
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 11 (2018), 477–485

Research Article

Journal Homepage: www.isr-publications.com/jnsa

Dynamics of the fuzzy difference equation zn =

max{ 1
zn−m

, αn
zn−r

}

Taixiang Sun∗, Hongjian Xi, Guangwang Su, Bin Qin

Guangxi Key Laboratory Cultivation Base of Cross-border E-commerce Intelligent Information Processing, Guangxi Univresity of
Finance and Economics, Nanning, 530003, China.

Communicated by M. Bohner

Abstract
In this paper, we study the eventual periodicity of the following fuzzy max-type difference equation

zn = max{
1

zn−m
,
αn

zn−r
}, n = 0, 1, . . . ,

where {αn}n>0 is a periodic sequence of positive fuzzy numbers and the initial values z−d, z−d+1, . . . , z−1 are positive fuzzy
numbers with d = max{m, r}. We show that if max(supp αn) < 1, then every positive solution of this equation is eventually
periodic with period 2m.
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1. Introduction

In this paper, our goal is to investigate the eventual periodicity of the following fuzzy max-difference
equation

zn = max{
1

zn−m
,
αn

zn−r
}, n = 0, 1, 2, . . . , (1.1)

wherem, r ∈ N ≡ {1, 2, 3, . . .}, αn is a periodic sequence of positive fuzzy numbers, and z−d, z−d+1, . . . , z−1
are positive fuzzy numbers with d = max{m, r}.

Recently, there has been an increase in interest in the study of fuzzy difference equations because
many models in automatic control theory and finance are represented by these equations naturally (see,
e.g., [1–5, 7, 9–15, 17–21]).
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In 2014, Zhang et al. [21] studied the existence, the boundedness, and the asymptotic behavior of the
positive solutions to a first order fuzzy Ricatti difference equation

zn+1 =
α+ zn
β+ zn

, n = 0, 1, . . . ,

where α,β and the initial condition z0 are positive fuzzy numbers.
In 2005, Stefanidou and Papaschinopoulos [13] studied the periodicity of the following fuzzy max-

difference equations
zn+1 = max{

α

zn
,
α

zn−1
, . . . ,

α

zn−k
}, n = 0, 1, . . .

and

zn+1 = max{
α

zn
,
β

zn−1
}, n = 0, 1, . . . ,

where k ∈ N, α,β and the initial conditions z−k, z−k+1, . . . , z0 are positive fuzzy numbers.
In 2006, Stefanidou and Papaschinopoulos [14] studied the periodicity of the following fuzzy max-

difference equation

zn = max{
α

zn−k
,
β

zn−m
}, n = 0, 1, . . . ,

where α,β and the initial conditions z−d, z−d+1, . . . , z−1 with d = max{k,m} are positive fuzzy numbers.
In 2014, He et al. [3] investigated the periodicity of the positive solutions of the fuzzy max-difference

equation

xn+1 = max{
An

xn−m
, xn−k}, n = 0, 1, . . . , (1.2)

where k,m ∈ N, An is a periodic sequence of fuzzy numbers and x−d, x−d+1, . . . , x0 are positive fuzzy
numbers with d = max{m,k}, and showed that every positive solution of (1.2) is eventually periodic with
period k+ 1.

The rest of this paper is organized as follows. We give the some definitions and notations in Section
2. We give the main result and its proof of this paper in Section 3.

2. Preliminaries

In this section, we give the following definitions and notations. A function P : R(≡ (−∞,+∞))→ [0, 1]
is said to be a fuzzy number if the following statements hold (see [9]):

(1) P is normal (i.e., P(t) = 1 for some t ∈ R).
(2) P is a convex fuzzy set (i.e., P(λt1 + (1 − λ)t2) > min{P(t1),P(t2)} for any λ ∈ [0, 1] and any t1, t2 ∈ R).
(3) P is upper semicontinuous.
(4) supp P =

⋃
c∈(0,1][P]c = {t : P(t) > 0} is compact.

Where [P]c = {t ∈ R : P(t) > c} (for any c ∈ (0, 1]) (which are called the c-cuts of the fuzzy number P)
and W is the closure of set W. We see from Theorems 3.1.5 and 3.1.8 of [8] that every c-cut of the fuzzy
number P is a closed interval.

A fuzzy number P is said to be positive if min(supp P) > 0. If P ∈ (0,+∞), then P is a positive fuzzy
number (it is called a trivial fuzzy number also) with [P]c = [P,P] for any c ∈ (0, 1].

For some k ∈ N, let P1,P2, . . . ,Pk be fuzzy numbers and c ∈ (0, 1] with

[Pi]c = [Pi,l,c,Pi,r,c] for 0 6 i 6 k.

Write
Ql,c = max{Pi,l,c : 0 6 i 6 k} and Qr,c = max{Pi,r,c : 0 6 i 6 k}.
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Then we know from Theorem 2.1 of [16] that there exists a fuzzy number Q such that

[Q]c = [Ql,c,Qr,c] for any c ∈ (0, 1].

By [6] and Lemma 2.3 of [9] one can define

Q = max{Pi : 0 6 i 6 k}.

A sequence of positive fuzzy numbers {zn}
∞
n=−d is called a solution of the equation (1.1) if it satisfies

(1.1). {zn}∞n=−d is said to be eventually periodic with period T if there exists M ∈ N such that zn+T = zn
holds for all n >M.

Proposition 2.1. Suppose that z−d, z−d+1, . . . , z−1 are positive fuzzy numbers. Then there exists a unique positive
solution {zn}

∞
n=−d of (1.1) with initial values z−d, z−d+1, . . . , z−1.

Proof. Suppose that [αn]c = [αn,l,c,αn,r,c] for any c ∈ (0, 1] and any n > 0, and

[zi]c = [pi,c,qi,c] for − d 6 i 6 0 and any c ∈ (0, 1], (2.1)

and {(pn,c,qn,c)}
∞
n=−d(c ∈ (0, 1]) is the unique positive solution of the following system of difference

equations

pn,c = max{
1

qn−m,c
,
αn,l,c

qn−r,c
}, qn,c = max{

1
pn−m,c

,
αn,r,c

pn−r,c
} (2.2)

with initial values (pi,c,qi,c)(−d 6 i 6 0). Arguing as in Proposition 3.1 of [13] we can show that
{(pn,c,qn,c)}

∞
n=−d(c ∈ (0, 1]) determines a sequence of positive fuzzy numbers {zn}

∞
n=−d such that

[zn]c = [pn,c,qn,c], n > −d, c ∈ (0, 1], (2.3)

and that {zn}
∞
n=−d is the unique positive solution of (1.1) with initial values z−d, z−d+1, . . . , z−1. This

completes the proof of the Proposition.

3. Main result and proof

In the sequel, we consider the system of difference equations

yn = max{
1

zn−m
,
αn

zn−r
}, zn = max{

1
yn−m

,
βn

yn−r
}, n = 0, 1, . . . , (3.1)

where αn,βn ∈ (0, 1) are two periodic sequences. Let {(yn, zn)}n>−d be a solution of (3.1) with the
initial values y−d, z−d,y−d+1, z−d+1, . . . ,y−1, z−1 ∈ (0,+∞). The main result of this paper is established
through the following lemmas.

Lemma 3.1. The following statements hold:

(1) ynzn−m > 1 and znyn−m > 1 for all n > 0;
(2) yn 6 max{yn−2m,αnyn−m−r} and zn 6 max{zn−2m,βnzn−m−r} for all n > d;
(3) if yn = 1/zn−m (Resp. zn = 1/yn−m) for some n > m, then yn 6 yn−2m (Resp. zn 6 zn−2m). If

yn = αn/zn−r > 1/zn−m (Resp. zn = βn/yn−r > 1/yn−m) for some n > d, then yn > yn−2m (Resp.
zn > zn−2m).

Proof.

(1) It is obvious since yn > 1/zn−m (Resp. zn > 1/yn−m) for all n > 0.
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(2) It follows from (1) that for any n > d,

yn = max
{ yn−2m

zn−myn−2m
,
αnyn−m−r

yn−m−rzn−r

}
6 max{yn−2m,αnyn−m−r}.

For the another case, the proof is similar.

(3) If yn = 1/zn−m for some n > m, then we see from (1) that

yn =
yn−2m

zn−myn−2m
6 yn−2m.

If yn = αn/zn−r > 1/zn−m for some n > d, then we have from (1) that

1 < ynzn−m = max{
yn

yn−2m
,
ynzn−rβn−m

yn−r−mzn−r
} 6 max{

yn

yn−2m
,αnβn−m} =

yn

yn−2m
.

This implies yn > yn−2m. For the another case, the proof is similar. This completes the proof of the
Lemma.

Lemma 3.2. Define
Φn = max{yn−1,yn−2, . . . ,yn−m−d} (n > d)

and
Υn = max{zn−1, zn−2, . . . , zn−m−d} (n > d).

Then the following statements hold:

(1) yn 6 Φn and zn 6 Υn for any n > d and {Φn}n>d and {Υn}n>d are decreasing;
(2) there exist constants M and M ′ with M >M ′ > 0 such that yn, zn ∈ [M ′,M] for any n > −d.

Proof.

(1) Noting Lemma 3.1 (2), we obtain that yn 6 Φn (Resp. zn 6 Υn) (n > d), thus

Φn+1 = max{yn,yn−1, . . . ,yn−m−d+1} 6 Φn

and
Υn+1 = max{zn, zn−1, . . . , zn−m−d+1} 6 Υn.

(2) Choose M = max{Φd,Υd,yd−1, zd−1, . . . ,y−d,y−d} (> 1) and M ′ = min{1/M,y−1, z−1, . . . ,y−d, z−d}
(> 0). Then yn, zn ∈ [M ′,M] for any n > −d. This completes the proof of the Lemma.

In the following, suppose that limn→∞Φn = Φ and limn→∞Υn = Υ. Let lim infn→∞ yn = φ and
lim infn→∞ zn = γ. Then we have the following Corollary 3.3.

Corollary 3.3. There exists a sequence 1 < n1 < n2 < · · · < nk < · · · satisfying nk+1 − nk 6 m+ d such that
ynk > Φ (Resp. znk > Υ).

Proof. We know from Lemma 3.2 (1) that for any n > d, Φn = max{yn−1,yn−2, . . . ,yn−m−d} > Φ (Resp.
Υn = max{zn−1, zn−2, . . . , zn−m−d} > Υ), which implies that there exists j ∈ {n− 1, . . . ,n−m− d} such
that yj > Φ (Resp. zj > Υ).

Again using Lemma 3.2 (1), we have Φj+m+d+1 = max{yj+m+d,yj+m+d−1, . . . ,yj+1} > Φ (Resp.
Υj+m+d+1 = max{zj+m+d, zj+m+d−1, . . . , zj+1} > Υ), which implies that there exists i ∈ {j+m+d, . . . , j+
1} such that yi > Φ (Resp. zi > Υ) with 1 6 i− j 6 m+ d. Therefore, there exists a sequence 1 < n1 <

n2 < · · · < nk < · · · satisfying nk+1 −nk 6 m+ d such that ynk > Φ (Resp. znk > Υ). This completes the
proof of the Corollary.

Lemma 3.4. The following statements hold:
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(1) Φ = lim supn→∞ yn and Υ = lim supn→∞ zn;
(2) Card({n : Φ 6 yn = αn/zn−r}) < ∞ (Resp. Card({n : Υ 6 zn = βn/zn−r}) < ∞), where Card(A)

denotes the cardinality of the set A;
(3) there exists N ∈ N such that: (i) yN+2mλ > Φ and yN+2mλ = 1/zN+2mλ−m for any λ > 0, and yN+2mλ is

decreasing; (ii) limλ→∞ zN+2mλ−m = γ = 1/Φ (Resp. (i) zN+2mλ > Υ and zN+2mλ = 1/yN+2mλ−m for
any λ > 0, and zN+2mλ is decreasing; (iii) limλ→∞ yN+2mλ−m = φ = 1/Υ).

Proof.

(1) Since yn 6 Φn and zn 6 Υn for all n > d, by Corollary 3.3, we have

Φ 6 lim sup
n→∞ yn 6 lim sup

n→∞ Φn = Φ

and
Υ 6 lim sup

n→∞ zn 6 lim sup
n→∞ Υn = Υ.

(2) Assume on the contrary that there exists a sequence r < n1 < n2 < · · · < nµ < · · · such that

Φ 6 ynµ =
αnµ
znµ−r

6 αnµynµ−r−m.

By taking subsequence, we suppose that limµ→∞ ynµ−r−m = L. This implies Φ = limµ→∞ ynµ 6
limµ→∞ ynµ−r−mmax{αn : n ∈ N} = max{αn : n ∈ N}L < Φ, which is a contradiction. For the an-
other case, the proof is similar.

(3) It follows from (2) that there exists N1 ∈ N such that if n > N1 and yn > Φ, then yn = 1/zn−m. By
taking subsequence, we may choose a sequence N1 6 n1 < n2 < · · · < nk < · · · satisfying nk+1 − nk ≡
0 (mod 2m) such that ynk > Φ (for all k > 1) and limk→∞ ynk = Φ. Then ynk = 1/znk−m. Write N = n1.
According to Lemma 3.1 (3), we know that yN+2mλ > Φ and 1/zN+2mλ−m = yN+2mλ > yN+2m(λ+1) =
1/zN+2m(λ+1)−m for any λ > 0.

Let sk → +∞ such that zsk → γ and ysk−m → U. Then

1
Φ

= lim
λ→∞ 1

yN+2mλ
= lim
λ→∞ zN+2mλ−m > γ = lim

k→∞ zsk > lim
k→∞ 1

ysk−m
=

1
U

>
1
Φ

,

which implies limλ→∞ zN+2mλ−m = γ = 1/Φ. For the another case, the proof is similar. This completes
the proof of the Lemma.

Lemma 3.5. Let M,p,q ∈ N with q > 2 such that

(1) {zM+2mµ}µ>0 is monotone;
(2) yM+2m(p+λ)+r = αM+2m(p+λ)+r/zM+2m(p+λ) > 1/zM+2m(p+λ)+r−m for λ ∈ {0,q};
(3) yM+2m(p+λ)+r = 1/zM+2m(p+λ)+r−m for every 1 6 λ 6 q− 1.

Then yM+2m(p+λ)+r = yM+2m(p+λ+1)+r for every 0 6 λ 6 q− 2.

Proof. For 1 6 λ 6 q− 1, if {zM+2mµ}µ>0 is decreasing, then from αM+2mp+rβM+2m(p+λ)+r−m < 1 6
zM+2m(p+λ)yM+2m(p+λ)−m and Lemma 3.1 (3), it follows that

αM+2mp+r

zM+2m(p+λ)
>
αM+2mp+r

zM+2mp
= yM+2mp+r

> yM+2m(p+λ)+r

=
1

zM+2m(p+λ)+r−m
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= min{yM+2m(p+λ−1)+r,
yM+2m(p+λ)−m

βM+2m(p+λ)+r−m
}

= yM+2m(p+λ−1)+r > yM+2m(p+λ)+r.

Therefore, yM+2m(p+λ−1)+r = yM+2m(p+λ)+r for every 1 6 λ 6 q− 1. If {zM+2mµ}µ>0 is increasing, then
it follows from αM+2m(p+q)+rβM+2m(p+q−1)+r−m < 1 6 yM+2m(p+q−1)zM+2m(p+q−1)−m and Lemma
3.1 (3) that

αM+2m(p+q)+r

zM+2m(p+q−1)
>
αM+2m(p+q)+r

zM+2m(p+q)
= yM+2m(p+q)+r

> yM+2m(p+q−1)+r

=
1

zM+2m(p+q−1)+r−m

= min{yM+2m(p+q−2)+r,
yM+2m(p+q−1)−m

βM+2m(p+q−1)+r−m
}

= yM+2m(p+q−2)+r > yM+2m(p+q−1)+r.

Therefore, yM+2m(p+q−1)+r = yM+2m(p+q−2)+r. In a similar way, we may show that yM+2m(p+q−1)+r
= yM+2m(p+λ)+r for every 0 6 λ 6 q− 2. This completes the proof of the Lemma.

In a similar fashion, we can obtain the following lemma.

Lemma 3.6. Let M,p,q ∈ N with q > 2 such that

(1) {yM+2mµ}µ>0 is monotone;
(2) zM+2m(p+λ)+r = βM+2m(p+λ)+r/yM+2m(p+λ) > 1/yM+2m(p+λ)+r−m for λ ∈ {0,q};
(3) zM+2m(p+λ)+r = 1/yM+2m(p+λ)+r−m for every 1 6 λ 6 q− 1.

Then zM+2m(p+λ)+r = zM+2m(p+λ+1)+r for every 0 6 λ 6 q− 2.

Lemma 3.7. If there exists M ∈ N such that {yM+2mµ}µ>0 is monotone, then {zM+2mµ+r}µ>0 is eventually
monotone.

Proof. If there exists K ∈ N such that zM+2mµ+r = 1/yM+2mµ+r−m for all µ > K (or zM+2mµ+r =
βM+2mµ+r/yM+2mµ > 1/yM+2mµ+r−m for all µ > K), then by Lemma 3.1 (3) we know that zM+2mµ+r 6
zM+2m(µ−1)+r for all µ > K (or zM+2mµ+r > zM+2m(µ−1)+r for all µ > K). Thus {zM+2mµ+r}µ>K is
monotone.

If there exists a sequence 1 < s1 < t1 < s2 < t2 < · · · < sµ < tµ < · · · such that

zM+2mk+r =
βM+2mk+r

yM+2mk
>

1
yM+2mk+r−m

for every si 6 k < ti

and
zM+2mk+r =

1
zM+2mk+r−m

for every ti 6 k < si+1,

then by Lemma 3.1 (3) and Lemma 3.6 we know that zM+2m(k−1)+r < zM+2mk+r for every si 6 k < ti and
zM+2m(k−1)+r = zM+2mk+r for every ti 6 k < si+1, which implies that {zM+2mµ+r}µ>s1 is increasing.
This completes the proof of the Lemma.

In a similar fashion, we can obtain the following lemma.

Lemma 3.8. If there exists M ∈ N such that {zM+2mµ}µ>0 is monotone, then {yM+2mµ+r}µ>0 is eventually
monotone.
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Lemma 3.9. {(yn, zn)}n>−d is eventually periodic with period 2m.

Proof. First we suppose that gcd(r,m) = 1. According to Lemma 3.4 (3), there exists N ∈ N such that the
following statements hold:

(1) yN+2mnzN+2mn−m = zN+2mnyN+2mn−m = 1 for any n > 0;
(2) yN+2mn is decreasing (n > 0) and limn→∞ yN+2mn = Φ, zN+2mn−m is increasing (n > 0) and

limn→∞ zN+2mn−m = γ = 1/Φ. zN+2mn is decreasing (n > 0) and limn→∞ zN+2mn = Υ, yN+2mn−m
is increasing (n > 0) and limn→∞ yN+2mn−m = φ = 1/Υ.

Using Lemma 3.7 and Lemma 3.8 repeatedly, we see that {yN+2mn+ir}n>0, {yN+2mn−m+ir}n>0,
{zN+2mn+ir}n>0, and {zN+2mn−m+ir}n>0 are eventually monotone for every 1 6 i 6 m − 1. Since
gcd(r,m) = 1, we know that for every j ∈ {0, 1, 2, . . . ,m − 1} there exist some 0 6 ij 6 m − 1 and in-
teger λj such that ijr = λjm+ j and ijr−m = (λj − 1)m+ j, which implies that {yN+2mn+λjm+j}n>0,
{yN+2mn+(λj−1)m+j}n>0, {zN+2mn+λjm+j}n>0, and {zN+2mn+(λj−1)m+j}n>0 are eventually monotone for
every j ∈ {0, 1, 2, . . . ,m − 1}. Thus {y2mn+k}n>0 and {z2mn+k}n>0 are eventually monotone for every
0 6 k 6 2m− 1.

Claim 1. yN+2mk+r (k > 0), zN+2mk+r−m (k > 0), zN+2mk+r (k > 0), and yN+2mk+r−m(k > 0) are
constant sequences eventually.

Proof of Claim 1. Since αN+2mk+r/zN+2mk 6 max{αn : n ∈ N}yN+2mk−m and limk→∞max{αn : n ∈
N}yN+2mk−m = max{αn : n ∈ N}φ < φ 6 limk→∞ yN+2mk+r, there exists p ∈ N such that for any k > p,

yN+2mk+r = max{
1

zN+2mk+r−m
,
αN+2mk+r

zN+2mk
} =

1
zN+2mk+r−m

.

Then, by Lemma 3.1 (3) we see that yN+2mk+r (k > p) is decreasing.
If there exists a sequence p 6 s1 < s2 < · · · < si < · · · such that

zN+2msi+r−m =
βN+2msi+r−m

yN+2msi−m

for every i > 1, then we have
yN+2msi+r =

yN+2msi−m

βN+2msi+r−m
. (3.2)

By taking a subsequence we may assume that βN+2mki+r−m is a constant sequence since βn is a periodic
sequence. From (3.2) it follows that yN+2mk+r (k > 0) and zN+2mk+r−m (k > 0) are constant sequences
eventually.

If zN+2mk+r−m = 1/yN+2mk+r−2m eventually, then yN+2mk+r = yN+2m(k−1)+r eventually and
zN+2mk+r−m = zN+2m(k−1)+r−m eventually.

In a similar fashion, we may show that zN+2mk+r (k > 0) and yN+2mk+r−m (k > 0) are constant
sequences eventually. This completes the proof of the Claim.

Claim 2. yN+2mk+2r (k > 0), zN+2mk+2r−m (k > 0), zN+2mk+2r (k > 0), and yN+2mk+2r−m (k > 0) are
constant sequences eventually.

Proof of Claim 2. If there exists a sequence 1 6 s1 < s2 < · · · < si < · · · such that

yN+2msi+2r =
αN+2msi+2r

zN+2msi+r

for every i > 1, then yN+2mk+2r (k > 0) is a constant sequence eventually since αn is a periodic sequence
and zN+2mk+r (k > 0) is a constant sequence eventually.

If yN+2mk+2r = 1/zN+2mk+2r−m eventually and there exists a sequence 1 6 t1 < t2 < · · · < ti < · · ·
such that

zN+2mti+2r−m =
βN+2mti+2r−m

yN+2mti+r−m
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for every i > 1, then zN+2mk+2r−m (k > 0) is a constant sequence eventually since βn is a periodic
sequence and yN+2mk+r−m (k > 0) is a constant sequence eventually. Thus yN+2mk+2r (k > 0) is a
constant sequence eventually.

If yN+2mk+2r = 1/zN+2mk+2r−m eventually and zN+2mk+2r−m = 1/yN+2mk+2r−2m eventually, then
yN+2mk+2r(k > 0) is a constant sequence eventually.

Noting zN+2mk+2r−m = max{1/yN+2mk+2r−2m,βN+2mk+2r−m/yN+2mk+r−m}, we see that that
zN+2mk+2r−m(k > 0) is also a constant sequence eventually.

In a similar fashion, we can show that zN+2mk+2r (k > 0) and yN+2mk+2r−m (k > 0) are constant
sequences eventually. This completes the proof of the Claim.

By induction, we may show that yN+2mk+jr (k > 0), yN+2mk+jr−m (k > 0), zN+2mk+jr (k > 0), and
zN+2mk+jr−m (k > 0) are constant sequences eventually for every 1 6 j 6 m, from which it follows that
{y2mn+k}n>0 and {z2mn+k}n>0 are constant sequences eventually for every 0 6 k 6 2m− 1. Therefore,
{(yn, zn)}n>−d is eventually periodic with period 2m.

If gcd(r,m) = s > 1, then we consider the max-type equation

yn = max{
1

zn−sm1

,
αn

zn−sr1

}, zn = max{
1

yn−sm1

,
βn

yn−sr1

}, n = 0, 1, 2, . . . , (3.3)

where m = sm1 and r = sr1 with gcd(m1, r1) = 1. Write yin = yns+i and zin = zns+i for every
0 6 i 6 s− 1 and n = 0, 1, 2, . . .. Then (3.3) reduces to the equations

yin = max{
1

zin−m1

,
αns+i

zin−r1

}, zin = max{
1

yin−m1

,
βns+i

yin−r1

}, 0 6 i 6 s− 1, n = 0, 1, 2, . . . . (3.4)

By an analogous way as in the above, we know that {(yin, zin)}n>0 is a positive solution of (3.4) for every
0 6 i 6 s − 1. Then {(yin, zin)}n>0 is eventually periodic with period 2m1. Therefore {(yn, zn)}n>0 is
eventually periodic with period 2m. This completes the proof of the Lemma.

Now we state and show the main result of this paper.

Theorem 3.10. If max(supp αn) < 1, then every positive solution of (1.1) is eventually periodic with period 2m.

Proof. Let {xn}∞n=−d be a positive solution of (1.1) with initial values x−d, x−d+1, . . . , x−1 satisfying (2.1)
and let (2.3) holds. We see from Proposition 2.1 that {(pn,c,qn,c)}

∞
n=−d(c ∈ (0, 1]) satisfies system (2.2).

Using Lemma 3.9 we know that {(pn,c,qn,c)}
∞
n=−d is eventually periodic with period 2m. Therefore, it

follows from (2.2) and Lemma 3.9 that {xn}∞n=−d is eventually periodic of period 2m. This completes the
proof of Theorem 3.10.
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