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Abstract
In this paper, we consider three lattices with cells represented in Figures 1, 3, and 5 and we determine the probability that a

random segment of constant length intersects a side of the lattice considered.
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1. Introduction

Caristi and Stoka [7] and [8] introduced in the Buffon-Laplace type problems so-called obstacles. They
considered two lattices with axial symmetry and in a first moment [7] they study with eight triangular and
circular sector obstacles and in the second moment [8] they analyze twelve obstacles. Several other authors
considered different lattices with different types of obstacles and studied the probability that a random body
test intersect the fundamental cell [2, 5], and [4]. In particular, in [1], the authors studied a Laplace type
problem with obstacles for two Delone hexagonal lattices and in [6] for a regular lattice of Dirichlet-Voronoi.
In this study, starting from the results obtained by Duma and Stoka [9] for Buffon type problems with a non-
convex lattice we consider a Laplace type problem for three lattices with triangular obstacles, circular sector
obstacles and triangular and sectors circular together. We study the probability that a random segment of
constant length intersects the fundamental cells in Figures 1, 3, and 5.

2. Obstacles triangular

Let <1 (a,b;m) be the lattice with the fundamental cell C1 represented in Figure 1, where a < b and
m < a/2. From Figure 1 we have

areaC1 = 3ab−
5
2
m2. (2.1)

We compute the probability that a random segment s of constant length l < a
2 −m intersects a side of

lattice <1, i.e., the probability P(1)
int that the segment s intersects a side of fundamental cell C1.

The position of segment s is determined by its center and by the angle ϕ that it formed with the side BC
(or AF) of the cell C1.
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To compute Pint we consider the limiting positions of segment s, for a fixed angle of ϕ, in the cell C1.
We obtain the Figure 2
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and the formula

areaĈ1 (ϕ) = areaC1 −

11∑
i=1

areaai (ϕ) . (2.2)

Theorem 2.1. We have

P
(1)
int =

2
[
2 (a+ b) l− l2

2 − π
2m

2
]

π
(
3ab− 5

2m
2
) .

Proof. By Figure 2 we have

areaAA1A3 =
ml

2
cosϕ, areaa1 (ϕ) = areaa5 (ϕ) =

ml

2
cosϕ−

m2

2
,

areaa2 (ϕ) = (b−m) l cosϕ, areaa11 (ϕ) =
al

2
sinϕ−

ml

2
sinϕ−

l2

4
sin 2ϕ,

areaa6 (ϕ) =
bl

2
cosϕ−ml cosϕ, areaa3 (ϕ) = areaa7 (ϕ) = areaa10 (ϕ) =

ml

2
(sinϕ+ cosϕ) ,

areaa4 (ϕ) = al sin−
ml

2
sinϕ−

l2

4
sin 2ϕ, areaa8 (ϕ) =

al

2
sinϕ−

ml

2
sinϕ,

areaa9 (ϕ) =
bl

2
cosϕ−

ml

2
cosϕ.

We can write that

A1 (ϕ) =

11∑
i=1

areaai (ϕ) = 2al sinϕ+ 2bl cosϕ−
l2

2
sin 2ϕ−m2. (2.3)

Replacing this relation in formula (2.2) follows

areaC1 (ϕ) = areaC1 −A1 (ϕ) . (2.4)

We denote withM1, the set of segments s that they have center in the cell C1, and withN1 the set of segments
s entirely contained in the cell C1, so we have [11],

P
(1)
int = 1 −

µ (N1)

µ (M1)
, (2.5)

where µ is the Lebesgue measure in the euclidean plane.
To compute the measure µ (M1) and µ (N1) we use the kinematic measure of Poincarè [10]:

dk = dx∧ dy∧ dϕ,

where x, y are the coordinate of center of s and ϕ the fixed angle.
For ϕ ∈

[
0, π2

]
we have

µ (M1) =

∫ π
2

0
dϕ

∫ ∫
{(x,y)εC1}

dxdy =

∫ π
2

0
(areaC1)dϕ =

π

2
areaC1. (2.6)

In the same way, considering formula (2.4) we can write
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µ (N1) =

∫ π
2

0
dϕ

∫ ∫
{(x,y)εC1(ϕ)}

dxdy =

∫ π
2

0
[areaC1 (ϕ)]dϕ

=

∫ π
2

0
[areaC1 −A1 (ϕ)]dϕ =

π

2
areaC1 −

∫ π
2

0
[A1 (ϕ)]dϕ.

(2.7)

Replacing in the (2.5) the relations (2.6) and (2.7) we obtain

P
(1)
int =

2
πareaC1

∫ π
2

0
[A1 (ϕ)]dϕ. (2.8)

Considering formula (2.3) we have∫ π
2

0
[A1 (ϕ)]dϕ = 2 (a+ b) l−

l2

2
−
π

2
m2. (2.9)

The relations (2.1), (2.8) and (2.9) give us the result.

Remark 2.2. For m = 0 the obstacles become points and the probability P(1)
int becomes:

p(1) =
4 (a+ b) l− l2

3πab
. (2.10)

So, we find a result of a previous paper [3].

3. Obstacles circular sectors
We consider the lattice <2 (a,b;m) with the fundamental cell C2 represented in Figure 3.
By this figure we have that the formula (2.2) is valid for the cell C2. Then we have

areaC2 (ϕ) = 3ab−
5π
4
m2.

As in the paragraph 1, we compute the probability P(2)
intthat a segment s intersects a side of fundamental

cell C2.
Considering the limiting positions of segment s, for a fixed angle ϕ, in the cell C2. We obtain the Figure
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and the formula

areaĈ2 (ϕ) = areaC2 −

13∑
i=1

areabi (ϕ) .

Theorem 3.1. We have

P
(2)
int =

2
[
2(a+ b)l− l2

2 −
πm2(5π−6)

8

]
π
(
3ab− 5π

4 m
2
) .

Remark 3.2. For m = 0 the obstacles become points and the probability P(2)
int become:

p(2) =
4 (a+ b) l− l2

3πab
. (3.1)

4. Obstacles triangular and circular sectors

We consider the lattice <3 (a,b;m) with the fundamental cell C3 represented in Figure 5.
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From Figure 5 we have

areaC3 = 3ab−m2 −
3πm2

4
.

As in the previous paragraphs, we compute the probability P(3)
int that a segment s intersects a side of

fundamental cell C3.
Considering the limiting positions of segment s, for a fixed angle ϕ, in the cell C2. We obtain Figure 6
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and the formula

areaĈ3 (ϕ) = areaC3 −

11∑
i=1

areaci (ϕ) .

Theorem 4.1. We have

P
(3)
int =

4 (a+ b) l− l2 − π(5π−14)m2

4

π
(

3ab−m2 − 3πm2

4

) .

Remark 4.2. If m = 0, the obstacles become points and the probability Pint becomes

p(3) =
4 (a+ b) l− l2

3πab
, (4.1)

Remark 4.3. The relation (2.10), (3.1) and (4.1) give us the evident formula

p(1) = p(2) = p(3).
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