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Abstract

In this paper, we consider the following nonlinear Schrödinger-Poisson system{
−∆u+ V(x)u+K(x)φu = f(x,u), x ∈ R3,
−∆φ = K(x)u2, x ∈ R3,

where V ,K ∈ L∞(R3) and f : R3 ×R→ R is continuous. We prove that the problem has a nontrivial solution under asymptoti-
cally periodic case of V ,K, and f at infinity. Moreover, the nonlinear term f does not satisfy any monotone condition.
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1. Introduction and main result

For past decades, much attention has been paid to the nonlinear Schrödinger-Poisson system{
i h∂Ψ∂t = −

 h2

2m∆Ψ+φ(x)Ψ− |Ψ|q−1Ψ, x ∈ R3, t ∈ R,

−∆φ = |Ψ|2, x ∈ R3,
(1.1)

where  h is the Planck constant. System (1.1) derived from quantum mechanics. For this system, the
existence of stationary wave solutions is often sought, that is, the following form of solutions

Ψ(x, t) = eitu(x), x ∈ R3, t ∈ R.
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Therefore, the existence of the standing wave solutions of the system (1.1) is equivalent to finding the
solutions of the following system{

−
 h2

2m∆u+  hu+φu = |u|q−1u, x ∈ R3,

−∆φ = u2, x ∈ R3.
(1.2)

Let m = 1
2 and  h = 1, system (1.2) becomes the following system{

−∆u+ u+φu = |u|q−1u, x ∈ R3,

−∆φ = u2, x ∈ R3.
(1.3)

There was a series of work to discuss the existence, non existence, radially symmetric solutions,
non-radially symmetry solutions, ground states, semiclassical states and sign-changing solutions to
Schrödinger-Poisson system (1.3) by using the variational method [1, 2, 5–7, 9–13, 17–19, 21–24, 28, 29, 32,
34, 37, 38, 40–42, 44–46].

In case 3 < q < 5, Coclite [10] considered the nontrivial radially symmetric solutions for system (1.3).
In [11], when 3 6 q < 5, D’Aprile and Mugnai obtained similar results. By using Pohozaev’s identity,
in [12], D’Aprile and Mugnai considered the non existence of nontrivial solution to system (1.3) in case
q 6 1 or q > 5.

In [32], Ruiz studied the following Schrödinger-Poisson system{
−∆u+ u+ λφu = up, x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.4)

where λ > 0 is parameter and 1 < p < 5. Using the mountain pass theorem and Ekeland variational
principle, Ruiz proved that system (1.4) has at least two (one) positive radial solutions when 1 < p < 2
(p = 2) and λ > 0 sufficiently small and system (1.4) has no nontrival solution when 1 < p 6 2 and
λ > 1

4 . Moreover, by applying the method of finding the minimal sequence on a manifold associated with
the Nehari manifold and the Pohozaev’s identity, Ruiz proved that the system (1.4) has a positive radial
solution in case 2 < p < 5.

In [5], Ambrosetti and Ruiz obtained the existence of infinitely many radially symmetric solutions to
system (1.4) when 2 < p 6 5.

Using Lyapunov-Schmidt reduction method, D’Aprile and Wei [13] obtained the bound state solution
for system (1.3), and the concentration of the solution is also studied. With regard to other relevant results,
please see [23, 24, 40].

In [2], Alves et al. studied Schrödinger-Poisson system{
−∆u+ V(x)u+φu = f(u), x ∈ R3,

−∆φ = u2, x ∈ R3,
(1.5)

where V is bounded, local Hölder continuous, and satisfies:

(1) V(x) > α > 0, x ∈ R3;
(2) V(x) = V(x+ y), ∀x ∈ R3, ∀y ∈ Z3;
(3) lim|x|→∞ |V(x) − V0(x)| = 0;
(4) V(x) 6 V0(x), ∀x ∈ R3, and there exists Ω ⊂ R3 such that

V(x) 6 V0(x),∀x ∈ Ω

where V0 satisfies (2).

Alves studied the ground sates solutions to system (1.5) in case the periodic condition under (1)-(2) and
in case the asymptotically periodic condition under (1), (3), and (4), respectively.
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In case p ∈ (3, 5), Cerami and Vaira [9] studied the existence of positive solutions for the following
non-autonomous Schrödinger-Poisson system{

−∆u+ u+K(x)φ(x)u = a(x)|u|p−1u, x ∈ R3,

−∆φ = K(x)u2, x ∈ R3,
(1.6)

where a,K are nonnegative functions such that lim|x|→∞ a(x) = a∞ > 0, lim|x|→∞ K(x) = 0.
In [45], Zhang et al. studied existence of positive ground state solutions for the following Schrödinger-

Poisson system {
−∆u+ V(x)u+K(x)φu = f(x,u), x ∈ R3,

−∆φ = K(x)u2, x ∈ R3.
(1.7)

where V ,K, and f are asymptotically periodic at infinity. Moreover, the nonlinear term f satisfies the
monotone condition: ∀t 6= 0, s 7→ f(x,st)t

s3 is nondecreasing on (0,∞).
On the other hand, when K = 0, the Schrödinger-Poisson equation (1.7) becomes the standard

Schrödinger equation (replace R3 with RN)

−∆u+ V(x)u = f(x,u), x ∈ RN. (1.8)

The Schrödinger equation (1.8) has been widely investigated by many authors in the last decades, see [3,
8, 14–16, 20, 26, 30, 31] and reference thein.

Especially, in [14], Marchi studied the nontrivial solutions and ground state solutions for problem
(1.8) in which V , f satisfies the asymptotic periodic condition. In the context about asymptotic periodic,
we refer the reader to [25, 27, 35, 36].

Motivated by above results, especially by [2, 14, 45], in this paper we study nontrivial solutions and
ground state solutions to system (1.7) under asymptotically periodic case of V ,K, and f at infinity.

Let = be the functions h ∈ L∞(R3, R) such that, for every ε > 0, the set {x ∈ R3 : |h(x)| > ε} has finite
Lebesgue measure. To state our main result, we assume that:

(H1) V ,K ∈ L∞(R3), infx∈R3 V(x) > 0, infx∈R3 K(x) > 0;
(H2) f ∈ C(R3 ×R, R), |f(x,u)| 6 C(1 + |u|p), 3 < p < 5;
(H3) f(x,u) = o(u) u→ 0 uniformly in x ∈ R3;
(H4) f(x,u)u− 4F(x,u) > 0 for all (x,u) ∈ (R3, R);
(H5) lim|u|→∞ F(x,u)

|u|4
= +∞ uniformly in x ∈ R3;

(H6) there exist V0,K0 ∈ L∞(R3), f0 ∈ C(R3 ×R, R) satisfies:
(i) V0,K0, and f0 are 1−periodic in xi, 1 6 i 6 3;

(ii) V − V0,K−K0 ∈ =, |f(x,u) − f0(x,u)| 6 |h(x)|(|u|+ |u|p), x ∈ R3,h ∈ =;
(iii) V 6 V0,K 6 K0, F(x, t) > F0(x, t) =

∫t
0 f0(x, s)ds for all (x, t) ∈ (R3, R);

(iv) ∀u 6= 0, s 7→ f0(x,su)
s3 is nondecreasing on (−∞, 0) and (0,∞).

Our main results of this paper is as follows.

Theorem 1.1. Assume (H1)-(H6) are satisfied, then system (1.7) has at least one solution.

Theorem 1.2. Suppose that V(x), K(x), and f(x, t) are 1-periodic in xi, 1 6 i 6 3, and V(x) > a0 > 0 for all
x ∈ R3. If f satisfies (H2), (H3), (H5), and

(H4)? f(x,u)u− 4F(x,u) > 0 for all u 6= 0,

then system (1.7) has a ground-state solution.

Remark 1.3.

(1) In this paper, the condition (H6) means asymptotically periodic case of V ,K, and f at infinity. This
condition was introduced by Lins and Silva [27] in the study of a Schrödinger equation.
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(2) In our paper, f does not satisfy any monotone condition, that is f(x,t)
t is oscillatory, and therefore the

method of Nehari manifold [39] used in [45] is not applicable.
(3) In Theorem 1.1, in case of (H4) being replaced by

f(x,u)u− 4F(x,u) > −σu2 uniformly in x ∈ R3,

where 0 < σ < infR3 V , then the result will still hold.

2. Notation and preliminaries

The scalar product and norm in Sobolev space H1(R3) is defined by

〈u, v〉 =
∫

R3
(∇u · ∇v+ V(x)uv)dx, ‖u‖2 = 〈u,u〉.

Set
‖u‖2

0 =

∫
R3
(|∇u|+ V0(x)u

2)dx,

‖u‖0 is an equivalent norm in H1(R3) since condition (H1).
D1,2(R3) is the Sobolev space endowed with the scalar product and norm

〈u, v〉D1,2 =

∫
R3
∇u · ∇vdx, ‖u‖2

D1,2 =

∫
R3

|∇u|2dx.

Since K ∈ L∞(R3), infR3 K > 0, ∀u ∈ H1(R3), by Lax-Milgram theorem, there exists unique φ = φu ∈
D1,2(R3) such that

−∆φ = K(x)u2.

Functional φu satisfies the following properties.

Lemma 2.1 ([9, 11, 32, 45, 46]). ∀u ∈ H1(R3),

(i) there exists C > 0 such that ‖φu‖D1,2 6 C‖u‖2 and∫
R3

|∇φu|2dx 6
∫

R3
K(x)φuu

2dx 6 C‖u‖4, ∀u ∈ H1(R3);

(ii) φu > 0,∀u ∈ H1(R3);
(iii) φtu = t2φu,∀ t > 0,∀u ∈ H1(R3);
(iv) If un ⇀ u in H1(R3), then φun ⇀ φu in D1,2(R3).

Lemma 2.2. Suppose that f satisfies (H2) and (H3). Then, for any given ε > 0 there exist Cε such that

|f(x, t)| 6 ε|t|+Cε|t|p, |F(x, t)| 6 ε|t|2 +Cε|t|p+1 for all (x, t) ∈ (R3, R).

The energy functional I : H1(R3)→ R corresponding to system (1.7) is defined by

I(u) =
1
2

∫
R3
(|∇u|2 + V(x)u2)dx+

1
4

∫
R3
K(x)φuu

2dx−

∫
R3
F(x,u)dx.

In fact,

I(u) =
1
2
‖u‖2 +

1
4

∫
R3
K(x)φuu

2dx−

∫
R3
F(x,u)dx.

In view Lemma of 2.2, the functional I is well defined. Furthermore, under our condition, I ∈ C1(H1(R3))
and (u,φ) ∈ H1(R3)×D1,2(R3) is a solution of system (1.7) if and only if u ∈ H1(R3) is a critical point of
I and φ = φu.
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∀u ∈ H1(R3), let φ̃u ∈ D1,2(R3) is unique solution of the following equation

−∆φ = K0(x)u
2.

Then I0(u) = 1
2‖u‖

2
0 +

1
4

∫
R3 K0(x)φ̃uu

2dx−
∫

R3 F0(x,u)dx is the energy functional corresponding to
the following system {

−∆u+ V0(x)u+K0(x)φu = f0(x,u), x ∈ R3,

−∆φ = K0(x)u
2, x ∈ R3.

Lemma 2.3 ([45]). If (i) of (H6) holds, then

G(u(·+ y)) = G(u), ∀y ∈ Z3,u ∈ H1(R3),

where G(u) =
∫

R3 K0(x)φ̃uu
2dx.

Let un ⊂ H1(R3), we said un is a Cerami sequence for the functional I at level c ∈ R if

I(un)→ c, (1 + ‖un‖)I ′(un)→ 0,n→∞.

The following result is a version of the classical mountain pass theorem [4, 43]. For the proof, please
see [33].

Theorem 2.4. Let E be a real Banach space. Assume I ∈ C ′(E, R) satisfies I(0) = 0 and

(I1) there exist ρ,α > 0 such that I(u) > α > 0 for all ‖u‖ = ρ;
(I2) there exist e ∈ E with ‖e‖ > ρ such that I(e) 6 0.

Then I possesses a Cerami sequence at level

c = inf
Θ

max
t∈[0,1]

I(γ(t)),

where
Θ = γ ∈ C([0, 1],E) : γ(0) = 0, ‖γ(1)‖ > ρ, I(γ(1)) 6 0.

Theorem 2.5 (local mountain pass theorem [27]). Let E be a real Banach space. Assume I ∈ C ′(E, R) satisfies
I(0) = 0, (I1) and (I2). If there exists γ0 ∈ Θ, Θ defined as in Theorem 2.4, such that

c = max
t∈[0,1]

I(γ0(t)) > 0,

then I possesses a non-trivial critical point u ∈ γ0([0, 1]) at the level c.

Lemma 2.6. Suppose that f satisfies (H1), (H2), (H3), and (H5). Then I satisfies (I1) and (I2).

Proof. By Lemma 2.2 and Sobolev’s inequality, we have∫
RN
F(x,u)dx 6 ε|u|22 +Cε|u|

p+1
p+1 6 εC1‖u‖2 +C‖u‖p+1

for some C1 > 0. By
∫

R3 K(x)φuu
2dx > 0, we have

I(u) >
1
2
‖u‖2 −C1ε‖u‖2 −C‖u‖p+1 =

(
1
2
−C1ε

)
‖u‖2 −C‖u‖p+1.

Since p > 2, we have

I(u) >

(
1
2
−C1ε

)
‖u‖2 + o(‖u‖p) > α
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for ‖u‖ = ρ small enough. This proves (I1).
Next we prove ∃e ∈ H1(R3) such that I(e) < 0. By (H3) and (H5), for any 0 6= v ∈ H1(R3) that satisfies

M

∫
R3
v4dx >

1
4

∫
R3
K(x)φvv

2dx,

there exists C > 0 such that
F(x,u) >Mu4 −Cu2, ∀(x,u) ∈ R3 ×R.

Hence

I(tv) =
t2

2
‖v‖2 +

t4

4

∫
R3
K(x)φvv

2dx−

∫
R3
F(x, tv)dx

6
t2

2
‖v‖2 +

t4

4

∫
R3
K(x)φvv

2dx−Mt4
∫

R3
v4dx+Ct2

∫
R3
v2dx

= (C+
1
2
)t2‖v‖2 −

(
M

∫
R3
v4dx−

1
4

∫
R3
K(x)φvv

2dx

)
t4

→ −∞
as t→∞. So, for t sufficient large, choose e = tv.

Lemma 2.7. Suppose that f satisfies (H1)-(H5). Then any Cerami sequence for I is bounded.

Proof. Let un ⊂ H1(R3) be such that

I(un)→ c, (1 + ‖un‖)I ′(un)→ 0,n→∞.

Since

c+ on(1) = 4I(un) − I ′(un)un = ‖un‖2 +

∫
R3
(f(x,un)un − 4F(x,un))dx > ‖un‖2.

From above inequality, un is bounded.

Lemma 2.8. Suppose that f satisfies (H1)-(H5). Let un ⊂ H1(R3) be Cerami sequence for I at level c > 0. If
un ⇀ 0 in H1(R3), then there exist a sequence {yn} ⊂ R3 and R > 0,β > 0 such that yn →∞ and

lim
n→∞ sup

∫
BR(yn)

|un|
2 > β > 0.

Proof. Suppose by contradiction, that the Lemma fails. Then, for any R > 0, we have that

lim
n→∞ sup

∫
BR(y)

|un|
2 = 0

for all R > 0. By Lions Lemma [43], we have that |un|Ls → 0 for any s ∈ (2, 2∗).
By Lemma 2.2, we have

∫
R3 f(x,un)un → 0.

Since I ′(un)un → 0 as n→∞, we get

‖un‖2 6 ‖un‖2 +

∫
R3
K(x)φunu

2
ndx =

∫
R3
f(x,un)undx+ on(1).

So, un → 0 in H1(R3). Therefore,
∫

R3 K(x)φunu
2
ndx→ 0.

From above facts, we get I(un)→ 0 as n→∞, which contradicts with I(un)→ c > 0.



D.-B. Wang, L.-P. Ma, W. Guan, H.-M. Wu, J. Nonlinear Sci. Appl., 11 (2018), 591–601 597

Lemma 2.9 ([45]). Suppose that (ii) of (H6) holds. If {un} ∈ H1(R3) such that un ⇀ 0 inH1(R3), {ϕn} ∈ H1(R3)
is bounded, then ∫

R3
[V(x) − V0(x)]unϕndx→ 0,∫

R3
[K(x)φununϕn −K0(x)φ̃ununϕn]dx→ 0,∫

R3
[f(x,un) − f0(x,un)]ϕndx→ 0.

3. Proof of main result

In this section we are ready to prove our main theorems.

Proof of Theorem 1.1. In view of Lemma 2.6 and Theorem 2.4, there exists a sequence (un) ⊂ H1(R3) such
that

I ′(un)→ c > α > 0 and (1 + ‖un‖)I ′(un)→ 0 as n→∞. (3.1)

From Lemma 2.7, {un} is bounded. So, without loss of generality, one assumes that un ⇀ u weakly in
H1(R3).

Now we prove I ′(u) = 0. Indeed, since C∞0 (R3) is dense in H1(R3), it suffices to show that I ′(u)ϕ = 0
for all ϕ ∈ C∞0 (R3). ∀ ϕ ∈ C∞0 (R3), we have

I ′(un)ϕ− I ′(u)ϕ =

∫
R3

(∇un∇ϕ+ V(x)unϕ)dx+

∫
R3
K(x)φununϕdx−

∫
R3
f(x,un)ϕdx

−

∫
R3

(∇u∇ϕ+ V(x)uϕ)dx−

∫
R3
K(x)φuuϕdx+

∫
R3
f(x,u)ϕdx

= 〈un − u,ϕ〉−
∫

R3
K(x) (φunun −φuu)ϕdx

−

∫
R3

(f(x,un) − f(x,u))ϕdx.

Since un ⇀ u, by Lemmas 2.1 and 2.2, we obtain

I ′(u)ϕ = lim
n→∞ I ′(un)ϕ = 0,

which implies that I ′(u) = 0.
If u 6= 0, the theorem is proved.
If u = 0, from Lemma 2.8, there exists a sequence (yn) ⊂ R3, R > 0, β > 0 such that |yn| → ∞ as

n→∞ and
lim sup
n→∞

∫
BR(yn)

|un|
2 > β > 0. (3.2)

Let (yn) ⊂ Z3 and ũn(x) = un(x+ yn), and observing that ‖ũn‖ = ‖un‖0, up to a subsequence we
have that ũn ⇀ ũ in H1(R3), ũn → ũ in L2

loc(R
3) and for almost every x ∈ R3. From (3.2), we have ũ 6= 0.

Next we prove I ′0(ũ) = 0. ∀ϕ ∈ C∞0 (R3), for each n ∈N, let ϕn(x) = ϕ(x− yn), we get that

I ′0(ũ)ϕ = I ′0(ũn)ϕ+ on(1) = I ′0(un)ϕn + on(1).

On the other hand, by Lemma 2.9, we get that

I ′0(un)ϕn = I ′(un)ϕn +

∫
R3
[V0(x) − V(x)]unϕndx

−

∫
R3
[f0(x,un) − f(x,u)]ϕndx−

∫
R3
[K(x)φununϕn −K0(x)φ̃ununϕn]dx

= I ′(un)ϕn + on(1).
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So, by (3.1), we get I ′0(ũ) = 0.
By Lemma 2.9, similar to above, we have

I(un) − I0(un)→ 0, I ′(un)un − I ′0(un)un → 0.

Then
I0(un)→ c, I ′0(un)un → 0.

By (iv) of (H6), ∀u ∈ R, we have 4F0(x,u) 6 f0(x,u). So

c+ on(1) = I0(un) −
1
4
I ′0(un)un

=
1
4
‖un‖2

0 +

∫
R3
[
1
4
f0(x,un)un − F0(x,un)]dx

=
1
4
‖ũn‖2

0 +

∫
R3
[
1
4
f0(x, ũn)ũn − F0(x, ũn)]dx

>
1
4
‖ũ‖2

0 +

∫
R3
[
1
4
f0(x, ũ)ũ− F0(x, ũ)]dx+ on(1)

= I0(ũ) −
1
4
I ′0(ũ)ũ+ on(1)

= I0(ũ) + on(1).

Therefore I0(ũ) 6 c.
We shall verify that maxt>0 I0(tũ) = I0(ũ). Let

χ(t) = I0(tũ) =
t2

2
‖ũ‖2

0 +
t4

4

∫
R3
K0(x)φũũ

2dx−

∫
R3
F0(x, tũ)dx.

So,

χ ′(t) = t‖ũ‖2
0 + t

3
∫

R3
K0(x)φũũ

2dx−

∫
R3
f0(x, tũ)ũdx

= t3
(

1
t2 ‖ũ‖

2
0 +

∫
R3
K0(x)φũũ

2dx−

∫
R3

f0(x, tũ)ũ
t3

)
dx = t3A(t).

Since I ′0(ũ) = 0, A(1) = 0. It follows from part (iv) of (H6) that A is strictly decreasing in (0,∞), then
A(t) > 0 when t ∈ (0, 1) and A(t) < 0 when t ∈ (1,∞). Therefore

χ ′(t) > 0 when t ∈ (0, 1) and χ ′(t) < 0 when t ∈ (1,∞).

Hence, maxt>0 I0(tũ) = I0(ũ).
By the definition of c, (V) and part (iii) of (H6), we have that

c 6 max
t>0

I(tũ) 6 max
t>0

I0(tũ) = I0(ũ) 6 c.

We can now invoke Theorem 2.5 to conclude that I possesses a critical point at level c > 0. This
finishes the proof.

Proof of Theorem 1.2. It is easy to see that Lemmas 2.2, 2.6, 2.7, and 2.8 are all hold by using the conditions
of Theorem 1.1. From Lemma 2.6 and Theorem 2.4, there exists Cerami sequence {un} ⊂ H1(R3), i.e.,

I0(un)→ c0 and (1 + ‖un‖0)I
′
0(un)→ 0, as n→ +∞.

where c0 is the mountain pass level of I0.
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By Lemmas 2.7, we conclude that un ⇀ u weakly in H1(R3). Similar to proof of Theorem 1.1, we have
I ′0(u) = 0.

Following, we only need to consider the case in which u = 0. By Lemma 2.8, there is a sequence
(yn) ⊂ Z3, R > 0, β > 0 such that |yn|→∞ as n→∞ and

lim sup
n→∞

∫
BR(yn)

|un|
2 > β > 0. (3.3)

Let ũn(x) = un(x+ yn), then ‖ũn‖0 = ‖un‖0. Up to a subsequence, we have

ũn ⇀ ũ weakly in H1(R3), ũn → ũ in L2
loc(R

3), ũn(x)→ ũ almost everywhere in R3.

By (3.3), ũ 6= 0. Similar to proof of Theorem 1.1, we get I ′0(ũ) = 0.
So m = inf{I0(u) : u ∈ H1(R3), I ′(u) = 0} > 0 is well defined. Next, to prove m is achieved. Indeed, let

{un} ⊂ H1(R3) be a minimizing sequence for m, i.e.,

I0(un)→ m, I ′0(un) = 0 and un 6= 0.

Obviously, {un} is a Cerami sequence for I0. So, from Lemma 2.7, {un} is bounded. Moreover, from
I ′0(un)un = 0 and Lemma 2.2, there exists σ > 0 such that ‖un‖0 > σ. Thus, arguing as in the preced-
ing paragraph, we obtain a translated subsequence {ũn}, which has a non-zero weak limit u0 such that
I ′0(u0) = 0 and ũn(x)→ u0(x) a.e. in RN. By Fatou’s lemma

m = lim
n→∞ I0(un) = lim

n→∞ I0(ũn) = lim inf
n→∞ ‖ũn‖0

4
+ lim inf
n→∞

∫
R3
F̂0(x, ũn)dx

>
‖u0‖0

4
+

∫
R3
F̂0(x,u0)dx = I0(u0).

Consequently, I0(u0) = m, and therefore u0 6= 0 is a ground-state solution.
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