Hitting probabilities for non-convex lattice

G. Caristia,*, M. Pettineo ${ }^{\text {b }}$, A. Puglisi ${ }^{\text {a }}$
${ }^{a}$ Department of Economics, University of Messina, via dei Verdi, 75 98122, Messina, Italy.
${ }^{b}$ Department of Mathematics, University of Palermo, via Archirafi, 34-Palermo, Italy.

Communicated by C. Vetro

Abstract

In this paper, we consider three lattices with cells represented in Figures 1,3, and 5 and we determine the probability that a random segment of constant length intersects a side of the lattice considered.

Keywords: Geometric probability, stochastic geometry, random sets, random convex sets and integral geometry.
2010 MSC: 60D05, 52A22.
(C)2018 All rights reserved.

1. Introduction

Caristi and Stoka [7] and [8] introduced in the Buffon-Laplace type problems so-called obstacles. They considered two lattices with axial symmetry and in a first moment [7] they study with eight triangular and circular sector obstacles and in the second moment [8] they analyze twelve obstacles. Several other authors considered different lattices with different types of obstacles and studied the probability that a random body test intersect the fundamental cell $[2,5]$, and [4]. In particular, in [1], the authors studied a Laplace type problem with obstacles for two Delone hexagonal lattices and in [6] for a regular lattice of Dirichlet-Voronoi. In this study, starting from the results obtained by Duma and Stoka [9] for Buffon type problems with a nonconvex lattice we consider a Laplace type problem for three lattices with triangular obstacles, circular sector obstacles and triangular and sectors circular together. We study the probability that a random segment of constant length intersects the fundamental cells in Figures 1,3, and 5.

2. Obstacles triangular

Let $\Re_{1}(a, b ; m)$ be the lattice with the fundamental cell C_{1} represented in Figure 1, where $a<b$ and $m<a / 2$. From Figure 1 we have

$$
\begin{equation*}
\operatorname{areaC}_{1}=3 a b-\frac{5}{2} m^{2} \tag{2.1}
\end{equation*}
$$

We compute the probability that a random segment s of constant length $l<\frac{a}{2}-m$ intersects a side of lattice \Re_{1}, i.e., the probability $P_{i n t}^{(1)}$ that the segment s intersects a side of fundamental cell C_{1}.

The position of segment s is determined by its center and by the angle φ that it formed with the side BC (or AF) of the cell C_{1}.

[^0]To compute $\mathrm{P}_{\text {int }}$ we consider the limiting positions of segment s, for a fixed angle of φ, in the cell C_{1}. We obtain the Figure 2

Figure 1

Figure 2
and the formula

$$
\begin{equation*}
\operatorname{area} \widehat{\mathrm{C}}_{1}(\varphi)=\operatorname{areaC}_{1}-\sum_{i=1}^{11} \operatorname{areaa}_{i}(\varphi) . \tag{2.2}
\end{equation*}
$$

Theorem 2.1. We have

$$
P_{i n t}^{(1)}=\frac{2\left[2(a+b) l-\frac{l^{2}}{2}-\frac{\pi}{2} m^{2}\right]}{\pi\left(3 a b-\frac{5}{2} m^{2}\right)} .
$$

Proof. By Figure 2 we have

$$
\begin{array}{ll}
\operatorname{areaAA}_{1} A_{3}=\frac{\mathfrak{m l}}{2} \cos \varphi, & \operatorname{areaa}_{1}(\varphi)=\operatorname{areaa}_{5}(\varphi)=\frac{\mathfrak{m l}}{2} \cos \varphi-\frac{\mathfrak{m}^{2}}{2}, \\
\operatorname{areaa}_{2}(\varphi)=(b-\mathfrak{m}) l \cos \varphi, & \operatorname{areaa}_{11}(\varphi)=\frac{\operatorname{al}}{2} \sin \varphi-\frac{\mathfrak{m l}}{2} \sin \varphi-\frac{l^{2}}{4} \sin 2 \varphi, \\
\operatorname{areaa}_{6}(\varphi)=\frac{\mathfrak{b l}}{2} \cos \varphi-\mathfrak{m l} \cos \varphi, & \operatorname{areaa}_{3}(\varphi)=\operatorname{areaa}_{7}(\varphi)=\operatorname{areaa}_{10}(\varphi)=\frac{\mathfrak{m l}}{2}(\sin \varphi+\cos \varphi), \\
\operatorname{areaa}_{4}(\varphi)=\operatorname{alsin}-\frac{\mathfrak{m l}}{2} \sin \varphi-\frac{l^{2}}{4} \sin 2 \varphi, & \operatorname{areaa}_{8}(\varphi)=\frac{\operatorname{al}}{2} \sin \varphi-\frac{\mathfrak{m l}}{2} \sin \varphi, \\
\operatorname{areaa}_{9}(\varphi)=\frac{\operatorname{bl}}{2} \cos \varphi-\frac{\mathfrak{m l}}{2} \cos \varphi . &
\end{array}
$$

We can write that

$$
\begin{equation*}
A_{1}(\varphi)=\sum_{i=1}^{11} \operatorname{areaa}_{i}(\varphi)=2 \operatorname{alsin} \varphi+2 b l \cos \varphi-\frac{l^{2}}{2} \sin 2 \varphi-\mathfrak{m}^{2} . \tag{2.3}
\end{equation*}
$$

Replacing this relation in formula (2.2) follows

$$
\begin{equation*}
\operatorname{areaC}_{1}(\varphi)=\operatorname{areaC}_{1}-\mathrm{A}_{1}(\varphi) . \tag{2.4}
\end{equation*}
$$

We denote with M_{1}, the set of segments s that they have center in the cell C_{1}, and with N_{1} the set of segments s entirely contained in the cell C_{1}, so we have [11],

$$
\begin{equation*}
P_{\text {int }}^{(1)}=1-\frac{\mu\left(\mathrm{N}_{1}\right)}{\mu\left(\mathrm{M}_{1}\right)}, \tag{2.5}
\end{equation*}
$$

where μ is the Lebesgue measure in the euclidean plane.
To compute the measure $\mu\left(M_{1}\right)$ and $\mu\left(N_{1}\right)$ we use the kinematic measure of Poincarè [10]:

$$
d k=d x \wedge d y \wedge d \varphi,
$$

where x, y are the coordinate of center of s and φ the fixed angle.
For $\varphi \in\left[0, \frac{\pi}{2}\right]$ we have

$$
\begin{equation*}
\mu\left(M_{1}\right)=\int_{0}^{\frac{\pi}{2}} \mathrm{~d} \varphi \iint_{\left\{(x, y) \in \mathrm{C}_{1}\right\}} d x d y=\int_{0}^{\frac{\pi}{2}}\left(\operatorname{areaC}_{1}\right) \mathrm{d} \varphi=\frac{\pi}{2} \operatorname{areaC}_{1} . \tag{2.6}
\end{equation*}
$$

In the same way, considering formula (2.4) we can write

$$
\begin{align*}
\mu\left(\mathrm{N}_{1}\right) & =\int_{0}^{\frac{\pi}{2}} \mathrm{~d} \varphi \iint_{\left\{(x, y) \in \mathrm{C}_{1(\varphi)\}}\right\}} \mathrm{dxdy}=\int_{0}^{\frac{\pi}{2}}\left[\operatorname{areaC}_{1}(\varphi)\right] \mathrm{d} \varphi \tag{2.7}\\
& =\int_{0}^{\frac{\pi}{2}}\left[\operatorname{areaC}_{1}-A_{1}(\varphi)\right] \mathrm{d} \varphi=\frac{\pi}{2} \operatorname{areaC}_{1}-\int_{0}^{\frac{\pi}{2}}\left[\mathcal{A}_{1}(\varphi)\right] \mathrm{d} \varphi .
\end{align*}
$$

Replacing in the (2.5) the relations (2.6) and (2.7) we obtain

$$
\begin{equation*}
P_{i n t}^{(1)}=\frac{2}{\pi \operatorname{area} C_{1}} \int_{0}^{\frac{\pi}{2}}\left[A_{1}(\varphi)\right] d \varphi . \tag{2.8}
\end{equation*}
$$

Considering formula (2.3) we have

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}}\left[A_{1}(\varphi)\right] d \varphi=2(a+b) l-\frac{l^{2}}{2}-\frac{\pi}{2} m^{2} . \tag{2.9}
\end{equation*}
$$

The relations (2.1), (2.8) and (2.9) give us the result.
Remark 2.2. For $m=0$ the obstacles become points and the probability $P_{i n t}^{(1)}$ becomes:

$$
\begin{equation*}
p^{(1)}=\frac{4(a+b) l-l^{2}}{3 \pi a b} . \tag{2.10}
\end{equation*}
$$

So, we find a result of a previous paper [3].

3. Obstacles circular sectors

We consider the lattice $\mathfrak{R}_{2}(\mathrm{a}, \mathrm{b} ; \mathfrak{m})$ with the fundamental cell C_{2} represented in Figure 3.
By this figure we have that the formula (2.2) is valid for the cell C_{2}. Then we have

$$
\operatorname{areaC}_{2}(\varphi)=3 a b-\frac{5 \pi}{4} \mathfrak{m}^{2}
$$

As in the paragraph 1, we compute the probability $P_{i n t}^{(2)}$ that a segment s intersects a side of fundamental cell C_{2}.

Considering the limiting positions of segment s, for a fixed angle φ, in the cell C_{2}. We obtain the Figure 4

Figure 3

Figure 4 and the formula

$$
\operatorname{area} \widehat{\mathrm{C}}_{2}(\varphi)=\operatorname{areaC}_{2}-\sum_{i=1}^{13} \operatorname{areab}_{i}(\varphi) .
$$

Theorem 3.1. We have

$$
P_{i n t}^{(2)}=\frac{2\left[2(a+b) l-\frac{l^{2}}{2}-\frac{\pi m^{2}(5 \pi-6)}{8}\right]}{\pi\left(3 a b-\frac{5 \pi}{4} \mathfrak{m}^{2}\right)} .
$$

Remark 3.2. For $m=0$ the obstacles become points and the probability $P_{i n t}^{(2)}$ become:

$$
\begin{equation*}
\mathrm{p}^{(2)}=\frac{4(\mathrm{a}+\mathrm{b}) \mathrm{l}-\mathrm{l}^{2}}{3 \pi \mathrm{ab}} . \tag{3.1}
\end{equation*}
$$

4. Obstacles triangular and circular sectors

We consider the lattice $\Re_{3}(a, b ; m)$ with the fundamental cell C_{3} represented in Figure 5.

From Figure 5 we have

$$
\operatorname{areaC}_{3}=3 a b-\mathrm{m}^{2}-\frac{3 \pi \mathrm{~m}^{2}}{4} .
$$

As in the previous paragraphs, we compute the probability $P_{i n t}^{(3)}$ that a segment s intersects a side of fundamental cell C_{3}.

Considering the limiting positions of segment s, for a fixed angle φ, in the cell C_{2}. We obtain Figure 6

Figure 5

Figure 6
and the formula

$$
\operatorname{area} \widehat{\mathrm{C}}_{3}(\varphi)=\operatorname{areaC}_{3}-\sum_{i=1}^{11} \operatorname{areac}_{\mathfrak{i}}(\varphi) .
$$

Theorem 4.1. We have

$$
P_{i n t}^{(3)}=\frac{4(a+b) l-l^{2}-\frac{\pi(5 \pi-14) m^{2}}{4}}{\pi\left(3 a b-m^{2}-\frac{3 \pi m^{2}}{4}\right)} .
$$

Remark 4.2. If $\mathfrak{m}=0$, the obstacles become points and the probability $P_{\text {int }}$ becomes

$$
\begin{equation*}
p^{(3)}=\frac{4(a+b) l-l^{2}}{3 \pi a b} \tag{4.1}
\end{equation*}
$$

Remark 4.3. The relation (2.10), (3.1) and (4.1) give us the evident formula

$$
p^{(1)}=p^{(2)}=p^{(3)} .
$$

References

[1] D. Barilla, G. Caristi, A. Puglisi, M. Stoka, A Laplace type problem for two hexagonal lattices of Delone with obstacles, Appl. Math. Sci., 7 (2013), 4571-4581. 1
[2] D. Barilla, G. Caristi, E. Saitta, M. Stoka, A Laplace type problem for lattice with cell composed by two quadrilaterals and one triangle, Appl. Math. Sci., 8 (2014), 789-804. 1
[3] D. Barilla, G. Caristi, A. Puglisi, M. Stoka, Laplace Type Problems for a Triangular Lattice and Different Body Test, Appl. Math. Sci., 8 (2014), 5123-5131. 2
[4] G. Caristi, A. Puglisi, E. Saitta, A Laplace type for an regular lattices with convex-concave cell and obstacles rhombus, Appl. Math. Sci., 7 (2013), 4049-4065. 1
[5] G. Caristi, E. L. Sorte, M. Stoka, Laplace problems for regular lattices with three different types of obstacles, Appl. Math. Sci., 5 (2011), 2765-2773. 1
[6] G. Caristi, M. Stoka, A Laplace type problem for a regular lattice of Dirichlet-Voronoi with different obstacles, Appl. Math. Sci., 5 (2011), 1493-1523. 1
[7] G. Caristi, M. Stoka, A laplace type problem for lattice with axial symmetric and different obstacles type (I), Far East J. Math. Sci., 58 (2011), 99-118. 1
[8] G. Caristi, M. Stoka, A Laplace type problem for lattice with axial symmetry and different type of obstacles (II), Far East J. Math. Sci., 64 (2012), 281-295. 1
[9] A. Duma, M. Stoka, Problems of "Buffon" type for a non-convex lattice, Rend. Circ. Mat. Palermo (2) Suppl., 70 (2002), 237-256. 1
[10] H. Poincarè, Calcul des probabilitès, Gauthier-Villard, Paris, (1912). 2
[11] M. Stoka, Probabilités géométriques de type "Buffon" dans le plan euclidien, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 110 (1976), 53-59. 2

[^0]: *Corresponding author
 Email addresses: gcaristi@unime.it (G. Caristi), maria.pettineo@unipa.it (M. Pettineo), puglisia@unime.it (A. Puglisi)
 doi: 10.22436/jnsa.011.04.05
 Received: 2017-08-01 Revised: 2017-09-29 Accepted: 2017-11-21

