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Abstract
The problem of guaranteed cost control for exponential function projective synchronization (EFPS) for complex dynamical

networks with mixed time-varying delays and hybrid uncertainties asymmetric coupling delays, composing of state coupling,
time-varying delay coupling, and distributed time-varying delay coupling, is investigated. In this work, the uncertainties cou-
pling configuration matrix need not be symmetric or irreducible. The guaranteed cost control for EFPS of delayed complex
dynamical networks is considered via hybrid control with nonlinear and mixed linear feedback controls, including error linear
term, time-varying delay error linear term, and distributed time-varying delay error linear term. Based on the construction of
improved Lyapunov-Krasovskii functional with the technique of dealing with some integral terms, the new sufficient conditions
for the existence of the optimal guaranteed cost control laws are presented in terms of linear matrix inequalities (LMIs). The
obtained LMIs can be efficiently solved by standard convex optimization algorithms. Moreover, numerical examples are given
to demonstrate the effectiveness of proposed guaranteed cost control for EFPS. The results in this article generalize and improve
the corresponding results of the recent works.
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1. Introduction

Complex dynamical networks, as an interesting subject, have been thoroughly investigated for the
past decades. The theories and applications of complex dynamical networks have become a hot topic
in the breakthrough of research methods of complex dynamical networks. These networks exhibit very
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complicated behavior and can be used to model and explain many complex systems in nature such
as computer networks, the world wide web, cellular and metabolic networks, transportation networks,
communication networks, disease transmission networks, electrical power grids [2, 12, 16, 34, 36, 37] and
so forth.

The problem of synchronization in complex dynamical networks (CDNs) has been extensively inves-
tigated over the part few decades. Synchronization of CDNs is one of the most important dynamical
mechanisms for creating order in CDNs. Meanwhile, a number of methods have been developed for
the synchronization of CDNs including complete synchronization (CS) [6, 22, 41], generalized synchro-
nization (GS) [38], exponential synchronization (ES) [4, 42], projection synchronization (PS) [24, 44], etc..
Recently, the new type of synchronization phenomenon in CDNs, called function projection synchroniza-
tion (FPS) was introduced [1, 10, 11, 31, 44]. In these works, the nodes of CDNs could be synchronize
up to an equilibrium point or periodic orbit with a desired scaling function. In [44], the FPS in drive-
response dynamical networks with coupled partially linear chaotic systems was presented in which the
identical node dynamics was assumed and a simple control law was used. In [10], the problem of FPS of
(CDNs) with or without external disturbances using error feedback control and adaptive error feedback
control was investigated. In [11], a hybrid feedback control method was proposed for achieving FPS in
CDNs with constant time delay and time-varying coupling delay. Function projective synchronization
for complex networks with asymmetric coupling matrix via adaptive and pinning feedback control was
considered in [31]. However, all their results was concerned with FPS of CDNs. As far as we know,
there have still been few studies on exponential function projective synchronization (EFPS) for CDNs. So,
it is challenging to deal with the EFPS problem of CDNs with mixed time-varying delays and hybrid
uncertainties asymmetric coupling delays.

In the past few decades, control problems for synchronization have been widely studied in CDNs.
Many important synchronization control methods have also been developed for CDNs, for instance,
feedback control [10, 11], intermittent control [4, 5], sampled-data control [30], nonlinear feedback con-
trol [9, 32], pinning control [14, 29, 33, 43], adaptive control [25, 31, 40, 45], pinning adaptive control
[19, 25, 31, 39], and other control methods. When controlling a real plant, it is always desirable to design
a control system not only asymptotical stability but also guaranteed adequate level of performance. One
of the design approaches for solving this problem is the so-called guaranteed cost control approach first
introduced by Chang and Peng [7]. The guaranteed cost control for various dynamic systems has been
investigated in [3, 8, 21, 26–28, 35]. In [18], the guaranteed cost synchronization for a complex dynamical
network via dynamic feedback control was proposed. In [17], synchronization problem of a complex
dynamical network with probabilistic switches for the topology of a complex network was investigated.
Decentralized guaranteed cost dynamic feedback controller is designed to achieve the synchronization of
the network. The guaranteed cost control of synchronization for a class of complex delayed dynamical
networks with uncertain inner coupling configuration was investigated [20]. The coupling delay and node
delay was considered in the networks. In [23], the guaranteed cost synchronization control problem of
some general complex dynamical networks with delay was investigated and dynamic feedback controller
were designed for the pinning control of parts of the nodes in order for the system to achieve the guaran-
teed cost synchronization. Moreover, the guaranteed cost synchronization of delayed complex dynamical
networks with node uncertainties and coupling uncertainties was presented in [15]. So far, unfortunately,
there have still been few papers related to the topic of guaranteed cost synchronization of a CDNs with
mixed time-varying delays in the dynamical nodes and in the hybrid uncertainties coupling, including
constant coupling, discrete time-varying delay coupling, and distributed time-varying delay coupling,
simultaneously. Therefore, it is challenging to solve this guaranteed cost synchronization problem for
CDNs.

Motivated by the above discussions, this work is one of the first reports of such investigation to fur-
ther develop the guaranteed cost control problem for EFPS of complex dynamical networks with mixed
time-varying delays and hybrid uncertainties asymmetric coupling delays. The main contributions of our
study are as the following. Firstly, the definition of exponential function projective synchronization for
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complex dynamical networks is introduced. Secondly, the considered time-varying delays are different
from the time-delay case in [15]. The time-varying delays were mixed between discrete and distributed
time-varying delays in the dynamical nodes and in hybrid uncertainties asymmetric coupling, simul-
taneously. Thirdly, we do not assume that the uncertainties coupling configuration matrix needs not
be symmetric or irreducible, which is different from coupling in Refs. [17, 20]. Finally, for the control
method, the guaranteed cost control problem for EFPS is studied via hybrid control with nonlinear and
mixed linear feedback control, containing error linear term, time-varying delay error linear term, and dis-
tributed time-varying delay error linear term. The EFPS is different from control method in [17, 18, 23].
By constructing new and improved Lyapunov-Krasovskii functional with the technique of dealing with
some integral terms, the new sufficient conditions for existence of the guaranteed cost control via hybrid
control are expressed as linear matrix inequalities (LMIs). The obtained LMIs can be efficiently solved by
standard convex optimization algorithms. Numerical examples are included to show the effectiveness of
the proposed hybrid control scheme.

The rest of the paper is organized as follows. Section 2 provides some mathematical preliminaries
and network model. Section 3 presents EFPS of complex dynamical network with mixed time-varying
delays and hybrid uncertainties asymmetric coupling by hybrid control. Numerical examples are given
in Section 4. Finally, the conclusions are provided in Section 5.

2. Network model and mathematic preliminaries

Consider a complex dynamical network consisting ofN identical coupled nodes, with each node being
an n-dimensional nonlinear dynamical system

ẋi(t) = f(t, xi(t), xi(t− τ1(t)),
∫t
t−σ1(t)

xi(s)ds) + ρ1

N∑
j=1

w1
ij(G1 +∆G1(t))xj(t)

+ ρ2

N∑
j=1

w2
ij(G2 +∆G2(t))xj(t− τ2(t)) + ρ3

N∑
j=1

w3
ij(G3 +∆G3(t))

∫t
t−σ2(t)

xj(s)ds

+Ui(t), t > 0, i = 1, 2, ...,N,
xi(t) = φi(t), t ∈ [−τmax, 0], τmax = max{τ1, τ2, τ3,σ1,σ2,σ3},

(2.1)

where xi(t) = (xi1(t), xi2(t), ..., xin(t))T ∈ Rn is the state vector of ith node; f : Rn+×Rn×Rn×Rn → Rn

is a smooth nonlinear vector function which describes the local dynamics of nodes, and is continuously
differentiable and capable of performing abundant dynamical behaviors such as equilibrium points, pe-
riodic orbits, and chaos; Ui(t) ∈ Rm is the control input of the node i; the constants ρ1, ρ2, ρ3 > 0
denote the non-delayed and delayed coupling strength, respectively; G1,G2,G3 ∈ Rn×n are constant
inner-coupling matrices; ∆G1(t),∆G2(t), ∆G3(t) ∈ Rn×n are the uncertainties of inner coupling matrices;
W1 = (w1

ij)N×N, W2 = (w2
ij)N×N, W3 = (w3

ij)N×N ∈ RN×N are the coupling configuration matrices rep-
resenting the coupling weights and topological structure for non-delayed configuration and delayed one
at time t, respectively, in which w1

ij, w
2
ij and w3

ij are defined as follows: if there is a connection between
node i and node j (j 6= i), then w1

ij > 0, w2
ij > 0, w3

ij > 0; otherwise, w1
ij = 0, w2

ij = 0, w3
ij = 0 (j 6= i), and

the diagonal elements of matrices W1, W2, and W3 are defined by

w1
ii = −

N∑
j=1,i 6=j

w1
ij,w

2
ii = −

N∑
j=1,i 6=j

w2
ij,w3ii = −

N∑
j=1,i 6=j

w3
ij, i = 1, 2, ...,N.

Suppose that C([−τmax, 0],Rn) is the Banach space of continuous functions with the norm

‖φi‖ = sup
−τmax6s60

‖φi(s)‖.

The initial condition function φi(t) denotes a continuous vector-valued initial function of t ∈ [−τmax, 0].
Under the initial conditions, we always assume that (2.1) has a unique solution.
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For this synchronization scheme, we set the error vector in the form ei(t) = xi(t) − α(t)s(t), i =
1, . . . ,N, where α(t) is a continuously bounded differentiable function. Then, substituting it into (2.1), the
error dynamics network is given to

ėi(t) = ẋi(t) − α̇(t)s(t) −α(t)ṡ(t)

= f(xi(t), xi(t− τ1(t)),
∫t
t−σ1(t)

xi(s)ds) −α(t)f(s(t), s(t− τ1(t)),
∫t
t−σ1(t)

s(θ)dθ)

+ ρ1

N∑
j=1

w1
ij(G1 +∆G1(t))ej(t) + ρ2

N∑
j=1

w2
ij(G2 +∆G2(t))ej(t− τ2(t))

+ ρ3

N∑
j=1

w3
ij(G3 +∆G3(t))

∫t
t−σ2(t)

ej(s)ds− α̇(t)s(t) +Ui(t), i = 1, . . . ,N.

(2.2)

Definition 2.1. Network (2.1) with mixed time-varying delay is said to achieve exponential function pro-
jective synchronization (EFPS) if there exists Mi > 1, δ > 0 and a continuously differentiable scaling
function α(t) such that

lim
t→∞ ‖ei(t)‖ = lim

t→∞ ‖xi(t) −α(t)s(t)‖ 6Mi‖φi −αω‖e−δt, ∀t > 0, i = 1, 2, . . . ,N,

where ‖.‖ stands for the Euclidean vector norm and s(t) ∈ Rn can be either an equilibrium point, or a
(quasi-)periodic orbit, or an orbit of a chaotic attractor, which satisfies

ṡ(t) = f(s(t), s(t− τ1(t)),
∫t
t−σ1(t)

s(θ)dθ), ∀t > 0, s(t) = ω(t), t ∈ [−τmax, 0]. (2.3)

Remark 2.2. If the scaling function α(t) = 1 or α(t) = −1, then the synchronization problem will be
reduced to the complete synchronization or anti-synchronization. If the scaling function α(t) = 0, then
the synchronization problem will be turned into a chaos control problem.

In order to stabilize the error system of uncertain delayed complex dynamical network (2.2), the
following dynamic hybrid controllers Ui(t) such as

Ui(t) = Ui1(t) +Ui2(t), i = 1, 2, . . . ,N, (2.4)

where

Ui1(t) = α̇(t)s(t), Ui2(t) = B1iui(t) +B2iui(t− τ3(t)) +B3i

∫t
t−σ3(t)

ui(s)ds,

where ui(t) = Kiei(t) and Ki, i = 1, 2, . . . ,N, is constant matrix control gain. In this work, our goal is to
design suitable Ki such that the complex network (2.2) is exponentially stable. Then, substituting it into
(2.2), we get the following:

ėi(t) = ẋi(t) − α̇(t)s(t) −α(t)ṡ(t)

= f(xi(t), xi(t− τ1(t)),
∫t
t−σ1(t)

xi(s)ds) −α(t)f(s(t), s(t− τ1(t)),
∫t
t−σ1(t)

s(θ)dθ)

+ ρ1

N∑
j=1

w1
ij(G1 +∆G1(t))ej(t) + ρ2

N∑
j=1

w2
ij(G2 +∆G2(t))ej(t− τ2(t))

+ ρ3

N∑
j=1

w3
ij(G3 +∆G3(t))

∫t
t−σ2(t)

ej(s)ds+B1iui(t) +B2iui(t− τ3(t)),

+B3i

∫t
t−σ3(t)

ui(s)ds, i = 1, . . . ,N,

ei(t) = ϕi(t) = φi(t) −α(t)ω(t), t ∈ [−τmax, 0], i = 1, . . . ,N.

(2.5)
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Define the following quadratic cost function of the associated network (2.2) as follows:

J =

N∑
i=1

∫∞
0
[eTi (t)Q1iei(t) + u

T
i (t)Q2iui(t)]dt, (2.6)

where Q1i,Q2i ∈ Rn×n are positive definite matrices. The guaranteed cost control problem to be ad-
dressed in this section is formulated as follows.

Definition 2.3. For the uncertain delayed complex dynamical network (2.1) and the quadratic cost function
(2.6), if there exist feedback control laws ui(t) = Kiei(t), i = 1, 2, . . . ,N, and a positive number J∗ such
that the error network (2.5) is EFPS, and the corresponding value of cost function (2.6) satisfies J 6 J∗,
then J∗ is said to be a guaranteed cost and ui(t), i = 1, 2, . . . ,N are said to be the guaranteed cost control
laws for the EFPS of delayed complex dynamical network (2.1) with the quadratic cost function (2.6).

Remark 2.4. If τ1(t) = τ2(t) = 0, σ1(t) = σ2(t) = 0, ρ1 = 1, ρ2 = ρ3 = 0 the network model (2.1) turns into
the complex dynamical network proposed by Lee et al. [18] as

ẋi(t) = f(xi(t)) +

N∑
j=1

w1
ijxj(t) +Ui(t), i = 1, . . . ,N.

If ρ1 = ρ3 = 0, ρ2 = 1, for constant delays τ1(t) = τ1, τ2(t) = τ2 and σ1(t) = σ2(t) = 0, then the network
model (2.1) is translated into

ẋi(t) = f(xi(t), xi(t− τ1)) +

N∑
j=1

w1
ij(G1 +∆G1(t))xj(t− τ2) +Ui(t), i = 1, . . . ,N. (2.7)

The complex dynamical network (2.7) was considered in [20]. For time-varying delays, τ1(t) > 0, τ2(t) > 0
and f(xi(t), xi(t − τ1)) = (A + ∆A)xi(t) + g1(xi(t)) + g2(xi(t − τ1(t))), the network model (2.7) turns
into the complex dynamical network presented by He et al. [15]. Hence, our network model (2.1) is
more generalized than previous network models, which can be regarded as special cases of the complex
dynamical network (2.1).

In the rest of this paper, we need the following assumptions and some lemmas.

Assumption 2.5. The time-varying delays functions τi(t) and σi(t), i = 1, 2, 3 satisfy conditions that τi(t) is
differentiable, 0 6 τi(t) 6 τi, 0 6 σi(t) 6 σi, i = 1, 2, 3, 0 6 τ̇i(t) 6 βj < 1, j = 1, 2 and τ̇3(t) 6 β3 6= 1.

Assumption 2.6. The matrices ∆G1(t),∆G2(t),∆G3(t) ∈ Rn×n denote the uncertainties in system and they are
of the forms

∆G1(t) = D1F(t)E1, ∆G2(t) = D2F(t)E2, ∆G3(t) = D3F(t)E3,

where D1,D2,D3,E1,E2,E3 are known constant matrices and F(t) unknown real time-varying matrices with
Lebesgue measurable elements bounded by

FT (t)F(t) 6 I.

Lemma 2.7 ([13, Cauchy inequality]). For any symmetric positive definite matrix N ∈ Mn×n and x,y ∈ Rn

we have
±2xTy 6 xTNx+ yTN−1y.

Lemma 2.8 ([13]). For any constant symmetric matrix M ∈ Rm×m, M = MT > 0, γ > 0, vector function
ω : [0,γ]→ Rm such that the integrations concerned are well defined( ∫γ

0
ωT (s)ds

)T
M
( ∫γ

0
ω(s)ds

)
6 γ
∫γ

0
ωT (s)Mω(s)ds.



W. Weera, T. Botmart, P. Niamsup, N. Yotha, J. Nonlinear Sci. Appl., 11 (2018), 550–574 555

Lemma 2.9 ([13], Schur complement). Given constant symmetric matrices X, Y,Z with appropriate dimensions
satisfying X = XT , Y = YT > 0, then X+ZTY−1Z < 0 if and only if(

X ZT

Z −Y

)
< 0 or

(
−Y Z

ZT X

)
< 0.

3. Guaranteed cost EFPS of delayed complex dynamical network

In this section, we give some sufficient conditions for guaranteed cost EFPS of complex dynamical
network with discrete and distributed time-varying delays and hybrid uncertainties asymmetric coupling
delays (2.1) via hybrid control. Let us set

‖ϕi‖ = ‖ei(0)‖, ‖ϕi‖cl = sup
−τmax6s60

‖ei(s)‖, ηi = λmin(P
−1
i ), ρi = λmax(P

−1
i ),

σi =

N∑
i=1

[
λmax(P

−1
i RiP

−1
i )

1 − e−2δτ1

2δ
+ λmax(P

−1
i SiP

−1
i )

1 − e−2δτ2

2δ

+ λmax(P
−1
i Z

T
i U

−1
i ZiP

−1
i )

1 − e−2δτ3

2δ
+ σ2

1λmax(P
−1
i ViP

−1
i )

1 − e−2δσ1

2δ

+ σ2
2λmax(P

−1
i TiP

−1
i )

1 − e−2δσ2

2δ
+ σ2

3λmax(P
−1
i Z

T
iW

−1
i ZiP

−1
i )

1 − e−2δσ3

2δ

]
,

Mi = ρi‖ϕi‖2 + σi‖ϕi‖2
cl,

and

1. J1 = f ′(t, s(t), s(t − τ1(t)),
∫t
t−σ1(t)

s(ξ)dξ) ∈ Rn×n is the Jacobian of f(t, x(t), x(t − τ1(t)),∫t
t−σ1(t)

x(s)ds) at s(t) with the derivative of f(t, x(t), x(t − τ1(t)),
∫t
t−σ1(t)

x(s)ds) with respect
to x(t),

2. Jτ1 = f ′(t, s(t), s(t − τ1(t)),
∫t
t−σ1(t)

s(ξ)dξ) ∈ Rn×n is the Jacobian of f(t, x(t), x(t − τ1(t)),∫t
t−σ1(t)

x(s)ds) at s(t− τ1(t)) with the derivative of f(t, x(t), x(t− τ1(t)),
∫t
t−σ1(t)

x(s)ds) with re-
spect to x(t− τ1(t)),

3. Jσ1 = f ′(t, s(t), s(t − τ1(t)),
∫t
t−σ1(t)

s(ξ)dξ) ∈ Rn×n is the Jacobian of f(t, x(t), x(t − τ1(t)),∫t
t−σ1(t)

x(s)ds) at
∫t
t−σ1(t)

s(ξ)dξ with the derivative of f(t, x(t), x(t− τ1(t)),
∫t
t−σ1(t)

x(s)ds) with

respect to
∫t
t−σ1(t)

x(s)ds.

Theorem 3.1. Consider the close-loop error dynamical network (2.5) with the quadratic cost function (2.6), δ > 0,
Q1i > 0, and Q2i > 0, i = 1, 2, . . . ,N. If there exist symmetric positive definite matrices Pi, Ri, Si, Ui, Vi, Ti, Wi
and matrices Zi, i = 1, 2, . . . ,N with appropriately dimensions and positive scalars εj, j = 1, 2, . . . , 8, such that the
following LMIs hold:

Π1i =



Πi11 ZTi kT3 Z
T
i PiJ

T
τ1

PiJ
T
σ1

ρ1NPiG
T
1 ρ1NPiE

T
1 PiQ1i ZTiQ2i

∗ −Ui 0 0 0 0 0 0 0
∗ ∗ −k2

3Wi 0 0 0 0 0 0
∗ ∗ ∗ −ε1I 0 0 0 0 0
∗ ∗ ∗ ∗ −ε2I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −ρ1ε3NI 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ρ1ε6NI 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q1i 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2i


< 0, (3.1)

Π2i =

 −e−2δτ2(1 −β2)Si ρ2NPiG
T
2 ρ2NPiE

T
2

∗ −ρ2ε4NI 0
∗ ∗ −ρ2ε7NI

 < 0, (3.2)
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Π2i =

 −e−2δσ2Ti ρ3NPiG
T
3 ρ3NPiE

T
3

∗ −ρ3ε5NI 0
∗ ∗ −ρ3ε8NI

 < 0, (3.3)

where

Πi11 =

 Γ̃i11 0 0
∗ Γi22 0
∗ ∗ Γi33

 ,

Γ̃i11 = Pi(J
T
1 + δI) + (J1 + δI)Pi −B1iZi −Z

T
i B
T
1i + Ri + Si + σ

2
1Vi + σ

2
2Ti + ρ1ε3

( N∑
j=1

(w1
ij)

2)I
+ ρ2ε4

( N∑
j=1

(w2
ij)

2)I+ ρ3ε5
( N∑
j=1

(w3
ij)

2)I+ e2δτ3

1 −β3
BT2iUiB2i + e

2δσ3BT3iWiB3i

+ ρ1ε6D
T
1
( N∑
j=1

(w1
ij)

2)D1 + ρ2ε7D
T
2
( N∑
j=1

(w2
ij)

2)D2 + ρ3ε8D
T
3
( N∑
j=1

(w3
ij)

2)D3,

Γi22 = −e−2δτ1(1 −β1)Ri + ε1I,

Γi33 = −e−2δσ1Vi + ε2I,

then the controlled complex dynamical network (2.1) is EFPS with the system (2.3). Moreover, the feedback control
is

ui(t) = −ZiP
−1
i ei(t), i = 1, 2, . . . ,N, t > 0, (3.4)

and the upper bound of the quadratic cost function (2.6) is as follows:

J <

N∑
i=1

[
eTi (0)P

−1
i ei(0) +

∫ 0

−τ1

e2δseTi (s)P
−1
i RiP

−1
i ei(s)ds+

∫ 0

−τ2

e2δseTi (s)P
−1
i SiP

−1
i ei(s)ds

+

∫ 0

−τ3

e2δseTi (s)P
−1
i Z

T
i U

−1
i ZiP

−1
i ei(s)ds+ σ1

∫ 0

−σ1

∫ 0

s

e2δθeTi (θ)P
−1
i ViP

−1
i ei(θ)dθds

+ σ2

∫ 0

−σ2

∫ 0

s

e2δθeTi (θ)P
−1
i TiP

−1
i ei(θ)dθds+ σ3

∫ 0

−σ3

∫ 0

s

e2δθeTi (θ)P
−1
i Z

T
iW

−1
i ZiP

−1
i ei(θ)dθds

]
.

(3.5)

Proof. Since f(.) is continuous differentiable, it is easy to know that the origin of the nonlinear system
(2.2) is an asymptotically stable equilibrium point if it is an asymptotically stable equilibrium point of the
following linear time-varying delays systems

ėi(t) = J1ei(t) + Jτ1ei(t− τ1(t)) + Jσ1

∫t
t−σ1(t)

ei(s)ds+ ρ1

N∑
j=1

w1
ij(G1 +∆G1(t))ej(t)

+ ρ2

N∑
j=1

w2
ij(G2 +∆G2(t))ej(t− τ2(t)) + ρ3

N∑
j=1

w3
ij(G3 +∆G3(t))

∫t
t−σ2(t)

ej(s)ds

+B1iui(t) +B2iui(t− τ3(t)) +B3i

∫t
t−σ3(t)

ui(s)ds i = 1, . . . ,N.

(3.6)

Let Yi = P−1
i and yi(t) = Yiei(t). Using the feedback control (3.4), we construct the following Lyapunov-

Krasovskii functional candidate:

V(t, e(t)) =
7∑
k=1

Vk(t),
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where

V1(t) =

N∑
i=1

eTi (t)Yiei(t),

V2(t) =

N∑
i=1

∫t
t−τ1(t)

e2δ(s−t)eTi (s)YiRiYiei(s)ds,

V3(t) =

N∑
i=1

∫t
t−τ2(t)

e2δ(s−t)eTi (s)YiSiYiei(s)ds,

V4(t) =

N∑
i=1

∫t
t−τ3(t)

e2δ(s−t)uTi (s)U
−1
i ui(s)ds,

V5(t) = σ1

N∑
i=1

∫ 0

−σ1

∫t
t+s

e2δ(θ−t)eTi (θ)YiViYiei(θ)dθ,ds,

V6(t) = σ2

N∑
i=1

∫ 0

−σ2

∫t
t+s

e2δ(θ−t)eTi (θ)YiTiYiei(θ)dθds,

V7(t) = σ3

N∑
i=1

∫ 0

−σ3

∫t
t+s

e2δ(θ−t)uTi (θ)W
−1
i ui(θ)dθds.

It is easy to check that

N∑
i=1

ηi‖ei(t)‖2 6 V(t, e(t)), ∀t > 0. (3.7)

Taking the derivative of V(t) along the trajectories of system (3.6), we have the following:

V̇1(t) = 2
N∑
i=1

yTi (t)
[
J1ei(t) + Jτ1ei(t− τ1(t)) + Jσ1

∫t
t−σ1(t)

ei(s)ds+ ρ1

N∑
j=1

w1
ij(G1 +∆G1(t))ej(t)

+ ρ2

N∑
j=1

w2
ij(G2 +∆G2(t))ej(t− τ2(t)) + ρ3

N∑
j=1

w3
ij(G3 +∆G3(t))

∫t
t−σ2(t)

ej(s)ds

+B1iui(t) +B2iui(t− τ3(t)) +B3i

∫t
t−σ3(t)

ui(s)ds
]

=

N∑
i=1

yTi (t)
[
Pi(J

T
1 + δI) + (J1 + δI)Pi −B1iZi −Z

T
i B
T
1i

]
yi(t) + 2

N∑
i=1

yTi (t)Jτ1Piyi(t− τ1(t))

+ 2
N∑
i=1

yTi (t)Jσ1Pi

∫t
t−σ1(t)

yi(s)ds+ 2ρ1

N∑
i=1

yTi (t)

N∑
j=1

w1
ij(G1 +∆G1(t))Piyj(t) − 2δV1(t)

+ 2ρ2

N∑
i=1

yTi (t)

N∑
j=1

w2
ij(G2 +∆G2(t))Piyj(t− τ2(t)) + 2

N∑
i=1

yTi (t)B2iui(t− τ3(t)) (3.8)

+ ρ3

N∑
i=1

yTi (t)

N∑
j=1

w3
ij(G3 +∆G3(t))Pi

∫t
t−σ2(t)

yj(s)ds+ 2
N∑
i=1

yTi (t)B3i

∫t
t−σ3(t)

ui(s)ds,

V̇2(t) 6
N∑
i=1

[
yTi (t)Riyi(t) − e

−2δτ1(1 −β1)y
T
i (t− τ1(t))Riyi(t− τ1(t))

]
− 2δV2(t),
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V̇3(t) 6
N∑
i=1

[
yTi (t)Siyi(t) − e

−2δτ2(1 −β2)y
T
i (t− τ2(t))Siyi(t− τ2(t))

]
− 2δV3(t),

V̇4(t) 6
N∑
i=1

[
yTi (t)Z

T
i U

−1
i Ziyi(t) − e

−2δτ3(1 −β3)u
T
i (t− τ3(t))U

−1
i ui(t− τ3(t))

]
− 2δV4(t),

V̇5(t) 6
N∑
i=1

[
σ2

1y
T
i (t)Viyi(t) − σ1e

−2δσ1

∫t
t−σ1

yTi (s)Viyi(s)ds
]
− 2δV5(t),

V̇6(t) 6
N∑
i=1

[
σ2

2y
T
i (t)Tiyi(t) − σ2e

−2δσ2

∫t
t−σ2

yTi (s)Tiyi(s)ds
]
− 2δV6(t),

V̇7(t) 6
N∑
i=1

[
σ2

3u
T
i (t)W

−1
i ui(t) − σ3e

−2δσ3

∫t
t−σ3

uTi (s)W
−1
i ui(s)ds

]
− 2δV7(t).

According to Lemma 2.7 and Lemma 2.8, we have

2
N∑
i=1

yTi (t)Jτ1Piyi(t− τ1(t)) 6
1
ε1

N∑
i=1

yTi (t)PiJ
T
τ1
Jτ1Piyi(t)

+ ε1

N∑
i=1

yTi (t− τ1(t))yi(t− τ1(t)),

(3.9)

2
N∑
i=1

yTi (t)Jσ1Pi

∫t
t−σ1(t)

yi(s)ds 6
1
ε2

N∑
i=1

yTi (t)PiJ
T
σ1
Jσ1Piyi(t)

+ ε2

N∑
i=1

∫t
t−σ1(t)

yTi (s)ds

∫t
t−σ1(t)

yi(s)ds,

(3.10)

2
N∑
i=1

yTi (t)B2iui(t− τ3(t)) 6
e2δτ3

1 −β3

N∑
i=1

yTi (t)B
T
2iUiB2iyi(t)

+ e−2δτ3(1 −β3)

N∑
i=1

uTi (t− τ3(t))×U−1
i ui(t− τ3(t)),

(3.11)

2ρ1

N∑
i=1

yTi (t)

N∑
j=1

w1
ijG1Piyj(t) 6 ρ1

N∑
i=1

N∑
j=1

[
ε3y

T
i (t)(w

1
ij)

2yi(t)

+
1
ε3
yTj (t)PiG

T
1G1Piyj(t)

]
=

N∑
i=1

N∑
j=1

ρ1ε3(w
1
ij)

2yTi (t)yi(t)

+

N∑
i=1

N∑
j=1

ρ1

ε3
yTi (t)PiG

T
1G1Piyi(t)

=

N∑
i=1

[
ρ1ε3

( N∑
j=1

(w1
ij)

2)yTi (t)yi(t)
+
Nρ1

ε3
yTi (t)PiG

T
1G1Piyi(t)

]
,

(3.12)
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2ρ2

N∑
i=1

yTi (t)

N∑
j=1

w2
ijG2Piyj(t− τ2(t)) 6 ρ2

N∑
i=1

N∑
j=1

[
ε4y

T
i (t)(w

2
ij)

2yi(t)

+
1
ε4
yTj (t− τ2(t))PiG

T
2G2Piyj(t− τ2(t))

]
=

N∑
i=1

[
ρ2ε4

( N∑
j=1

(w2
ij)

2)yTi (t)yi(t)
+
Nρ2

ε4
yTi (t− τ2(t))PiG

T
2G2Pi × yi(t− τ2(t))

]
,

(3.13)

2
N∑
i=1

yTi (t)B3i

∫t
t−σ3(t)

ui(s)ds 6 e
2δσ3

N∑
i=1

yTi (t)B
T
3iWiB3iyi(t)

+ e−2δσ3

N∑
i=1

∫t
t−σ3(t)

uTi (s)dsW
−1
i

∫t
t−σ3(t)

ui(s)ds,

6 e2δσ3

N∑
i=1

yTi (t)B
T
3iWiB3iyi(t)

+ σ3e
−2δσ3

N∑
i=1

∫t
t−σ3

uTi (s)W
−1
i ui(s)ds,

(3.14)

2ρ3

N∑
i=1

yTi (t)

N∑
j=1

w3
ijG3Pi

∫t
t−σ2(t)

yj(s)ds 6 ρ3

N∑
i=1

N∑
j=1

[
ε5y

T
i (t)(w

3
ij)

2yi(t)

+
1
ε5

∫t
t−σ2(t)

yTj (s)dsPiG
T
3G3Pi

∫t
t−σ2(t)

yj(s)ds
]

=

N∑
i=1

[
ρ3ε5

( N∑
j=1

(w3
ij)

2)yTi (t)yi(t)
(3.15)

+
Nρ3

ε5

∫t
t−σ2(t)

yTi (s)dsPiG
T
3G3Pi

∫t
t−σ2(t)

yi(s)ds
]
,

−σ1e
−2δσ1

N∑
i=1

∫t
t−σ1

yTi (s)Viyi(s)ds 6 −σ1(t)e
−2δσ1

N∑
i=1

∫t
t−σ1(t)

yTi (s)Viyi(s)ds

6 −e−2δσ1

N∑
i=1

∫t
t−σ1(t)

yTi (s)dsVi

∫t
t−σ1(t)

yi(s)ds,

(3.16)

−σ2e
−2δσ2

N∑
i=1

∫t
t−σ2

yTi (s)Tiyi(s)ds 6 −σ2(t)e
−2δσ2

N∑
i=1

∫t
t−σ2(t)

yTi (s)Tiyi(s)ds

6 −e−2δσ2

N∑
i=1

∫t
t−σ2(t)

yTi (s)dsTi

∫t
t−σ2(t)

yi(s)ds.

(3.17)
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According to Assumption 2.6 and Lemma 2.7, we have

2ρ1

N∑
i=1

yTi (t)

N∑
j=1

w1
ij∆G1(t)Piyj(t) = 2ρ1

N∑
i=1

N∑
j=1

yTi (t)w
1
ijD1F(t)E1Piyj(t)

6 ρ1

N∑
i=1

N∑
j=1

[
ε6y

T
i (t)D

T
1 (w

1
ij)

2D1yi(t)

+
1
ε6
yTj (t)PiE

T
1 F
T (t)F(t)E1Piyj(t)

]
6

N∑
i=1

[
ρ1ε6y

T
i (t)D

T
1
( N∑
j=1

(w1
ij)

2)D1yi(t)

+
Nρ1

ε6
yTi (t)PiE

T
1 E1Piyi(t)

]
,

(3.18)

2ρ2

N∑
i=1

yTi (t)

N∑
j=1

w2
ij∆G2(t)Piyj(t− τ2(t)) = 2ρ2

N∑
i=1

N∑
j=1

yTi (t)w
2
ijD2F(t)E2Piyj(t− τ2(t))

6 ρ2

N∑
i=1

N∑
j=1

[
ε7y

T
i (t)D

T
2 (w

2
ij)

2D2yi(t)

+
1
ε7
yTj (t− τ2(t))PiE

T
2 F
T (t)F(t)E2Piyj(t− τ2(t))

]
6

N∑
i=1

[
ρ2ε7y

T
i (t)D

T
2
( N∑
j=1

(w2
ij)

2)D2yi(t)

+
Nρ2

ε7
yTi (t− τ2(t))PiE

T
2 E2Piyi(t− τ2(t))

]
,

(3.19)

2ρ3

N∑
i=1

yTi (t)

N∑
j=1

w3
ij∆G3(t)Pi

∫t
t−σ2(t)

yj(s)ds = 2ρ3

N∑
i=1

N∑
j=1

yTi (t)w
3
ijD3F(t)E3Pi

∫t
t−σ2(t)

yj(s)ds

6 ρ3

N∑
i=1

N∑
j=1

[
ε8y

T
i (t)D

T
3 (w

3
ij)

2D3yi(t)

+
1
ε8

∫t
t−σ2(t)

yTj (s)dsPiE
T
3 F
T (t)F(t)E3Pi

∫t
t−σ2(t)

yj(s)ds
]

6
N∑
i=1

[
ρ3ε8y

T
i (t)D

T
3
( N∑
j=1

(w3
ij)

2)D3yi(t)

+
Nρ3

ε8

∫t
t−σ2(t)

yTi (s)dsPiE
T
3 E3Pi

∫t
t−σ2(t)

yi(s)ds
]
.

(3.20)

Hence, according to (3.8)-(3.20), we have

V̇(t, e(t)) + 2δV(t, e(t)) 6
N∑
i=1

[
yTi (t)

[
Pi(J

T
1 + δI) + (J1 + δI)Pi −B1iZi −Z

T
i B
T
1i + Ri + Si

+ZTi U
−1
i Zi + σ

2
1Vi + σ

2
2Ti + σ

2
3Z
T
iW

−1
i Zi +

1
ε1
PiJ

T
τ1
Jτ1Pi +

1
ε1
PiJ

T
σ1
Jσ1Pi

+ ρ1ε3
( N∑
j=1

(w1
ij)

2)I+ ρ2ε4
( N∑
j=1

(w2
ij)

2)I+ ρ3ε5
( N∑
j=1

(w3
ij)

2)I
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+
e2δτ3

1 −β3
BT2iUiB2i + e

2δσ3BT3iWiB3i + ρ1ε6D
T
1
( N∑
j=1

(w1
ij)

2)D1

+ ρ2ε7D
T
2
( N∑
j=1

(w2
ij)

2)D2 +
Nρ1

ε3
PiG

T
1G1Pi +

Nρ1

ε6
PiE

T
1 E1Pi

+ ρ3ε8D
T
3
( N∑
j=1

(w3
ij)

2)D3

]
yi(t)

+ yTi (t− τ1(t))
[
− e−2δτ1(1 −β1)Ri + ε1I

]
yi(t− τ1(t))

+ yTi (t− τ2(t))
[
− e−2δτ2(1 −β2)Si +

Nρ2

ε4
PiG

T
2G2Pi (3.21)

+
Nρ2

ε7
PiE

T
2 E2Pi

]
yi(t− τ2(t)) +

Nρ3

ε8
PiE

T
3 E3Pi

] ∫t
t−σ2(t)

yi(s)ds

+

∫t
t−σ1(t)

yTi (s)ds
[
− e−2δσ1Vi + ε2I

] ∫t
t−σ1(t)

yi(s)ds

+

∫t
t−σ2(t)

yTi (s)ds
[
− e−2δσ2Ti +

Nρ3

ε5
PiG

T
3G3Pi

=

N∑
i=1

[
ξTi (t)Γiξi(t) + y

T
i (t− τ2(t))Φiyi(t− τ2(t))

+
( ∫t
t−σ2(t)

yTi (s)ds
)
Υi

( ∫t
t−σ2(t)

yi(s)ds
)
− eTi (t)Ψiei(t)

]
,

where

Γi =

 Γi11 0 0
∗ Γi22 0
∗ ∗ Γi33

 ,

Γi11 = Pi(J
T
1 + δI) + (J1 + δI)Pi −B1iZi −Z

T
i B
T
1i + Ri + Si +Z

T
i U

−1
i Zi + σ

2
1Vi

+ σ2
2Ti + σ

2
3Z
T
iW

−1
i Zi +

1
ε1
PiJ

T
τ1
Jτ1Pi +

1
ε2
PiJ

T
σ1
Jσ1Pi + ρ1ε3

( N∑
j=1

(w1
ij)

2)I

+ ρ2ε4
( N∑
j=1

(w2
ij)

2)I+ ρ3ε5
( N∑
j=1

(w3
ij)

2)I+ e2δτ3

1 −β3
BT2iUiB2i + e

2δσ3BT3iWiB3i

+ ρ1ε6D
T
1
( N∑
j=1

(w1
ij)

2)D1 + ρ2ε7D
T
2
( N∑
j=1

(w2
ij)

2)D2 +
Nρ1

ε3
PiG

T
1G1Pi

+
Nρ1

ε6
PiE

T
1 E1Pi + ρ3ε8D

T
3
( N∑
j=1

(w3
ij)

2)D3 + PiQ1iPi +Z
T
iQ2iZi,

Γi22 = −e−2δτ1(1 −β1)Ri + ε1I,

Γi33 = −e−2δσ1Vi + ε2I,

Φi = −e−2δτ2(1 −β2)Si +
Nρ2

ε4
PiG

T
2G2Pi +

Nρ2

ε7
PiE

T
2 E2Pi,

Υi = −e−2δσ2Ti +
Nρ3

ε5
PiG

T
3G3Pi +

Nρ3

ε8
PiE

T
3 E3Pi,
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Ψi = Q1i + P
−1
i Z

T
iQ2iZiP

−1
i ,

ξi(t) =
[
yi(t),yi(t− τ1(t)),

∫t
t−σ1(t)

yi(s)ds
]
.

Applying Schur complement lemma and Lemma 2.9, the inequalities Γi < 0, Φi < 0, and Υi < 0 are
equivalent to Π1i < 0, Π2i < 0, and Π3i < 0, respectively. Thus, from (3.1)-(3.3) and (3.21), we obtain

V̇(t, e(t)) + 2δV(t, e(t)) 6 −

N∑
i=1

eTi (t)Ψiei(t), ∀t > 0. (3.22)

Since Ψi > 0, i = 1, 2, . . . ,N, we obtain

V̇(t, e(t)) 6 −2δV(t, e(t)), ∀t > 0. (3.23)

Integrating both sides of (3.23) from 0 to t, we have

V(t, e(t)) 6 V(0, e(0))e−2δt, ∀t > 0.

Furthermore, taking condition (3.7) into account, we have

N∑
i=1

ηi‖ei(t)‖2 6 V(t, e(t)) 6 V(0, e(0))e−2δt, ∀t > 0.

Because V(t, e(t)) is radially unbounded, by the Lyapunov-Krasovskii theorem and the solution ‖ei(t,ϕ)‖
of the close-loop error dynamical network (2.5) satisfying

‖ei(t,ϕ)‖ 6

√
Mi)

ηi
e−δt, i = 1, 2, . . . ,N, ∀t > 0,

it implies that the error complex network (2.5) is exponentially stable under the hybrid controller (2.4).
Consequently, the controlled respond complex dynamical network (2.1) is EFPS with the drive system
(2.3).

Furthermore, from (3.22) and V(t, e(t)) > 0, we get the following

V̇(t, e(t)) 6 −

N∑
i=1

eTi (t)Ψiei(t), ∀t > 0. (3.24)

Integrating both sides of (3.24) from 0 to t, we obtain

N∑
i=1

∫t
0
eTi (t)Ψiei(t) 6 V(0, e(0)) − V(t, e(t)) 6 V(0, e(0)), ∀t > 0.

Due to V(t, e(t)) > 0, we get

N∑
i=1

∫t
0
eTi (t)Ψiei(t) 6 V(0, e(0)) ∀t > 0.

Given t→∞, we obtain

J =

N∑
i=1

∫∞
0
eTi (t)Ψiei(t) 6 V(0, e(0)) = J∗.

The proof is completed.
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Remark 3.2. This is the first time for investigating the guaranteed cost control for exponential function
projective synchronization for complex dynamical networks with mixed time-varying delays and hybrid
uncertainties asymmetric coupling delays. There are many works consider the guaranteed cost control of
complete synchronization for complex dynamical networks with or without coupling delays [15, 17, 18,
20], where the scaling factor is a constant (α(t) = 1). Hence, our results are superior and have greater
applicability.

Realistically, we need that the system to have an optimal performance. The following theorem presents
a method of designing suitable controllers, they can minimize the upper bound of the quadratic cost
function (2.6) for the exponential function projective synchronization for complex dynamical networks
(2.1)

Theorem 3.3. Consider the close-loop error complex dynamical network (2.5) and the quadratic cost function (2.6),
the optimization problem:

min
(ε1,ε2,ε3,ε4,ε5,ε6,ε7,ε8,Pi,Ri,Si,Ui,Vi,Ti,Wi,Zi)

N∑
i=1

{ωi + Tr(M1i) + Tr(M2i) + Tr(M3i) + Tr(H1i)

+ Tr(H2i) + Tr(H3i)} (3.25)

subject to

(i) LMIs (3.1)-(3.3),

(ii)
[
−ωi eTi (0)
∗ −Pi

]
< 0,

(iii)
[
−M1i NT1i
∗ −R̃i

]
< 0,

(iv)
[
−M2i NT2i
∗ −S̃i

]
< 0,

(v)
[
−M3i NT3i
∗ −Ũi

]
< 0,

(vi)
[
−H1i LT1i
∗ −Ṽi

]
< 0,

(vii)
[
−H2i LT2i
∗ −T̃i

]
< 0,

(viii)
[
−H3i LT3i
∗ −W̃i

]
< 0,

such that if a feasible solution set of εj, (j = 1, 2, . . . , 8), Pi,Ri,Si,Ui,Vi, Ti,Wi,Zi, (i = 1, 2, . . . ,N), then the
controller (3.4) is an optimal reliable guaranteed cost control law which ensures the minimization of quadratic cost
function upper bound given in (3.5) for the exponential function projective synchronization of uncertain complex
dynamical network (2.1), where

N1iN
T
1i =

∫ 0

−τ1

e2δsei(s)e
T
i (s)ds, N2iN

T
2i =

∫ 0

−τ2

e2δsei(s)e
T
i (s)ds,

N3iN
T
3i =

∫ 0

−τ3

e2δsei(s)e
T
i (s)ds, L1iL

T
1i = σ1

∫ 0

−σ1

∫ 0

s

e2δθei(θ)e
T
i (θ)dθds,

L2iL
T
2i = σ2

∫ 0

−σ2

∫ 0

s

e2δθei(θ)e
T
i (θ)dθds, L3iL

T
3i = σ3

∫ 0

−σ3

∫ 0

s

e2δθei(θ)e
T
i (θ)dθds

and Tr(.) denotes the trace of matrix.

Proof. Define P−1RiP
−1 = R̃−1

i , P−1SiP
−1 = S̃−1

i , P−1ZTi U
−1
i ZiP

−1 = Ũ−1
i , P−1ViP

−1 = Ṽ−1
i , P−1TiP

−1 =
T̃−1
i , P−1ZTiW

−1
i ZiP

−1 = W̃−1
i . First, by Theorem 3.1, the feasibility of LMIs (3.1)-(3.3) knows that the

uncertain complex dynamical network (2.1) can realize exponential function projective synchronization.
Next, it follows from Lemma 2.9, (ii)-(viii) in Theorem 3.3 are equivalent to the inequalities eTi (0)P

−1ei(0)<
ωi, NT1iR̃

−1
i N1i < M1i, NT2iS̃

−1
i N2i < M2i, NT3iŨ

−1
i N3i < M3i, LT1iṼ

−1
i L1i < H1i, LT2iT̃

−1
i L2i < H2i,
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LT3iW̃
−1
i L3i < H3i, respectively. Moreover, note that utilizing the trace operator allows one to compute

the following expressions∫ 0

−τ1

e2δseTi (s)P
−1RiP

−1ei(s)ds =

∫ 0

−τ1

e2δseTi (s)R̃
−1
i ei(s)ds

=

∫ 0

−τ1

Tr
(
e2δseTi (s)R̃

−1
i ei(s)

)
ds

= Tr
(
N1iN

T
1iR̃

−1
i

)
= Tr

(
NT1iR̃

−1
i N1i

)
,∫ 0

−τ2

e2δseTi (s)P
−1SiP

−1ei(s)ds =

∫ 0

−τ2

e2δseTi (s)S̃
−1
i ei(s)ds

=

∫ 0

−τ2

Tr
(
e2δseTi (s)S̃

−1
i ei(s)

)
ds

= Tr
(
N2iN

T
2iS̃

−1
i

)
= Tr

(
NT2iS̃

−1
i N2i

)
,∫ 0

−τ3

e2δseTi (s)P
−1ZTi U

−1
i ZiP

−1ei(s)ds =

∫ 0

−τ2

e2δseTi (s)Ũ
−1
i ei(s)ds

=

∫ 0

−τ2

Tr
(
e2δseTi (s)Ũ

−1
i ei(s)

)
ds

= Tr
(
N3iN

T
3iŨ

−1
i

)
= Tr

(
NT3iŨ

−1
i N3i

)
,

σ1

∫ 0

−σ1

∫ 0

s

e2δθeTi (θ)P
−1ViP

−1ei(θ)dθds = σ1

∫ 0

−σ1

∫ 0

s

e2δθeTi (θ)Ṽ
−1
i ei(θ)dθds

= σ1

∫ 0

−σ1

∫ 0

s

e2δθTr
(
eTi (θ)Ṽ

−1
i eTi (θ)

)
dθds

= Tr
(
L1iL

T
1iṼ

−1
i

)
= Tr

(
LT1iṼ

−1
i L1i

)
,

σ2

∫ 0

−σ2

∫ 0

s

e2δθeTi (θ)P
−1TiP

−1ei(θ)dθds = σ2

∫ 0

−σ2

∫ 0

s

e2δθeTi (θ)T̃
−1
i ei(θ)dθds

= σ2

∫ 0

−σ2

∫ 0

s

e2δθTr
(
eTi (θ)T̃

−1
i eTi (θ)

)
dθds

= Tr
(
L2iL

T
2iT̃

−1
i

)
= Tr

(
LT2iT̃

−1
i L2i

)
,

σ3

∫ 0

−σ3

∫ 0

s

e2δθeTi (θ)P
−1ZTiW

−1
i ZiP

−1ei(θ)dθds = σ3

∫ 0

−σ3

∫ 0

s

e2δθeTi (θ)W̃
−1
i ei(θ)dθds

= σ3

∫ 0

−σ3

∫ 0

s

e2δθTr
(
eTi (θ)W̃

−1
i e

T
i (θ)

)
dθds

= Tr
(
L3iL

T
3iW̃

−1
i

)
= Tr

(
LT3iW̃

−1
i L3i

)
.

Therefore, in view of (3.5) one can easily deduce that the following inequality

J∗ =

N∑
i=1

{
eTi (0)P

−1ei(0) + Tr
(
NT1iR̃

−1
i N1i

)
+ Tr

(
NT2iS̃

−1
i N2i

)
+ Tr

(
NT3iŨ

−1
i N3i

)
+ Tr

(
LT1iṼ

−1
i L1i

)
+ Tr

(
LT2iT̃

−1
i L2i

)
+ Tr

(
LT3iW̃

−1
i L3i

)}
<

N∑
i=1

{
ωi + Tr(M1i) + Tr(M2i) + Tr(M3i) + Tr(H1i) + Tr(H2i) + Tr(H3i)

}
,

(3.26)
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is always satisfied. This shows that minimizing the right-hand part of (3.26) is equivalent to the mini-
mization of the upper bound of the quadratic cost function (2.6) which is given in (3.5). Hence, the proof
is completed.

In addition, when ρ1 = ρ3 = 0, ρ2 = 1 and distributed delays σ1(t) = σ2(t) = 0, the network model
(2.1) is translated into

ẋi(t) = f(xi(t), xi(t− τ1(t))) +

N∑
j=1

w1
ij(G1 +∆G1(t))xj(t− τ2(t)) +Ui(t), i = 1, . . . ,N. (3.27)

The closed-loop system for the dynamical error between the complex dynamical network (3.27) and the
synchronization state (2.3) with σ1(t) = 0 can be written as

ėi(t) = ẋi(t) − α̇(t)s(t) −α(t)ṡ(t)

= f(xi(t), xi(t− τ1(t))) −α(t)f(s(t), s(t− τ1(t))) +

N∑
j=1

w2
ij(G2 +∆G2(t))ej(t− τ2(t))

+B1iui(t) +B2iui(t− τ3(t)), i = 1, . . . ,N,
ei(t) = ϕi(t) = φi(t) −α(t)ω(t), t ∈ [−τmax, 0], i = 1, . . . ,N.

(3.28)

According to the proof technique in Theorems 3.1 and 3.3, the guaranteed cost control of exponential
function projective synchronization for the uncertain complex dynamical network (3.27) can be easily
obtained. Thus, we can get the following result from Theorems 3.1 and 3.3.

Corollary 3.4. Consider the close-loop error dynamical network (3.28) with the quadratic cost function (2.6), δ > 0,
Q1i > 0, andQ2i > 0, i = 1, 2, . . . ,N. If there exist symmetric positive definite matrices Pi, Ri, Si, Ui and matrices
Zi, i = 1, 2, . . . ,N with appropriate dimensions and positive scalars εj, j = 1, 2, 3 such that the following LMIs
hold:

Ξ1i =


Ξi11 ZTi PiJ

T
τ1

PiQ1i ZTiQ2i
∗ −Ui 0 0 0
∗ ∗ −ε1I 0 0
∗ ∗ ∗ −Q1i 0
∗ ∗ ∗ ∗ −Q2i

 < 0, (3.29)

Ξ2i =

 −e−2δh2(1 −β2)Si NPiG
T
2 NPiE

T
2

∗ −ε2NI 0
∗ ∗ −ε3NI

 < 0, (3.30)

where

Ξi11 =

[
Υi11 0
∗ Υi22

]
,

Υi11 = Pi(J
T
1 + δI) + (J1 + δI)Pi −B1iZi −Z

T
i B
T
1i + Ri + Si + ε2

( N∑
j=1

(w2
ij)

2)
+
e2δh3

1 −β3
BT2iUiB2i + ε3D

T
2
( N∑
j=1

(w2
ij)

2)D2,

Υi22 = −e−2δh1(1 −β1)Ri + ε1I,

then the controlled complex dynamical network (3.27) is EFPS with the system (2.3). Moreover, the feedback control
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is

ui(t) = −ZiP
−1
i ei(t), i = 1, 2, . . . ,N, t > 0,

and the upper bound of the quadratic cost function (2.6) is as follows:

J <

N∑
i=1

[
eTi (0)P

−1
i ei(0) +

∫ 0

−τ1

e2δseTi (s)P
−1
i RiP

−1
i ei(s)ds+

∫ 0

−τ2

e2δseTi (s)P
−1
i SiP

−1
i ei(s)ds

+

∫ 0

−τ3

e2δseTi (s)P
−1
i Z

T
i U

−1
i Z

T
i P

−1
i ei(s)ds

]
.

(3.31)

The following corollary presents a method of selecting a controller minimizing the upper bound of
the guaranteed cost (3.31).

Corollary 3.5. Consider the close-loop error complex dynamical network (3.28) and the quadratic cost function
(2.6), the optimization problem:

min
(ε1,ε2,ε3,Pi,Ri,Si,Ui)

N∑
i=1

{ωi + Tr(M1i) + Tr(M2i) + Tr(M3i) (3.32)

subject to

(i) LMIs, (3.29)-(3.30),

(ii)
[
−ωi eTi (0)
∗ −Pi

]
< 0,

(iii)
[
−M1i NT1i
∗ −R̃i

]
< 0,

(iv)
[
−M2i NT2i
∗ −S̃i

]
< 0,

(v)
[
−M3i NT3i
∗ −Ũi

]
< 0,

such that if a feasible solution set of εj, (j = 1, 2, 3), Pi,Ri,Si,Ui, (i = 1, 2, . . . ,N), then the controller (3.4) is an
optimal reliable guaranteed cost control law which ensures the minimization of quadratic cost function upper bound
given in (3.31) for the exponential function projective synchronization of uncertain complex dynamical network
(3.27).

4. Numerical examples

In this section, we present two examples to illustrate the effectiveness and the reduced conservatism
of our results.

Example 4.1. To show the effectiveness of the proposed control scheme, the perturbed Chua’s circuit
system with mixed time-varying delays uses uncoupled node in the complex dynamical network (2.1).
The perturbed Chua’s circuit system with mixed time-varying delays (drive system) is given by [4]

ṡ1(t) = p
(
s2(t− τ1(t)) −

1
7

(
2s3

1(t) − s1(t)
))

,

ṡ2(t) = s1(t) − us2(t) + s3(t− τ1(t)),

ṡ3(t) = −qs2(t) + r

∫t
t−σ1(t)

s2
1(θ)dθ,

(4.1)
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and we take the system (4.1) as identical nodes of network (response networks), which is given by ẋi1(t)
ẋi2(t)
ẋi3(t)

 =

 p
(
xi2(t− τ1(t)) −

1
7

(
2x3
i1(t) − xi1(t)

))
xi1(t) − uxi2(t) + xi3(t− τ1(t))

−qxi2(t) + r
∫t
t−σ1(t)

x2
i1(s)ds

+ ρ1

N∑
j=1

w1
ij(G1 +∆G1(t))xj(t)

+ ρ2

N∑
j=1

w2
ij(G2 +∆G2(t))xj(t− τ2(t)) + ρ3

N∑
j=1

w3
ij(G3 +∆G3(t))

∫t
t−σ2(t)

xj(s)ds

+Ui(t), i = 1, 2, ...,N,

(4.2)

where p, q, r and u are real positive constants. It is well known that the system (4.1) exhibits chaotic
behavior with the parameters p, q, r, and u chosen as p = 7, q = 100

7 , r = 0.07, and u = 1.5, the
initial condition function φ(t) = [0.65 cos t, 0.3 cos t,−0.2 cos t]T , the time-varying delay functions τ1(t) =
0.4 sin2 t, τ2(t) = 0.3 sin2 t, τ2(t) = 0.3 sin2 t, σ1(t) = 0.2 cos2 t, σ2(t) = 0.2 cos2 t and σ3(t) = 0.1 cos2 t, and
the time-varying scaling function α(t) = 0.5 sin( 2π

15 ) is shown in Figures 2-4. It is stable at the equilibrium
point s(t) = 0, s(t− τ1(t)) = 0,

∫t
t−σ1(t)

s(θ)dθ = 0 and Jacobian matrices are

J1 =

 1 0 0
1 −1.5 0
0 −100

7 0

 , Jτ1 =

 0 7 0
0 0 1
0 0 0

 , Jσ1 =

 0 0 0
0 0 0
0 0 0

 .

The parameters are selected as follows: the coupling strength ρ1 = 0.2, ρ2 = 0.3, ρ3 = 0.2, the inner-
coupling matrices are

G1 =

 3 0 0
0 3 0
0 0 3

 , G2 =

 2 0 0
0 2 0
0 0 2

 , G3 =

 1 0 0
0 1 0
0 0 1

 ,

∆G1(t) =

 0.2 0.1 0
0.2 0.4 0
−0.1 0 0.3

 sin(t) 0 0
0 sin(t) 0
0 0 cos(t)

 0.2 0 0.3
0 0.3 0.1
0 0.4 0.3

 ,

∆G2(t) =

 0.2 0.3 0
0 0.2 0.1
0 −0.2 0.4

 sin(t) 0 0
0 sin(t) 0
0 0 cos(t)

 0.2 0.2 0
−0.1 0.2 0
0.3 0 0.4

 ,

∆G3(t) =

 0.3 0 0.3
0 0.1 −0.2

0.1 0 0.2

 sin(t) 0 0
0 sin(t) 0
0 0 cos(t)

 0.3 0.1 0
0 0.4 0.2

0.1 0.2 0.1

 ,

and the coupling configuration matrices are given respectively as follows:

A =


−2 0 1 0 1
1 −2 0 0 1
0 1 −1 0 0
1 0 1 −2 0
0 0 0 1 −1

 ,

B =


−2 0 0 1 1
1 −2 1 0 0
0 0 −1 0 1
0 0 1 −1 0
0 1 0 1 −2

 , C =


−1 0 0 1 0
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −2 1
1 1 0 0 −2

 ,

and the topology structure of complex network is shown in Figure 1.
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Figure 1: The topology structure of complex network with N = 5.

Solution: From the conditions (3.1)-(3.3) of Theorem 3.1 and with positive constants δ = 0.1, τ1 = 0.4,
τ2 = 0.3, τ2 = 0.3, σ1 = 0.2, σ2 = 0.2, and σ3 = 0.1, and positive definite matrices

Q1i =

 3 1 1
1 4 2
1 2 3

 , Q2i =

 3 2 1
2 3 1
1 1 5

 , i = 1, 2, . . . , 5,

and

B11 =

 5 0 0
0 6 0
0 0 4

 ,B12 =

 4 0 0
0 4 0
0 0 6

 ,B13 =

 5 0 0
0 4 0
0 0 4

 ,

B14 =

 5 0 0
0 4 0
0 0 5

 ,B15 =

 3 0 0
0 5 0
0 0 4

 ,B21 =

 0.2 0 0
0 0.2 0
0 0 0.5

 ,

B22 =

 0.2 0 0
0 0.5 0
0 0 0.2

 ,B23 =

 0.2 0 0
0 0.2 0
0 0 0.4

 ,B24 =

 0.4 0 0
0 0.3 0
0 0 0.4

 ,

B22 =

 0.2 0 0
0 0.5 0
0 0 0.2

 ,B23 =

 0.2 0 0
0 0.2 0
0 0 0.4

 ,B24 =

 0.4 0 0
0 0.3 0
0 0 0.4

 ,

B33 =

 0.2 0 0
0 0.3 0
0 0 0.4

 ,B34 =

 0.3 0 0
0 0.3 0
0 0 0.4

 ,B35 =

 0.3 0 0
0 0.3 0
0 0 0.2

 ,

by using the LMI Toolbox in MATLAB, we obtain

u1(t) =

 −26.0263 12.0950 −2.8207
6.9120 −27.5868 8.7658

−24.7658 36.1151 −15.6175

 e1(t),

u2(t) =

 −97.8263 20.2102 −4.5626
−38.8946 −10.6816 4.8676
−28.3604 14.9762 −10.3270

 e2(t),

u3(t) =

 −23.3528 4.7142 −0.8824
8.1784 −32.7718 11.8063

−22.2510 27.0087 −13.2923

 e3(t),

u4(t) =

 −38.7719 9.3326 −2.8625
−1.1554 −25.9686 10.4476
−26.4343 23.6306 −13.8490

 e4(t),
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u5(t) =

 −52.4627 34.1460 −8.2239
6.5240 −29.0009 9.6462

−39.6985 51.0854 −19.9977

 e5(t).

Meanwhile, the optimal upper bound on the guaranteed cost for the exponential function projective syn-
chronization of the complex dynamical networks with mixed time-varying delay and hybrid uncertainties
asymmetric coupling delays (4.2) is

J∗ = 6288.0883.

The numerical simulations are carried out using the explicit Runge-Kutta-like method (dde45), inter-
polation and extrapolation by spline of the third order. Figure 2 shows the chaotic behavior of drive
system (4.1) and response network (4.2). Figure 3 shows the function projective synchronization errors
between the states of isolate node α(t)s(t) (4.1) and node xi(t) (4.2), where eij(t) = xij(t) − α(t)sj(t) for
i = 1, . . . , 5, j = 1, 2, 3 without hybrid control (2.4). Figure 4 shows the function projective synchronization
errors between the states of isolate node α(t)s(t) (4.1) and node xi(t) (4.2) with hybrid control (2.4).
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Figure 2: Chaotic behavior of drive system (4.1) and response network (4.2) with the time-varying scaling function α(t) =
0.5 sin( 2π

15 ).
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Figure 3: The function projective synchronization errors between the states of isolate node α(t)s(t) (4.1) and node xi(t) (4.2),
i = 1, 2, . . . , 5 without hybrid control (2.4).
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Figure 4: The function projective synchronization errors between the states of isolate node α(t)s(t) (4.1) and node xi(t) (4.2),
i = 1, 2, . . . , 5 with hybrid control (2.4).

Remark 4.2. The advantages of example 4.1 are that the discrete and distributed time-varying delays are
different values, i.e., τ1(t) = 0.4 sin2 t, τ2(t) = 0.3 sin2 t, τ2(t) = 0.3 sin2 t, σ1(t) = 0.2 cos2 t, σ2(t) =
0.2 cos2 t and σ3(t) = 0.1 cos2 t. Moreover, in these examples we still consider discrete and distributed
time-varying delays in the dynamical nodes and the hybrid coupling term simultaneously, hence the
synchronization conditions derived in [15, 20] cannot be applied to these examples.

Example 4.3. We consider the Chen chaotic system with time delays used as uncoupled node in the
network (3.27) (drive system), which is described by [15, 20]

ṡ1(t) = a(s2(t) − s1(t)),
ṡ2(t) = (c− a)s1(t) − s1(t)s3(t) + cs2(t),
ṡ3(t) = s1(t)s2(t) − bs3(t) + d(s3(t)s3(t− τ1),

(4.3)

and we take the system (4.3) as identical nodes of network (response networks), which is given by ẋi1(t)
ẋi2(t)
ẋi3(t)

 =

 a(xi2(t) − xi1(t))
(c− a)xi1(t) − xi1(t)xi3(t) + cxi2(t)

xi1(t)xi2(t) − bxi3(t) + d(xi3(t)xi3(t− τ1))

+

N∑
j=1

w2
ij(G2 +∆G2(t))xj(t− τ2)

+Ui(t), i = 1, 2, ...,N,

(4.4)

where a, b, c, and d are real positive constants. It is well known that the system (4.3) exhibits chaotic
behavior with the parameters a = 35, b = 3, c = 18, and d = 3.8, the initial condition function φ(t) =
[0.65 cos t, 0.3 cos t,−0.2 cos t]T , the time delays τ1(t) = 0.3, τ2(t) = 0.2, and the time-varying scaling
function α(t) = 0.5 + 0.2 sin( 2π

15 ) is shown in Figure 5. It is stable at the equilibrium point s(t) = 0,
s(t− h(t)) = 0 and Jacobian matrices are

J1 =

 −a a 0
c− a c 0

0 0 −b+ d

 , Jτ1 =

 0 0 0
0 0 0
0 0 −d

 .

The parameters are selected as follows: δ = 0.2, τ3 = 0.3, the time-varying scaling function α(t) =
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0.5 + 0.2 sin( 2π
15 ), the inner-coupling matrix are G2 = D2 =diag{1, 1, 1}, F(t) = diag{cos t, cos t, cos t},

E2 =diag{2, 2, 2}, the coupling configuration matrix

W2 =


−2 1 0 0 1
1 −3 1 1 0
0 1 −2 1 0
0 1 1 −3 1
1 0 0 1 −2

 ,

constant matrices B1i =diag{5, 5, 5}, B2i =diag{0.2, 0.2, 0.2}, i = 1, 2, . . . , 5 and select the positive definite
matrices Q1i = Q2i =diag{0.2, 0.2, 0.2}, i = 1, 2, . . . , 5. By applying Corollary 3.4 to the complex dynamical
network (4.3) and (4.2) and solving the corresponding optimization problem (3.32), the optimal reliable
guaranteed cost controllers are given by

u1(t) =

 −7.1891 2.8784 0
0.6014 −17.5467 0

0 0 −11.9823

 e1(t),

u2(t) =

 −8.3365 2.3016 0
0.5560 −24.6570 0

0 0 −17.3618

 e2(t),

u3(t) =

 −7.2221 2.5598 0
0.4079 −17.0702 0

0 0 −11.9264

 e3(t),

u4(t) =

 −8.3365 2.3016 0
0.5560 −24.6570 0

0 0 −17.3618

 e4(t),

u5(t) =

 −7.1891 2.8784 0
0.6014 −17.5467 0

0 0 −11.9823

 e5(t)

and the optimal guaranteed costs of the corresponding closed-loop network are obtained and listed in
Table 1. We see that, the optimal upper bound on the guaranteed cost for the synchronization of the
complex dynamical network (4.2) obtained from Corollary 3.4 are much less than that obtained in [20].
The results obtained in [20] can not be used for the case when δ 6= 0. Figure 6 shows the function
projective synchronization errors between the states of isolate node α(t)s(t) (4.3) and node xi(t) (4.4),
where eij(t) = xij(t) −α(t)sj(t) for i = 1, . . . , 5, j = 1, 2, 3 without hybrid control (2.4). Figure 7 shows the
function projective synchronization errors between the states of isolate node α(t)s(t) (4.3) and node xi(t)
(4.4) with hybrid control (2.4).

Table 1: The optimal upper bound on the guaranteed cost for the synchronization of the complex dynamical network (4.2) for
different values of decay rates δ.

decay rates δ = 0 δ = 0.5 δ = 1
[20] 13,360 infeasible infeasible

Corollary 3.4 4,566 6,476 8,274
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Figure 6: The function projective synchronization errors between the states of isolate node α(t)s(t) (4.3) and node xi(t) (4.4),
i = 1, 2, . . . , 5 without hybrid control (2.4).
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Figure 7: The function projective synchronization errors between the states of isolate node α(t)s(t) (4.3) and node xi(t) (4.4),
i = 1, 2, . . . , 5 with hybrid control (2.4).
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5. Conclusions

In this paper, the problem of guaranteed cost control for exponential function projective synchroniza-
tion (EFPS) for complex dynamical networks with mixed time-varying delays and hybrid uncertainties
asymmetric coupling delays is considered. It is not assumed that the uncertainties coupling configuration
matrix is symmetric or irreducible. Unlike other works, hybrid control with nonlinear and mixed linear
feedback control, which contains error linear term, time-varying delay error linear term and distributed
time-varying delay error linear term was considered for guaranteed cost control of EFPS of delayed com-
plex dynamical networks. Based on the construction of novel Lyapunov-Krasovskii functional and linear
matrix inequalities, new sufficient conditions are presented for the existence of the optimal guaranteed
cost control laws. Moreover, numerical examples are given to demonstrate the effectiveness of proposed
guaranteed cost control for EFPS. The results in this article are much less conservative than some existing
results in the literature.
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