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Abstract
An immunological model of HIV-1 infection that accounts for antiretroviral drug uptake via explicit compartments is

considered. Different from traditional methods where the drug effects is modeled implicitly as a proportional inhibition of viral
infection and production, in this paper, it is assumed that the CD4+ T cells can ’prey on’ the antiretroviral drugs and become the
cells which cannot be infected or produce new virions. Drug dymamics is modeled applying impulsive differential equations.
The basic reproductive number R0 is defined via the next infection operator. It is shown that with perfect adherence the virus
can be eradicated permanently if R0 is less than unity, otherwise, the virus can persist by applying persistent theory. The effects
of imperfect adherence are also explored. The results indicate that even for the same degree of adherence, different adherence
patterns may lead to different therapy outcomes. In particular, for regular dosage missing, the more dosages are consecutively
missed, the worse therapy outcomes will be.
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1. Introduction

Human Immunodeficiency Virus (HIV) is a disease that causes depletion of CD4+ T cells and can be
transmitted by blood or other body fluids [13, 15, 29]. Until recently, there are four classes of antiretroviral
(ARV) drugs available for treating HIV-1 infected patients: nucleoside/nucleotide reverse transcriptase
inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs),
and entry/fusion inhibitors (EIs) [8, 19]. Antiretroviral therapy (ART) containing a combination of three
or more drugs chosen from two or more classes has proven to be highly effective in reducing the viral
load of HIV infected patients.

There are many mathematical models developed to describe the antiretroviral therapy [4, 8, 16, 17, 27]
and papers therein. In most of these models, the drug therapy is described by the treatment effect (drug
efficacy), which is often assumed to be constant or determined by the plasma drug concentration via
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the Emax model [8, 27]. Our previous work in [30] considered that during drug administration intervals
drug concentration varies periodically so as to incorporate the drug dynamics. However, we simplified
the model by applying a nonnegative periodic function to represent the drug effects while ignoring the
dynamics of drug behavior, which may have a significant impact on certain outcomes [22].

In this paper, we extend the work in [30] by incorporating the drug dynamics into the HIV viral
dynamical model via explicit compartments, that is, the CD4+ T cells can ’prey on’ the antiretroviral
drugs, such that T cells may be susceptible, infected or inhibited by drugs with the drug behavior modeled
by impulsive differential equations. This leads to a hybrid system of continuous HIV viral dynamics and
discontinuous drug dynamics. Smith and Wahl [23] considered such a model, and gave the long-term
dynamics of HIV progression under extreme cases (the drug is administered sufficiently often or the
dosage is sufficiently large). However, the authors did not give the full global dynamics of the hybrid
system, partially due to the incorporation of the impulses. Hence, our first aim here is to give the
threshold parameter (the basic reproductive number) which determines the extinction and the persistence
of the virus and investigate the global dynamics of the hybrid system.

Adherence to prescribed ART is recognized as an essential principle in HIV treatment. Imperfect or
partial adherence can facilitate the emergence of drug-resistant mutations [6, 15]. In order to determine
regimens for partial adherence, a number of mathematical models have been developed to quantify how
drug concentration levels in the body of an HIV patient affect viral replication [5, 7–9, 12, 15, 18, 21, 24, 25,
27]. However, most of these papers analyze single adherence pattern applying classical continuous viral
dynamical model [3, 14]. Based on the importance of understanding the effects of adherence on therapy
outcomes, our second aim here is to investigate how different adherence patterns and different degrees
of adherence affects the CD4+ T cell counts and viral load applying the hybrid system.

Our main purpose is then to establish an immunological model of HIV infection incorporating an-
tiretroviral therapy explicitly. We define the basic reproductive number R0 applying the next generation
operator and study the global dynamics and the persistence of the system. Meanwhile, we study how
different degrees of adherence and different adherence patterns will affect the therapy outcomes so as to
obtain optimal treatment protocol.

The rest of the paper is organized as follows. In next section, we study the global dynamics of the
hybrid system. Then we numerically present how perfect and imperfect adherence (different adherence
patterns and different degrees of adherence) affect viral progression in Section 3. We conclude and discuss
the results in the final section.

2. The SIR-type model of PI-sparing therapy

In this section, we consider an SIR-type model with reverse transcriptase inhibitors or other drugs
which prevent cellular infection adapted from [23], and study the global dynamics. Note that we don’t
consider the loss for the virions during the infection.

dTS
dt

= λ− rITSVI − dSTS − rRTSR+mRTR,

dTR
dt

= rRTSR− dSTR −mRTR,

dTI
dt

= rITSVI − dITI,

dVI
dt

= nIωTI − dVVI.

(2.1)

R is the plasma drug concentration of the reverse transcriptase inhibitors, satisfying

dR

dt
= −dRR, t 6= nτ, R(nτ+) = R(nτ) + Ri, t = nτ. (2.2)
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We leave out the equation that represents the noninfectious virus dVNI/dt = nI(1 −ω)TI − dVVNI, since
it can be decoupled from system (2.1).

In the equations, TS, TI denote the susceptible and infected CD4+ T cells, respectively, TR denotes
the noninfected CD4+ T cells which have absorbed the reverse transcriptase inhibitors, cells cannot be
infected in this state. VI and VNI denote the infectious and non-infectious virus respectively, nI is the
number of virions produced per infected cell per day, ω is the fraction of virions which are infectious
produced per day by an infected cell , dV is the rate at which free virus is cleared, rI is the infection rate
of free virus, dS and dI are the death rates of noninfected and infected CD4+ T cells, and rR is the rate at
which the drug inhibits the T cells. λ is the birth rate of CD4+ T cells, while mR is the rate at which the
drug is cleared from the intracellular compartment. Refer to [15, 24] for detail descriptions.

We assume that drug is administered with time interval τ, drug dosage Ri, and the drug is cleared
with the rate dR. Solving the impulsive differential equations (2.2), we have that the plasma drug concen-
tration ultimately reaches the steady state R∗(t) (plateau plasma concentration) [2, 10], which is globally
asymptomatically stable, and equals

R∗(t) =
Ri

1 − e−dRτ
e−dR(t−nτ), t ∈ (nτ, (n+ 1)τ]. (2.3)

In the following, we will study the hybrid system of (2.1) and (2.2). It is obvious that any solution of
system (2.1) with nonnegative initial values is nonnegative. Adding the first three equations of (2.1) we
have

d(TS + TR + TI)

dt
= λ− dS(TS + TR) − dITI 6 λ− min {dS,dI}(TS + TR + TI).

Hence, TS + TR + TI 6 λ/min {dS,dI} := π1 as t → ∞. Then by the fourth equation of (2.1) we have
dVI/dt 6 nIωπ1 − dVVI, which follows that VI 6 nIωπ1/dV as t→∞. Denote π = max {π1,nIωπ1/dV },
then we have (TS, TR, TI,VI) 6 (π,π,π,π) as t→∞. We summarize these results in the following theorem.

Theorem 2.1. The solutions of the hybrid system (2.1) and (2.2), with the initial value (TS0, TR0, TI0,VI0,R(0)) ∈
R5

+ are uniformly and ultimately bounded. Furthermore, the compact set J = {(TS, TR, TI,VI) ∈ R4
+, (TS, TR, TI,VI)

6 (π,π,π,π)} is positively invariant and attracts all positive orbits in R4
+.

2.1. The definition for the basic reproductive number
In the following, we present the basic reproductive number R0 for the hybrid system (2.1) and (2.2)

according to the general procedure presented in [1, 28] and refer to Yang and Xiao [31].
We start our analysis of systems (2.1) and (2.2) by demonstrating the existence of a periodic ‘virus-free’

limit cycle. Eqs. (2.1) admit the following solution TI = VI = 0, with TS and TR dynamics satisfying

dTS
dt

= λ− dSTS − rRTSR(t) +mRTR,

dTR
dt

= rRTSR(t) − dSTR −mRTR.
(2.4)

Adding the two equations of system (2.4), we get

d(TS + TR)

dt
= λ− dS(TS + TR).

Hence, there holds TS + TR → λ/dS, as t → ∞. Since we consider the long term dynamics of the virus,
we substitute λ/dS− TS for TR, and meanwhile, we apply the plateau plasma drug concentration, then by
the first equation we have

dTS
dt

= λ− dSTS − rRTSR
∗(t) +mR(

λ

dS
− TS) =

λ

dS

(
dS +mR

)
−

(
dS +mR + rRR

∗(t)

)
TS. (2.5)
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System (2.5) admits a globally stable periodic solution which gives

T̃S(t) =
λ
dS

(
dS +mR

)
×
∫∞

0 exp

(
−
∫s

0

(
dS +mR + rRR

∗(ξ)

)
dξ

)
ds.

Accordingly, T̃R(t) = λ/dS − T̃S(t). Hence we get the periodic ‘virus-free’ solution of system (2.1), that is,

(T̃S(t), T̃R(t), 0, 0).

Then we define two matrices similar to the next generation matrices.

F =

(
0 rIT̃S
0 0

)
, V =

(
dI 0

−nIω dV

)
.

Let Y(t, s), t > s be the evolution operator of the linear τ-periodic system

dy

dt
= −Vy(t).

That is, for each s ∈ R, the 2× 2 matrix Y(t, s) satisfies

dY(t, s)
dt

= −VY(t, s), ∀t > s, Y(s, s) = I,

where I is a 2× 2 identity matrix.
Define the next infection operator L,

(Lφ)(t) =
∫t
−∞ Y(t, s)F(s)φ(s)ds, ∀t ∈ R,φ ∈ Cω,

where Cω is defined as the ordered Banach space of all τ-periodic functions from R to R2, equipped with
the maximum norm ‖.‖, and the positive cone C+

ω := {φ ∈ Cω : φ(t) > 0,∀t ∈ R}, φ(s) is the initial
distribution of the infected CD4+ T cells and the virus.

Note that F(s)φ(s) is the distribution of the new infections produced by the infected ones introduced
at time s. Y(t, s)F(s)φ(s), t > s then gives the distribution of the infected individuals who were newly
infected at time s and remain infected at time t. Then the limit gives the distribution of accumulative new
infections at time t which are produced by all those infected individuals φ(s) introduced at previous time
to t.

Then according to Wang and Zhao [28], we define the basic reproductive number as the spectral radius
of L, that is,

R0 := ρ(L).

In order to characterize R0, we consider an auxiliary linear τ-periodic system

dw

dt
=
[
− V(t) +

F(t)

χ

]
w, t ∈ R, (2.6)

with χ ∈ (0,∞), and W(t, s,χ) is the evolution operator of system (2.6), t > s, s ∈ R. ρ(W(τ, 0,χ)) is the
spectral radius of the monodromy matrix W(τ, 0,χ). We have the following two results, which will be
used in our numerical computation of R0 and the proof of our main results in Section 2.2.

Lemma 2.2. The following statements are valid.

(i) If ρ(W(τ, 0,χ)) = 1 has a positive solution χ0, then χ0 is an eigenvalue of L and hence R0 > 0.
(ii) If R0 > 0, then χ = R0 is the unique solution of ρ(W(τ, 0,χ)) = 1.

(iii) R0 = 0 if and only if ρ(W(τ, 0,χ)) < 1 for all χ > 0.
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Lemma 2.3. The following statements are valid.
(i) R0 = 1 if and only if ρ(ΦF−V(τ)) = 1.

(ii) R0 > 1 if and only if ρ(ΦF−V(τ)) > 1.
(iii) R0 < 1 if and only if ρ(ΦF−V(τ)) < 1.

The ‘virus-free’ periodic solution (T̃S(t), T̃R(t), 0, 0) is asymptotically stable if R0 < 1, and unstable if R0 > 1.

If the drug concentration R(t) is given by the average plasma drug concentration Rav, which is defined
as

Rav =
1
τ

∫τ
0
R∗(t)dt =

Ri

τdR
,

then system (2.1) is an autonomous system. And the ‘virus-free’ equilibrium equals

(T 0
S, T 0

R, T 0
I ,V0

I ) =
( λ
dS
× dS +mR
dS +mR + rRRav

,
λ

dS
× rRRav

dS +mR + rRRav
, 0, 0

)
.

In this case, F(t) ≡ F, ∀t > 0. The use of next generation matrix [26] yields the expression for the basic
reproductive number

R0 = ρ(FV−1) =
rInIω

dIdV
× λ

dS
× dS +mR
dS +mR + rRRav

. (2.7)

We have the following remark.
Remark 2.4. The basic reproductive number of the time-averaged autonomous system of the periodic
system (2.1) will underestimate infection risk.

We illustrate as the drug administration interval varies, how the basic reproductive number of the
time-averaged autonomous system, [R0], given in (2.7) and the basic reproductive number R0, calculated
applying Lemma 2.2, change. From Figure 1, we can see that the average basic reproductive number [R0]
is always smaller than the basic reproductive number R0 when the drug administration interval τ varies
ranging from 0.2 day to 1 day. This implies that the risk of infection will be underestimated if the average
basic reproductive number is used.
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Figure 1: The curves of the basic reproductive number R0 and the average basic reproduction number [R0] versus the drug
administration interval τ. Parameters used are nI=62.5 day−1, ω = 0.05, rI=0.0032 day−1, dS = 0.1 day−1, dI=0.5 day−1, dV=3
day−1, rR=20 µM−1, λ = 100 cells µL−1, mR = 3 log(2) day−1, Ri = 7.3µM, dR = 16.6 day−1, taken from [23, 24] and references
therein.

2.2. Threshold dynamics
In this section, we show that the basic reproductive number serves as a threshold parameter that

determines the global dynamics.
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Theorem 2.5. If R0 < 1, then the ‘virus-free’ periodic solution P0 = (T̃S(t), T̃R(t), 0, 0) is globally asymptotically
stable.

Proof. The local stability of the ‘virus-free’ periodic solution P0 when R0 < 1 is satisfied by Lemma 2.3.
Now it is sufficient to prove that P0 is globally attractive if R0 < 1.

The plasma drug concentration ultimately reaches the steady state (the plateau drug concentration)
R∗(t), Eq. (2.3). Then we can choose an integer n1 great enough and t1 > n1τ, such that for t > t1, by the
first two equations of system (2.1) and the positivity of the solutions for (2.1), we have

dTS
dt

6 λ− dSTS − rRTSR
∗ +mRTR,

dTR
dt

6 rRTSR
∗ − dSTR −mRTR.

The corresponding comparison system Eq. (2.4) admits a globally stable periodic solution (T̃S(t), T̃R(t)).
Then by the comparison principle, there exists a time t2 > t1, and ε > 0, such that TS(t) 6 T̃S(t) +
ε, TR(t) 6 T̃R(t) + ε, t > t2. By the third and forth equations of system (2.1), for t > t2, we have

dTI
dt

6 rI(T̃S(t) + ε)VI − dITI,
dVI
dt

6 nIωTI − dVVI. (2.8)

Consider an auxiliary system

dz(t)

dt
=

(
−dI rIT̃S(t) + rIε
nIω −dV

)
z(t) = (F(t) − V + εM)z(t), (2.9)

where z = (z1, z2)
T , and the matrix

M =

(
0 rI
0 0

)
.

By Zhang and Zhao [32] (Lemma 2.2), it follows that there exits a positive, τ-periodic function v(t), such
that z(t) = eµ1tv(t) is a solution of system (2.9), where µ1 = 1

τ ln ρ(Φ(F−V+εM)(τ)). By Lemma 2.3,
we have ρ(ΦF−V(τ)) < 1. Since ρ(Φ(F−V+εM)(τ)) is continuous for small ε, we can choose ε small
enough such that ρ(Φ(F−V+εM)(τ)) < 1, that is µ1 < 0. Therefore, we have z(t) → 0, as t → ∞. For
any nonnegative initial value (TI(t2),VI(t2))

T of system (2.8), there exits a z∗ large enough such that
(TI(t2),VI(t2))

T 6 z∗(v1(0), v2(0))T . Then the comparison theorem indicates that

(TI(t),VI(t))T 6 z∗eµ1(t−t2)(v1(t− t2), v2(t− t2))
T , ∀t > t2.

Hence, we have TI(t)→ 0,VI(t)→ 0 as t→∞. By the fist and second equations of system (2.1), we have
TS(t)→ T̃S(t), TR(t)→ T̃R(t) as t→∞. We get the global asymptotical stability of the ‘virus-free’ periodic
solution. This completes the proof.

In order to better understand the proof of the following theorem for the readers, we present some
notations and a lemma first.

Define
X = R4

+, X0 = {(TS, TR, TI,VI) ∈ X : TI > 0,VI > 0}, ∂X0 := X\X0.

Let P : X → X be Poincaré map associated with system (2.1), satisfying P(x0) = u(τ, x0), ∀x0 ∈ X, u(t, x0)
is the unique solution of (2.1) with u(0, x0) = x0. It can be seen easily that

Pm(TS0, TR0, TI0,VI0) = u(mτ, (TS0, TR0, TI0,VI0)),∀m > 0.

Clearly, the fixed point of the Poincaré map P in X is M1 = (T̃S(0), T̃R(0), 0, 0).

Lemma 2.6. If the basic reproductive number R0 > 1, then there exists a δ0 > 0 such that for all x0 ∈ X0 with
‖x0 −M1‖ 6 δ0, where x0 = (TS0, TR0, TI0,VI0) ∈ X0, there holds

lim sup
m→∞ d(Pm(x0),M1) > δ0. (2.10)
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Proof. By the continuity of solutions with respect to the initial values, ∀ε > 0 there exists δ0 > 0 such that
for all x0 ∈ X0 with ‖x0 −M1‖ 6 δ0, there holds ‖u(t, x0) − u(t,M1))‖ 6 ε,∀t ∈ [0,ω]. We further claim
that Eq. (2.10) holds. Assume, by contradiction, that (2.10) does not hold. Then we have

lim sup
m→∞ d(Pm(x0),M1) < δ0

for some x0 ∈ X0. Without loss of generality, we assume that d(Pm(x0),M1) < δ0 for all m > 0. It follows
that

‖u(t,Pm(x0)) − u(t,M1)‖ 6 ε,∀t ∈ [0,ω].

For any t > 0, let t = mω+ t ′, where t ′ ∈ [0,ω] and m = [ tω ] is the greatest integer less than or equal to
t
ω . Thus, we get

‖u(t, x0) − u(t,M1)‖ = ‖u(t ′,Pm(x0)) − u(t ′,M1)‖ < ε, ∀t > 0.

Note that (TS(t), TR(t), TI(t),VI(t)) = u(t, x0). It then follows that TI(t) < ε,VI(t) < ε, ∀t > 0. Then from
the first and second equations of (2.1), we have

dTS
dt

> λ− dSTS − εrITS − rRTRR+mRTR,
dTR
dt

> rRTRR− dSTR −mRTR.

Consider an auxiliary equation

dT̂S
dt

= λ− dST̂S − εrIT̂S − rRT̂RR+mRT̂R,
dT̂R
dt

= rRT̂RR− dST̂R −mRT̂R. (2.11)

For any ε > 0, system (2.11) admits a globally attractive solution (T̂S(0, ε), T̂R(0, ε)). Then for any ξ > 0,
there exists t3 > 0 such that T̂S(t, ε) > T̂S(0, ε) − ξ, and T̂R(t, ε) > T̂R(0, ε) − ξ for t > t3, (T̂S(t, ε), T̂R(t, ε))
is any solution of (2.11). Note that T̂S(0, ε) → T̃S(t), T̂R(0, ε) → T̃R(t) as ε → 0. Then for any η̄ > 0 there
exists ε̄ > 0 such that T̂S(0, ε) > T̃S(t) − η̄, T̂R(0, ε) > T̃R(t) − η̄ for ε < ε̄. It follows that for t > t3 and ε
small enough (ε < ε̄)

T̂S(t, ε) > T̂S(0, ε) − ξ > T̃S(t) − η̄− ξ
4
= T̃S(t) − η,

T̂R(t, ε) > T̂R(0, ε) − ξ > T̃R(t) − η̄− ξ
4
= T̃R(t) − η.

Then the comparison principle indicates that TS(t) > T̂S(t, ε) > T̃S(t) − η for t > t3 and ε small enough.
Consider another auxiliary system(

dT̆I(t)
dt

dV̆I(t)
dt

)
=

(
−dI rIT̃S(t) − ηrI
nIω −dV

)(
T̆I(t)

V̆I(t)

)
= (F(t) − V − ηM)

(
T̆I(t)

V̆I(t)

)
. (2.12)

By Zhang and Zhao [32] (Lemma 2.2), we know that there exists a positive, τ-periodic function p(t) =
(p1(t),p2(t)), such that eµ2tp(t) is a solution of system (2.12), where µ2 = 1

τ ln ρ(ΦF−V−ηM(τ)). Since
ρ(ΦF−V−ηM(τ)) is continuous for small η and ρ(ΦF−V(τ)) > 1, we can choose η small enough such that
ρ(ΦF−V−ηM(τ)) > 1, that is µ2 > 0. Let t = nτ > t3, and n be nonnegative integer, we get

(T̆I(nτ), V̆I(nτ))T = eµ2(nτ−t3)(p1(nτ− t3),p2(nτ− t3))
T → (∞,∞)T ,n→∞.

For any negative initial values (TI(t3),VI(t3))
T of the comparison system of (2.12), there exits a suffi-

ciently small z∗ > 0, such that (TI(t3),VI(t3))
T > z∗(p1(0),p2(0))T . By the comparison theorem, we have

(TI(t),VI(t))T > z∗e
µ2(t−t3)(T̆I(t− t3), V̆I(t− t3))

T for all t > t3. Thus we obtain TI(nτ) → ∞,VI(nτ) →∞, as n→∞, a contradiction. Hence Eq. (2.10) holds. This completes the proof.

Theorem 2.7. If the basic reproductive number R0 > 1, then there exists a δ > 0 such that any solution
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(TS(t), TR(t), TI(t),VI(t)) of system (2.1) with initial value (TS0, TR0, TI0,VI0) ∈ {(TS, TR, TI,VI) ∈ X | TI >

0,VI > 0} satisfies
lim inf
t→∞ TI(t) > δ, lim inf

t→∞ VI(t) > δ,

and system (2.1) admits at least one positive periodic solution.

Proof. In the following we will show that P is uniformly persistent with respect to (X0,∂X0). Due to the
uniform and ultimate boundedness of the solutions of system (2.1), the Poincaré map P admits a global
attractor in X. For any (TS0, TR0, TI0,VI0) ∈ X0, the first equation of system (2.1) can be written as

dTS
dt

> λ− dSTS − rIVITS − rRRTS.

Then we have

TS(t) > exp (−

∫t
0
(dS + rIVI(s1) + rRR(s1))ds1)

×

(
TS(0) + λ

∫t
0

exp
( ∫σ

0
(dS + rIVI(s2) + rRR(s2))ds2

)
dσ

)

> exp (−

∫t
0
(dS + rIVI(s1) + rRR(s1))ds1)

× λ
∫t

0
exp

( ∫σ
0
(dS + rIVI(s2) + rRR(s2))ds2

)
dσ,

> 0, ∀t > 0.

(2.13)

By the second equation of system (2.1) we can deduce that TR(t) > 0 for all t > 0. Furthermore, by
Theorem 4.1.1 in [20] as generalized to nonautonomous systems, the irreducibility of the cooperative
matrix (

−dI rITS(t)
nIω −dV

)
,

implies that TI(t) > 0,VI(t) > 0 for all t > 0. Thus, both X and X0 are positively invariant. Clearly, ∂X0 is
relatively closed in X.

Set
M∂ = {(TS0, TR0, TI0,VI0) ∈ ∂X0 : Pm(TS0, TR0, TI0,VI0) ∈ ∂X0,∀m > 0}.

We now show that
M∂ = {(TS, TR, 0, 0) : TS > 0, TR > 0}. (2.14)

It suffices to prove that for any (TS0, TR0, TI0,VI0) ∈ M∂, there holds TI(mτ) = VI(mτ) = 0,∀m > 0.
Suppose not, then there exists an m1 > 0 such that TI(m1τ) > 0,VI(m1τ) > 0. Set the initial time in Eq.
(2.13) to be m1τ, then TS(t) > 0,∀t > m1τ. Applying similar method, we have TI(t) > 0,VI(t) > 0,∀t >
m1τ, with the initial value TI(m1τ) > 0,VI(m1τ) > 0. Thus we have

(TS(t), TR(t), TI(t),VI(t)) ∈ X0,∀t > m1τ,

which contradicts with the assumption that (TS0, TR0, TI0,VI0) ∈ M∂, hence (2.14) holds. Clearly, there is
exactly one fixed point of P in M∂, which is M1 = (T̃S(0), T̃R(0), 0, 0).

Lemma 2.6 implies that M1 is isolated in X and Ws(M1)∩X0 = ∅. Clearly, each orbit in M∂ converges
to M1, and M1 is acyclic in M∂. By Theorem 1.3.1 in [33], it follows that P is uniformly persistent with
respect to (X0,∂X0). By Theorem 3.1.1 in [33] the solutions of (2.1) are uniformly persistent.

Furthermore, Theorem 1.3.6 in [33] implies that P has a fixed point (T∗S(0), T
∗
R(0), T

∗
I (0),V

∗
I (0)) ∈ X0.

Then T∗S(0) > 0, T∗R(0) > 0, T∗I (0) > 0, V∗I (0) > 0. We further claim that there exists t̄ ∈ [0,ω], such that
T∗S(t̄) > 0, T∗R(t̄) > 0. Suppose not, by the periodicity of T∗S(t) and T∗R(t), there holds T∗S(t) ≡ 0, T∗R(t) ≡ 0
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for all t > 0. Then adding the first two equations of (2.1), we have 0 < λ = 0, a contradiction. The first
equation of system (2.1) can be written as

dTS
dt

> λ− dSTS − rIVITS − rRRTS.

Then we have

T∗S(t) > exp (−

∫t
t̄

(dS + rIVI(s1) + rRR(s1))ds1)

×

(
T∗S(t̄) + λ

∫t
t̄

exp
( ∫σ

t̄

(dS + rIVI(s2) + rRR(s2))ds2

)
dσ

)
> 0, ∀t ∈ [t̄, t̄+ω].

Thus T∗S(t) > 0 for all t > 0 by the periodicity. By the second equation of system (2.1) we can deduce that
T∗R(t) > 0 for all t > 0. Furthermore, by Theorem 4.1.1 in [20] as generalized to nonautonomous systems,
the irreducibility of the cooperative matrix [11](

−dI rIT
∗
S(t)

nIω −dV

)
implies that T∗I (t) > 0,V∗I (t) > 0 for all t > 0. Therefore (T∗S(t), T

∗
R(t), T

∗
I (t),V

∗
I (t)) is a positive periodic

solution of system (2.1). This completes the proof.

3. Numerical simulations

We consider two therapy strategies.

1. Perfect adherence: drugs are administered with time interval τ and dosage Ri.
2. Imperfect adherence: drugs are also administered with time interval τ, except for a finite time halted

when some dosages are missed.

The parameters used are as those in Figure 1. First for perfect adherence, we have shown theoretically
that if the basic reproductive number R0 < 1, the ‘virus-free’ periodic solution is globally asymptomat-
ically stable, while if R0 > 1, at least a positive periodic solution exists. Fix the administration interval
τ = 0.3 day, by calculation R0 = 0.776 < 1, when τ = 0.5 day, R0 = 1.8321 > 1. The simulation results in
Figures 2 and 3 verify Theorems 2.5 and 2.7 and show that the positive periodic solution is also globally
attractive.
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Figure 2: The global asymptomatical stability of the ‘virus-free’ periodic solution when the basic reproductive number R0 =
0.776 < 1, τ = 0.3 day.
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Figure 3: The global asymptomatical stability of the positive periodic solution when the basic reproductive number R0 = 1.8321 >
1, τ = 0.5 day.

To model imperfect adherence, let p denote the fraction of the prescribed doses of the drug which are
taken. Now a natural question arises: given the same degree of adherence, how will different adherence
patterns affect viral dynamics and long-term prediction of therapy? We attempt to address this question
in the following.
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Figure 4: Plasma concentration time curves with the adherence p = 0.5.

In Figure 4, we present four adherence patterns with the same value of p = 0.5. Figure 4 (a) shows
the plasma drug concentration when every other dose is missed (Pattern 1). Pattern 2 shows two doses
are taken followed by two doses missed. Pattern 3 shows three doses are taken followed by three doses
missed and Pattern 4 shows five doses are taken followed by five doses missed. Patterns 1-4 describe
different adherence patterns by the block size, which is defined as the number of consecutive doses taken
or missed each time a dose is taken or missed [8, 27].

We present in Figure 5 the time evolution of the total non-infected T cells, the infected T cells, and the
viral load for Pattern 1 to Pattern 4 with adherence p = 0.5. With perfect adherence, the virus will be
eliminated from the host, see from Figure 2. For imperfect adherence, from Figure 5 we can see clearly
that Pattern 1 performs better than the other patterns with three or five consecutive missed doses in
keeping the total non-infected T cells at a higher level, while keeping the infected T cells and the viral
load at relatively lower levels. This indicates that smaller block size performs better in reducing viral
load.
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Figure 5: A comparison of the immunologic and viral responses based on the four patterns of adherence with p = 0.5 displayed
in Figure 4.

The adherence patterns we have considered are regular. Note that for the same degree of adherence
p = 0.5, there are other adherence patterns, some of which may be irregular. We do not consider these
irregular patterns, for they will lead to non-periodic systems such that the analytical results cannot be
applied. Further studies may be focused on some numerical results.

When the degree of adherence p varies, numerical simulations indicate that with regular drug dosages
‘taken and missed’, as the adherence p increases, drug therapy performs better in reducing viral load at
lower levels. For example, drugs that are taken five doses followed by five consecutive missed doses
(according to p = 1/2) perform better than drug that is taken one dose followed by two doses missed
(according to p = 1/3) (figures are not shown).

4. Conclusions and discussions

In this paper, we consider an immunological model for HIV viral dynamics incorporating the effects
of the reverse transcriptase inhibitors explicitly. There are many authors considering HIV drug therapy
implicitly [4, 8, 16, 17, 27]. In those classical models, the effects of the drugs are assumed to reduce the
infection rate (PI sparing therapy) by a fraction 1−nrt, where nrt is assumed to be the drug efficacy. The
basic reproductive number in this case is then

R0 =
(1 −nrt)rInIω

dIdV
× λ

dS
.

If the drug is explicitly modeled as that in system (2.1), we consider the case when the drug varies with
sufficiently small amplitude, that is the drug concentration can be seen as a constant, i.e., R(t) ≡ R, ∀t > 0.
Then the basic reproductive number yields

R0 =
rInIω

dIdV
× λ

dS
× dS +mR
dS +mR + rRR

.

From the expressions for the basic reproductive numbers we can see that when the drug is implicitly
modeled, it acts to reduce the infection rate rI, while if the drug is explicitly modeled, that is, the T cells
may be susceptible, infected or inhibited by the drug, in this case since the uninfected T cells TS will
absorb the drug and become cells TR which cannot be infected further, then the susceptible T cells will be
reduced by a fraction (dS +mR)/(dS +mR + rRR). Hence, the implicit model and the explicit model act
in different ways to reduce the number of T cells that will be infected by free virus.

Our main results show that for perfect adherence, the virus-free periodic solution of system (2.1) is
globally asymptotically stable if R0 < 1, whilst the virus is persistent if R0 > 1, and meanwhile there
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exists a positive periodic solution, which is globally asymptotically stable numerically. Since the basic
reproductive number R0 is the function of the drug dosage Ri and the drug administration interval τ,
hence we can design the regimen strategy to ensure the elimination of the virus theoretically.

For imperfect adherence, different degrees of adherence and different adherence patterns will affect
therapy outcomes differently. Given the same degree, smaller blocking size performs better in reducing
viral load. With regular dosages taken and missed, the bigger the degree of the adherence, the better the
therapy outcome will be.
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