ1(A1y
∗ +M1x

∗),
0 ∈ y∗ − x∗ + ρ2(A2x

∗ +M2y
∗),

(1.3)

where Ai : X→ X and Mi : X→ 2X are nonlinear mappings for each i = 1, 2.
Obviously, problem (1.1) is special case of problem (1.3).
Next, we consider a general system of variational inclusions.
Find (u1,u2, . . . ,ul) ∈ E× E× · · · × E := El such that

0 ∈ u1 − u2 + ρ1(A1u2 +M1u1),
0 ∈ u2 − u3 + ρ2(A2u3 +M2u2),

...
0 ∈ ul−1 − ul + ρl−1(Al−1ul +Ml−1ul−1),
0 ∈ ul − u1 + ρl(Alu1 +Mlul),

(1.4)

where Ai : E→ E and Mi : E→ 2E are nonlinear mappings for each i = 1, 2, . . . , l.
Obviously, problem (1.1) and (1.3) are special cases of problem (1.4).
Qin et al. [11] introduced an iterative method for finding common elements of the set of solutions to

a general system of variational inclusions with inverse-strongly accretive mappings and common set of
fixed points for a λ-strict pseudocontraction. Strong convergence theorems are established in uniformly
convex and 2-uniformly smooth Banach spaces.

Theorem 1.1. Let E be a uniformly convex and 2-uniformly smooth Banach space with the smooth constant k.
Let Mi : E → 2E be a maximal monotone mapping and Ai : E → E be a γi-inverse-strongly accretive mapping,
respectively, for each i = 1, 2. Let T : E→ E be a λ-strict pseudocontraction with a fixed point. Define a mapping S
by Sx = (1 − λ

k2 )x+
λ
k2 Tx for all x ∈ E. Assume that Ω = F(T) ∩ F(Q), where Q is defined as Lemma 2.11. For

an arbitrary initial point x1 = u ∈ E, let {xn} be a sequence generated by
zn = JM2

ρ2 (xn − ρ2A2xn),
yn = JM1

ρ1 (zn − ρ1A1zn),
xn+1 = αnxn +βnxn + (1 −αn −βn)(µSxn + (1 − µ)yn), n > 0,

where µ ∈ (0, 1), ρ1 ∈ (0, γ1
k2 ), ρ2 ∈ (0, γ2

k2 ), and {αn} and {βn} are sequences in (0, 1). If {αn} and {βn} satisfy the
following conditions:

(C1) limn→∞ αn = 0,
∑+∞
n=1 αn = +∞;

(C2) 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1,
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then {xn} converges strongly to x∗ = PΩu, where PΩ is the sunny nonexpansive retraction from E onto Ω, and
(x∗,y∗) is a solution to problem (1.3).

In this paper, motivated by Qin et al. [11], Takahashi et al. [15], Chang et al. [4], and Combettes et al.
[7], a general system of variational inclusions in Banach Spaces is introduced. A relaxed extragradient-
type iterative method for finding solutions of a general system of variational inclusions with inverse-
strongly accretive mappings and common set of fixed points for a λ-strict pseudocontraction is established.
Under certain conditions, by forward-backward splitting method, we prove strong convergence theorems
in uniformly convex and 2-uniformly smooth Banach spaces. The results presented in the paper extend
and improve some recent results announced in the current literatures. Moreover, some applications to
monotone variational inequality problem and convex minimization problem are presented.

2. Preliminaries

In order to prove the main results of the paper, we need the following basic concepts and lemmas.
Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be uniformly convex if, for any ε ∈ (0, 2], there

exists δ > 0 such that, for any x,y ∈ U,

‖x− y‖ > ε implies ‖x+ y
2
‖ 6 1 − δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach space E is
said to be smooth if the limit limt→0

‖x+ty‖−‖x‖
t exists for all x,y ∈ U. It is also said to be uniformly

smooth if the limit is attained uniformly for all x,y ∈ U. The norm of E is said to be Fréchet differentiable
if, for any x ∈ U, the above limit is attained uniformly for all y ∈ U. The modulus of smoothness of E is
defined by

ρ(τ) = sup
{
‖x+ y‖+ ‖x− y‖

2
− 1 : x,y ∈ E, ‖x‖ = 1, ‖y‖ = τ

}
,

where ρ : [0,+∞) → [0,+∞) is a function. It is known that E is uniformly smooth if and only if
limτ→0

ρ(τ)
τ = 0. Let q be a fixed real number with 1 < q 6 2. A Banach space E is said to be q-uniformly

smooth if there exists a constant c > 0 such that ρ(τ) 6 cτq for all τ > 0.
In what follows, we always assume that E is a uniformly convex and q-uniformly smooth Banach

space for some q ∈ (1, 2].
Recall that the generalized duality mapping Jq : E→ 2E

∗
is defined by

Jq(x) =
{
jq(x) ∈ E∗ : 〈jq(x), x〉 = ‖x‖.‖jq(x)‖, ‖jq(x)‖ = ‖x‖q−1} , (2.1)

and the following subdifferential inequality holds: for any x,y ∈ E,

‖x+ y‖q 6 ‖x‖q + q〈y, jq(x+ y)〉, jq(x+ y) ∈ Jq(x+ y).

In particular, J = J2 is called the normalized duality mapping. If E is a Hilbert space then J is the identity
mapping I.

Next, we assume that E is a smooth Banach space. Let T be a mapping from E into itself. In this paper,
we use F(T) to denote the set of fixed points of the mapping T .

Recall that the mapping T is said to be nonexpansive if

‖Tx− Ty‖ 6 ‖x− y‖, ∀x,y ∈ E.

The mapping T is said to be λ-strictly pseudocontractive if there exists a constant λ ∈ (0, 1) such that

〈Tx− Ty, J(x− y)〉 6 ‖x− y‖2 − λ‖(I− T)x− (I− T)y‖2, ∀x,y ∈ E.
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Recall that an operator A of E into itself is said to be accretive if

〈Ax−Ay, J(x− y)〉 > 0, ∀x,y ∈ E, (2.2)

and, for any α > 0, an operator A of E into itself is said to be α-inverse strongly accretive if

〈Ax−Ay, J(x− y)〉 > α‖Ax−Ay‖, ∀x,y ∈ E.

Definition 2.1 ([11, page 4]). Let D be a subset of C and P a mapping of C into D. Then P is said to be
sunny if

P(Px+ t(x− Px)) = Px,

whenever Px+ t(x− Px) ∈ C for x ∈ C and t > 0. A mapping P of C into itself is called a retraction if
P2 = P. If a mapping P of C into itself is a retraction, then Pz = z for all z ∈ R(P), where R(P) is the range
of P. A subset D of C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive
retraction from C onto D.

In 2006, Aoyama et al. [1] considered the following problem.
Find x∗ ∈ C such that

〈Ax∗, J(y− x∗)〉 > 0, ∀y ∈ C. (2.3)

They proved that the variational inequality (2.3) is equivalent to a fixed point problem, that is, the element
x∗ ∈ C is a solution of the variational inequality (2.3) if and only if x∗ ∈ C satisfies the following equation:

x∗ = PC(x
∗ − λAx∗),

where λ > 0 is a constant and PC is a sunny nonexpansive retraction from E onto C.

Lemma 2.2 ([12]). Let E be a smooth Banach space and C a nonempty subset of E. Let P : E → C be a retraction
and J the normalized duality mapping on E. Then the following are equivalent:

(1) P is sunny and nonexpansive;
(2) 〈x− Px, J(y− Px)〉 6 0 for all x ∈ E, y ∈ C;

Lemma 2.3 ([9]). Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach
space E and T a nonexpansive mapping of C into itself with F(T) 6= ∅. Then the set F(T) is a sunny nonexpansive
retract of C.

Definition 2.4 ([20]). Let M : E → 2E be a multivalued maximal accretive mapping. The single valued
mapping JMρ : E→ E defined by

JMρ x = (I+ ρM)−1x, ∀x ∈ E

is called the resolvent operator associated withM, where ρ is any positive number and I is the identity
mapping.

Lemmas 2.5-2.6 can be obtained from Zhang [20], see also Aoyama et al. [2].

Lemma 2.5 ([2, 20]). The resolvent operator JMρ associated withM is single valued and nonexpansive for all ρ > 0.

Lemma 2.6 ([2, 20]). u ∈ E is a solution of variational inclusion (1.1) if and only if u = JMρ (u− ρAu) for all
ρ > 0, that is

VI(E,A,M) = F(JMρ (I− ρA)),

where VI(E,A,M) denotes the set of solutions to problem (1.1).
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In order to prove the main results, we need the following lemmas.

Lemma 2.7 ([14]). Let {xn} and {yn} be bounded sequences in a Banach space E and {βn} a sequence in [0, 1]
with 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1. Suppose that xn+1 = (1 − βn)yn + βnxn for all n > 1 and
lim supn→∞(‖yn+1 − yn‖− ‖xn+1 − xn‖) 6 0, then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.8 ([17]). Let E be a real 2-uniformly smooth Banach space with the best smooth constant K. Then the
following inequality holds:

‖x+ y‖2 6 ‖x‖2 + 2〈y, Jx〉+ 2‖Ky‖2, ∀x,y ∈ E.

Lemma 2.9 ([21]). Let E be a real 2-uniformly smooth Banach space and T : E → E a λ-strict pseudocontraction.
Then S := (1 − λ

K2 )I+
λ
K2 T is nonexpansive and F(T) = F(S).

Lemma 2.10 ([11, Lemma 1.8]). Let E be a strictly convex Banach space. Let T1 and T2 be two nonexpansive
mappings from E into itself with a common fixed point. Define a mapping S : E→ E by

Sx = λT1x+ (1 − λ)T2x, x ∈ E,

where λ is a constant in (0, 1). Then S is nonexpansive and F(S) = F(T1)
⋂
F(T2).

Lemma 2.11. Let Ai : E → E and Mi : E → 2E be nonlinear mappings for each i = 1, 2, . . . , l. For any
(u1,u2, . . . ,ul) ∈ E× E× · · · × E := El, (u1,u2, · · · ,ul) is a solution of problem (1.4) if and only if u1 is a fixed
point of the mapping Q defined by

Q(x) = T
(A1,M1)
ρ1 ◦ T (A2,M2)

ρ2 ◦ · · · ◦ T (Al,Ml)
ρl x,

where T (Ai,Mi)
ρi := JMi

ρi (I− ρiAi).

Proof. note that

0 ∈ u1 − u2 + ρ1(A1u2 +M1u1),
0 ∈ u2 − u3 + ρ2(A2u3 +M2u2),

...
0 ∈ ul−1 − ul + ρl−1(Al−1ul +Ml−1ul−1),
0 ∈ ul − u1 + ρl(Alu1 +Mlul),

⇔



u1 = T
(A1,M1)
ρ1 u2,

u2 = T
(A2,M2)
ρ2 u3,

...
ul−1 = T

(Al−1,Ml−1)
ρl−1 ul,

ul = T
(Al,Ml)
ρl u1,

⇔

Q(u1) = T
(A1,M1)
ρ1 ◦ T (A2,M2)

ρ2 ◦ · · · ◦ T (Al−1,Ml−1)
ρl−1 ◦ T (Al,Ml)

ρl u1

= T
(A1,M1)
ρ1 ◦ T (A2,M2)

ρ2 ◦ · · · ◦ T (Al−1,Ml−1)
ρl−1 ul

...

= T
(A1,M1)
ρ1 u2 = u1.

This completes the proof.

Lemma 2.12 ([18, Lemma 2.1]). Let {an} be sequences of nonnegative numbers such that

an+1 6 (1 − γn)an + δn, ∀n > 1,

where sequences {γn} and {δn} satisfy following properties

(1) {γn} ⊂ (0, 1) and {δn} ⊂ R;
(2)
∑+∞
n=1 γn = +∞;

(3) lim supn→∞ δn
γn

6 0 or
∑+∞
n=1 |δn| < +∞.

Then limn→∞ an = 0.
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3. Main results

Now, we are ready to give our main results in this paper.

Theorem 3.1. Let E be a uniformly convex and 2-uniformly smooth Banach space with the smooth constant K.
Let Mi : E → 2E be a maximal monotone mapping, Ai : E → E a γi-inverse-strongly accretive mapping and
T
(Ai,Mi)
ρi := JMi

ρi (I− ρiAi), respectively, for each i = 1, 2, . . . , l. Let Q := T
(A1,M1)
ρ1 ◦ T (A2,M2)

ρ2 ◦ · · · ◦ T (Al,Ml)
ρl .

Let T : E→ E be a λ-strict pseudocontraction with a fixed point. Define a mapping S by

Sx = (1 −
λ

K2 )x+
λ

K2 Tx, ∀x ∈ E.

Assume that F = F(T)
⋂
F(Q) 6= ∅, for an arbitrary initial point u ∈ E, let {xn} be a sequence generated by

{
yn = T

(A1,M1)
ρ1 ◦ T (A2,M2)

ρ2 ◦ · · · ◦ T (Al−1,Ml−1)
ρl−1 ◦ T (Al,Ml)

ρl xn,
xn+1 = αnu+βnxn + (1 −αn −βn)(µSxn + (1 − µ)yn), n > 0,

where µ ∈ (0, 1), ρi ∈ (0, γi
K2 ) (i = 1, 2, . . . , l), and sequences {αn} and {βn} satisfy the following conditions:

(i) {αn} ⊂ (0, 1), limn→∞ αn = 0, and
∑+∞
n=1 αn = +∞;

(ii) {βn} ⊂ (0, 1) and 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1,

then {xn} converges strongly to u∗1 = PFu, where PF is the sunny nonexpansive retraction from E onto F and
(u∗1 ,u∗2 , · · · ,u∗l ) ∈ El, where 

u∗1 = T
(A1,M1)
ρ1 u∗2 ,

u∗2 = T
(A2,M2)
ρ2 u∗3 ,

...
u∗l−1 = T

(Al−1,Ml−1)
ρl−1 u∗l ,

u∗l = T
(Al,Ml)
ρl u∗1

is a solution to problem (1.4).

Proof.

(I). We prove that the mappings T (Ai,Mi)
ρi := JMi

ρi (I− ρiAi) for all i = 1, 2, . . . , l are nonexpansive.
In fact, for any x,y ∈ E, by Lemma 2.8 and the condition ρi ∈ (0, γi

K2 ), we have that

‖(I− ρiAi)x− (I− ρiAi)y‖2 = ‖(x− y) − ρi(Aix−Aiy‖2

6 ‖(x− y)‖2 − 2ρi〈Aix−Aiy, J(x− y)〉+ 2K2ρ2
i‖Aix−Aiy‖2

6 ‖(x− y)‖2 − 2ρiγi‖Aix−Aiy‖2 + 2K2ρ2
i‖Aix−Aiy‖2

= ‖(x− y)‖2 − 2ρi(γi −K2ρi)‖Aix−Aiy‖2

6 ‖(x− y)‖2,

which implies the mappings I− ρiAi for all i = 1, 2, . . . , l are nonexpansive. By Lemma 2.5, we have that
the mappings T (Ai,Mi)

ρi := JMi
ρi (I− ρiAi) for all i = 1, 2, . . . , l are nonexpansive.

(II). We show that the sequence {xn} is bounded.
First, taking p ∈ F, that is p ∈ F(Q), one has

p = T
(A1,M1)
ρ1 ◦ T (A2,M2)

ρ2 ◦ · · · ◦ T (Al−1,Ml−1)
ρl−1 ◦ T (Al,Ml)

ρl p.
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‖yn − p‖ = ‖T (A1,M1)
ρ1 ◦ T (A2,M2)

ρ2 · · · ◦ T (Al,Ml)
ρl xn − T

(A1,M1)
ρ1 ◦ T (A2,M2)

ρ2 · · · ◦ T (Al,Ml)
ρl p‖

6 ‖T (A2,M2)
ρ2 ◦ T (A3,M3)

ρ3 · · · ◦ T (Al,Ml)
ρl xn − T

(A2,M2)
ρ1 ◦ T (A3,M3)

ρ3 · · · ◦ T (Al,Ml)
ρl p‖

...

6 ‖T (Al,Ml)
ρl xn − T

(Al,Ml)
ρl p‖

6 ‖xn − p‖.

(3.1)

Letting zn = µSxn+ (1−µ)yn. It follows from Lemma 2.9 that S is nonexpansive and p ∈ F(T)
⋂
F(S).

From (3.1), we have

‖zn − p‖ = ‖µSxn + (1 − µ)yn − p‖
= ‖µ(Sxn − Sp) + (1 − µ)(yn − p)‖
6 µ‖Sxn − Sp‖+ (1 − µ)‖yn − p‖
6 µ‖xn − p‖+ (1 − µ)‖xn − p‖
= ‖xn − p‖.

(3.2)

From (3.2), it follows that

‖xn+1 − p‖ = ‖αnu+βnxn + (1 −αn −βn)zn − p‖
6 αn‖u− p‖+βn‖xn − p‖+ (1 −αn −βn)‖zn − p‖
6 αn‖u− p‖+ (1 −αn)‖xn − p‖
6 max{‖u− p‖, ‖x1 − p‖}.

this shows that the sequence {xn} is bounded, so are {yn} and {zn}.

(III). We show that limn→∞ d(xn+1, xn) = 0.
In fact, from (I), we know that the mappings T (Ai,Mi)

ρi for all i = 1, 2, . . . , l are nonexpansive. One sees
that

‖yn+1 − yn‖ = ‖T
(A1,M1)
ρ1 ◦ T (A2,M2)

ρ2 · · · ◦ T (Al,Ml)
ρl xn+1 − T

(A1,M1)
ρ1 ◦ T (A2,M2)

ρ2 · · · ◦ T (Al,Ml)
ρl xn‖

6 ‖T (A2,M2)
ρ2 ◦ T (A3,M3)

ρ3 · · · ◦ T (Al,Ml)
ρl xn+1 − T

(A2,M2)
ρ1 ◦ T (A3,M3)

ρ3 · · · ◦ T (Al,Ml)
ρl xn‖

...

6 ‖T (Al,Ml)
ρl xn+1 − T

(Al,Ml)
ρl xn‖

6 ‖xn+1 − xn‖.

This implies that

‖zn+1 − zn‖ = ‖(µSxn+1 + (1 − µ)yn+1) − (µSxn + (1 − µ)yn)‖
6 µ‖Sxn+1 − Sxn‖+ (1 − µ)‖yn+1 − yn‖
6 µ‖xn+1 − xn‖+ (1 − µ)‖yn+1 − yn‖
6 ‖xn+1 − xn‖.

(3.3)

Setting

xn+1 = (1 −βn)wn +βnxn, (3.4)

where wn :=
αnu+(1−αn−βn)zn

1−βn
. From (3.3), one sees that

‖wn+1 −wn‖ = ‖
αn+1u+ (1 −αn+1 −βn+1)zn+1

1 −βn+1
−
αnu+ (1 −αn −βn)zn

1 −βn
‖
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= ‖ αn+1

1 −βn+1
(u− zn+1) −

αn

1 −βn
(u− zn) + zn+1 − zn‖

6
αn+1

1 −βn+1
‖u− zn+1‖+

αn

1 −βn
‖u− zn‖+ ‖zn+1 − zn‖

6
αn+1

1 −βn+1
‖u− zn+1‖+

αn

1 −βn
‖u− zn‖+ ‖xn+1 − xn‖,

this implies that

‖wn+1 −wn‖− ‖xn+1 − xn‖ 6
αn+1

1 −βn+1
‖u− zn+1‖+

αn

1 −βn
‖u− zn‖.

It follows from the conditions (i), (ii), and (II) that

lim sup
n→∞ (‖wn+1 −wn‖− ‖xn+1 − xn‖) 6 0.

Hence, from lemma 2.7, it follows that

lim
n→∞ ‖wn − xn‖ = 0. (3.5)

Since, from (3.4), it follows that

‖xn+1 − xn‖ = (1 −βn)‖wn − xn‖.

By virtue of the conditions (i) and (3.5), we get

lim
n→∞ ‖xn+1 − xn‖ = 0. (3.6)

(IV). We show that lim supn→∞〈u− u∗1 , J(xn − u∗1)〉 6 0, where u∗1 ∈ PF, and PF is the sunny nonexpan-
sive retraction from E onto F.

First, one has

xn+1 − xn = αn(u− zn) + (1 −βn)(zn − xn).

It follows that

‖zn − xn‖ 6
‖xn+1 − xn‖+αn‖u− zn‖

1 −βn
.

From conditions (i), (ii), and (3.6),

lim
n→∞ ‖zn − xn‖ = 0. (3.7)

Define a mapping W by

Wx = µSx+ (1 − µ)T
(A1,M1)
ρ1 ◦ T (A2,M2)

ρ2 ◦ · · · ◦ T (Al,Ml)
ρl x, ∀y ∈ E.

In view of Lemmas 2.11 and 2.2, we see that W is nonexpansive such that

F(W) = F(S)
⋂
F(T

(A1,M1)
ρ1 ◦ T (A2,M2)

ρ2 ◦ · · · ◦ T (Al,Ml)
ρl ).

From (3.7), it follows that

lim
n→∞ ‖Wxn − xn‖ = 0. (3.8)



H. Liu, Q. Long, Y. Li, J. Nonlinear Sci. Appl., 11 (2018), 644–657 652

Let zt be the fixed point of the contraction z 7→ tu+ (1 − t)Wz, where t ∈ (0, 1). That is, zt = tu+ (1 −
t)Wzt. It follows that

‖zt − xn‖ = ‖(1 − t)(Wzt − xn) + t(u− xn)‖.

On the other hand, we have

‖zt − xn‖2 = ‖(1 − t)(Wzt − xn) + t(u− xn)‖2

6 (1 − t)2‖zt − xn‖2 + 2t〈u− zt, J(zt − xn)〉+ 2t‖zt − xn‖2

+ ‖Wxn − xn‖2 + 2‖zt − xn‖‖Wxn − xn‖.

It follows that

〈zt − u, J(zt − xn)〉 6
t

2
‖zt − xn‖2 +

1
2t

(‖Wxn − xn‖+ 2‖zt − xn‖)‖Wxn − xn‖.

Since, by (3.8), one sees that

lim
n→∞ [(‖Wxn − xn‖+ 2‖zt − xn‖)‖Wxn − xn‖] = 0,

hence, we arrive at

lim sup
n→∞ 〈zt − u, J(zt − xn)〉 6

t

2
M, (3.9)

where M >0 is an appropriate constant such that ‖zt − xn‖2 6 M for all t ∈ (0, 1) and n > 1. Letting
t→ 0 in (3.9), we have

lim sup
t→0

lim sup
n→∞ 〈zt − u, J(zt − xn)〉 6 0.

So, for any ε > 0, there exists a positive number δ1 > 0 with t ∈ (0, δ1) such that

lim sup
n→∞ 〈zt − u, J(zt − xn)〉 6

ε

2
. (3.10)

On the other hand, we see that PF(W)u = limt→0 zt and F(W) = F. It follows that limt→0 zt = u
∗
1 = PF.

There exists a positive number δ2 > 0 with t ∈ (0, δ2) such that

|〈u− u∗1 , J(xn − u∗1)〉− 〈zt − u, J(zt − xn)〉|
6 |〈u− u∗1 , J(xn − u∗1)〉− 〈u− u∗1 , J(xn − zt)〉|
+ |〈u− u∗1 , J(xn − zt)〉− 〈zt − u, J(zt − xn)〉|

= |〈u− u∗1 , J(xn − u∗1) − J(xn − zt)〉|+ |〈zt − u∗1 , J(xn − zt)〉|

6 ‖u− u∗1‖‖J(xn − u∗1) − J(xn − zt)‖+ ‖zt − u∗1‖‖J(xn − zt)‖ 6
ε

2
.

(3.11)

From (3.11), choosing δ 6 min{δ1, δ2}, it follows that, for each t ∈ (0, δ),

〈u− u∗1 , J(xn − u∗1)〉 6 〈zt − u, J(zt − xn)〉+
ε

2
,

which implies that

lim sup
n→∞ 〈u− u∗1 , J(xn − u∗1)〉 6 lim sup

n→∞ 〈zt − u, J(zt − xn)〉+
ε

2
.
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It follows from (3.10) that

lim sup
n→∞ 〈u− u∗1 , J(xn − u∗1)〉 6 ε.

Since ε > 0 is chosen arbitrarily, we have

lim sup
n→∞ 〈u− u∗1 , J(xn − u∗1)〉 6 0. (3.12)

(V). We show that limn→∞ xn = u∗1 . In fact, from (2.1) and (3.2), we have

‖xn+1 − u
∗
1‖2 = 〈xn+1 − u

∗
1 , J(xn+1 − u

∗
1)〉

= 〈αnu+βnxn + (1 −αn −βn)zn − u∗1 , J(xn+1 − u
∗
1)〉

= αn〈u− u∗1 , J(xn+1 − u
∗
1)〉+βn〈xn − u∗1 , J(xn+1 − u

∗
1)〉

+ (1 −αn −βn)〈zn − u∗1 , J(xn+1 − u
∗
1)〉

6 αn〈u− u∗1 , J(xn+1 − u
∗
1)〉+βn‖xn − u∗1‖‖J(xn+1 − u

∗
1)‖

+ (1 −αn −βn)‖zn − u∗1‖‖J(xn+1 − u
∗
1)‖

6 αn〈u− u∗1 , J(xn+1 − u
∗
1)〉+βn‖xn − u∗1‖‖xn+1 − u

∗
1‖

+ (1 −αn −βn)‖xn − u∗1‖‖xn+1 − u
∗
1‖

= αn〈u− u∗1 , J(xn+1 − u
∗
1)〉+ (1 −αn)‖xn − u∗1‖‖xn+1 − u

∗
1‖

6 αn〈u− u∗1 , J(xn+1 − u
∗
1)〉+

1 −αn
2

(‖xn − u∗1‖2 + ‖xn+1 − u
∗
1‖2),

which implies that

‖xn+1 − u
∗
1‖2 6 (1 −αn)‖xn − u∗1‖2 + 2αn〈u− u∗1 , J(xn+1 − u

∗
1)〉.

Hence, by condition (i), (3.12), and Lemma 2.12, we have

lim
n→∞ xn = u∗1 ,

where PF is the sunny nonexpansive retraction from E onto PF and (u∗1 ,u∗2 , . . . ,u∗l ) ∈ El, where

u∗1 = T
(A1,M1)
ρ1 u∗2 ,

u∗2 = T
(A2,M2)
ρ2 u∗3 ,

...
u∗l−1 = T

(Al−1,Ml−1)
ρl−1 u∗l ,

u∗l = T
(Al,Ml)
ρl u∗1 ,

is a solution to problem (1.4 ). This completes the proof of Theorem 3.1.

Remark 3.2. Theorem 3.1 which includes Qin et al. [11], Ceng et al. [3], Yao et al. [19], and Zhang et al.
[20] as special cases, mainly improves Qin et al. [11] in the following respects:

(1) from a single variational inclusion to a system of variational inclusions;
(2) from a system of variational inclusions to a general system of variational inclusions;
(3) from nonexpansive mappings to strict pseudocontractions.

Remark 3.3.

(1) As special cases of problem (1.4), we have the following. If l = 2 in problem (1.4), then problem (1.4)
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is reduced to the following. Find (x∗,y∗) ∈ X×X such that{
0 ∈ x∗ − y∗ + ρ1(A1y

∗ +M1x
∗),

0 ∈ y∗ − x∗ + ρ2(A2x
∗ +M2y

∗).
(3.13)

(2) If A1 = A2 = A and M1 =M2 =M in problem (3.13), then problem (1.4) is reduced to the following.
Find (x∗,y∗) ∈ X×X such that {

0 ∈ x∗ − y∗ + ρ1(Ay
∗ +Mx∗),

0 ∈ y∗ − x∗ + ρ2(Ax
∗ +My∗).

(3.14)

(3) If x∗ = y∗ in problem (3.13), then problem (1.4) is reduced to the following. Find x∗ ∈ X such that

0 ∈ Ax∗ +Mx∗. (3.15)

From Remark 3.3, as some applications of Theorem 3.1, we have the following results.

Theorem 3.4. Let E be a uniformly convex and 2-uniformly smooth Banach space with the smooth constant K. Let
M : E→ 2E be a maximal monotone mapping and A : E→ E a γ-inverse-strongly accretive mapping, respectively.
Let T : E→ E be a λ-strict pseudocontraction with a fixed point. Define a mapping S by

Sx = (1 −
λ

K2 )x+
λ

K2 Tx, ∀x ∈ E.

Assume that F = F(T)
⋂
F(T

(A,M)
ρ1 ◦ T (A,M)

ρ2 ) 6= ∅. For an arbitrary initial point u ∈ E, let {xn} be a sequence
generated by

xn+1 = αnu+βnxn + (1 −αn −βn)(µSxn + (1 − µ)T
(A,M)
ρ1 ◦ T (A,M)

ρ2 xn, n > 1,

where µ ∈ (0, 1), ρi ∈ (0, γ
K2 ) (i = 1, 2), and {αn} and {βn} satisfy the following conditions:

(i) {αn} ⊂ (0, 1), limn→∞ αn = 0, and
∑+∞
n=1 αn = +∞;

(ii) {βn} ⊂ (0, 1) and 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1,

then {xn} converges strongly to x∗ = PFu, where F is the sunny nonexpansive retraction from E onto PF and
(x∗,y∗) ∈ E× E, where y∗ = T (A,M)

ρ2 x∗ is a solution to problem (3.14).

Theorem 3.5. Let E be a uniformly convex and 2-uniformly smooth Banach space with the smooth constant K. Let
M : E→ 2E be a maximal monotone mapping and A : E→ E a γ-inverse-strongly accretive mapping, respectively.
Let T : E→ E be a λ-strict pseudocontraction with a fixed point. Define a mapping S by

Sx = (1 −
λ

K2 )x+
λ

K2 Tx, ∀x ∈ E.

Assume that F = F(T)
⋂
F(Q) 6= ∅, where Q = (A+M)−1. For an arbitrary initial point u ∈ E, let {xn} be a

sequence generated by

xn+1 = αnu+βnxn + (1 −αn −βn)(µSxn + (1 − µ)T
(A,M)
ρ xn), n > 1,

where µ ∈ (0, 1), ρ ∈ (0, γ
K2 ), and {αn} and {βn} satisfy the following conditions:

(i) {αn} ⊂ (0, 1), limn→∞ αn = 0, and
∑+∞
n=1 αn = +∞;

(ii) {βn} ⊂ (0, 1) and 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1,

then {xn} converges strongly to x∗ = PFu, where PF is the sunny nonexpansive retraction from E onto F and
x∗ ∈ E is a solution to problem (1.1).
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4. Application

In this section, we shall utilize our results in the paper to study the monotone variational inequality
problem, convex minimization problem, and convexly constrained linear inverse problem. Throughout
this section, let C be a nonempty closed and convex subset of Banach space E.

4.1. Application to monotone variational inequality problem
First, we present an example of monotone variational inequality problems.

Example 4.1 ([4]). If M = ∂φ : H → 2H, where φ : H → (−∞,+∞] is a proper convex and lower semi-
continuous function, and ∂φ is the sub-differential of φ, then problem (1.1) is equivalent to find x∗ ∈ H
such that

〈Ax∗, v− x∗〉+φ(v) −φ(x∗) > 0, ∀v ∈ H, (4.1)

which is said to be the mixed quasi-variational inequality. If φ is the indicator function of C, that is, if
x ∈ C, then φ(x) = 0, and if x∈C, then φ(x) = +∞. Then problem (4.1) is equivalent to the classical
variational inequality problem, that is, find x∗ ∈ C such that

〈Ax∗, v− x∗〉 > 0, ∀v ∈ C. (4.2)

It is easy to see that problem (4.2) is equivalent to finding a point x∗ ∈ C such that

0 ∈ (A+M)x∗,

where M is the subdifferential of the indicator of C, and it is a maximal monotone operator.

By Theorem 3 in [13], the resolvent of M is nothing but the projection operator PC. Therefore, the
following result can be obtained from Theorem 3.5 immediately.

Theorem 4.2. Let E be a uniformly convex and 2-uniformly smooth Banach space with the smooth constant K. Let
M : E → 2E be the subdifferential of the indicator of C witch is a maximal monotone operator, and A : E → E be a
γ-inverse-strongly accretive mapping, respectively. Let T : E→ E be a λ-strict pseudocontraction with a fixed point.
Define a mapping S by

Sx = (1 −
λ

K2 )x+
λ

K2 Tx, ∀x ∈ E.

Assume that F = F(T)
⋂
F((A+M)−10) 6= ∅. For an arbitrary initial point u ∈ E, let {xn} be a sequence generated

by

xn+1 = αnu+βnxn + (1 −αn −βn)(µSxn + (1 − µ)PC(xn − ρAxn)), n > 1,

where µ ∈ (0, 1), ρ ∈ (0, γ
K2 ), and {αn} and {βn} satisfy the following conditions:

(i) {αn} ⊂ (0, 1), limn→∞ αn = 0, and
∑+∞
n=1 αn = +∞;

(ii) {βn} ⊂ (0, 1) and 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1,

then {xn} converges strongly to x∗ = PFu, where PF is the sunny nonexpansive retraction from E onto F and
x∗ ∈ E is a solution to problem (4.2).

4.2. Application to convex minimization problem
Let ψ : H → R be a convex smooth function and φ : H → R be a proper convex and lower-

semicontinuous function. We consider the following convex minimization problem of finding x∗ ∈ H
such that

ψ(x∗) +φ(x∗) = min
x∈H

{ψ(x) +φ(x)}. (4.3)
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This Problem (4.3) is equivalent to the problem of finding x∗ ∈ H such that

0 ∈ ∇ψ(x∗) + ∂φ(x∗), (4.4)

where ∇ψ is a gradient of ψ and ∂φ is a subdifferential of φ. Set A = ∇ψ and M = ∂φ in Theorem
3.5. If ∇ψ is ( 1

L )-Lipschitz continuous, then it is L-inverse strongly monotone. Moreover, ∂φ is maximal
monotone. Hence, from Theorem 3.5, we have the following result.

Theorem 4.3. Let E be a uniformly convex and 2-uniformly smooth Banach space with the smooth constant K. Let
ψ : E→ R be a convex smooth function and φ : E→ R be a proper convex and lower-semicontinuous function. ∇ψ
is a gradient of ψ and ∂φ is a subdifferential of φ. If ∇ψ is ( 1

L )-Lipschitz continuous and ∂φ is maximal monotone,
then let T : E→ E be a L-strict pseudocontraction with a fixed point. Define a mapping S by

Sx = (1 −
L

K2 )x+
L

K2 Tx, ∀x ∈ E.

Assume that F = F(T)
⋂
F((∇ψ + ∂φ)−10) 6= ∅. For an arbitrary initial point u ∈ E, let {xn} be a sequence

generated by

xn+1 = αnu+βnxn + (1 −αn −βn)(µSxn + (1 − µ)J∂φρ (xn − ρ∇ψxn)), n > 1,

where µ ∈ (0, 1), ρ ∈ (0, γ
K2 ), and {αn} and {βn} satisfy the following conditions:

(i) {αn} ⊂ (0, 1), limn→∞ αn = 0, and
∑+∞
n=1 αn = +∞;

(ii) {βn} ⊂ (0, 1) and 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1,

then {xn} converges strongly to x∗ = PFu, where PF is the sunny nonexpansive retraction from E onto F and
x∗ ∈ E is a solution to problem (4.4).
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