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Abstract
In this paper we introduce the notion of weakly (s, r)-contractive multi-valued operator on b-metric space and establish
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1. Introduction

Banach fixed point theorem [1] says that every contractive mapping on a complete metric space has
a unique fixed point. As it is well known, the Banach fixed point theorem is a very useful, simple and
classical tool in modern analysis. There are a large number of generalizations for this interesting theorem,
for example see [5, 9–11, 16, 20]. On the one hand, to get an analog result for multi-valued mappings, one
has to equip the powerset of a set with some suitable metric. One such a metric is a Hausdorff metric.
Markin [13] for the first time used the Hausdorff metric to study the fixed point theory of the multi-valued
contractive mapping; Nadler [15] and Reich [18, 19] respectively introduced the fixed point theorem of
the multi-valued contractive operator and generalized the compression conditions given by Nadler; Rus
[23] introduced multi-valued weakly Picard operator; Popescu [17] introduced the definition of the (s, r)-
contractive multi-valued operator and showed that this operator is a weakly Picard operator. On the
other hand, Czerwik [3] introduced the notions of the contractive mapping and the set-valued contractive
mapping on b-metric space. Recently Kamran and Hussain [12] generalized the (s, r)-contractive multi-
valued operator and introduced the notion of the weakly (s, r)-contractive multi-valued operator. They
also obtained fixed points and strict fixed point theorems for the weakly (s, r)-contractive multi-valued
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operator. Thus it is worth for us to research fixed point theorems of the multi-valued operator in b-metric
space.

Next, we present some elementary definitions and results which will be used throughout this paper.
Details can be seen in [2–4, 6–8, 21, 24, 25].

Definition 1.1 ([3]). Let X be a nonempty set and K > 1 be a given constant. A function d : X× X → R+

is called a b-metric if the following conditions are satisfied:

(1) d(x,y) = 0 if and only if x = y;
(2) d(x,y) = d(y, x) for all x, y ∈ X;
(3) d(x,y) 6 K[d(x, z) + d(z,y)] for all x, y, z ∈ X.

The pair (X,d) is called a b-metric space (with constant K).

It is easy to see that any metric space is a b-metric space with K = 1. The following example shows
that a b-metric on X need not be a metric on X.

Example 1.2. The set R of real numbers together with the function

d(x,y) := |x− y|2

for all x, y ∈ R is a b-metric space with constant K = 2 but not a metric space.

Definition 1.3 ([2]). Let (X,d) be a b-metric space and {xn} be a sequence of X such that

(1) {xn} is convergent if there exists an x in X such that for any ε > 0, there exists an n(ε) ∈N, such that
n > n(ε), d(xn, x) < ε.

(2) {xn} is a Cauchy sequence if for any ε > 0, there exists an n(ε) ∈ N, such that for all m,n > n(ε),
d(xn, xm) < ε.

(3) (X,d) is complete if and only if every Cauchy sequence in X is convergent.

In contrast to the general metric, b-metric is not continuous. However we introduce the following
lemma.

Lemma 1.4 ([21]). Let (X,d) be a b-metric space with the constant K > 1, and suppose that the sequences {xn}

and {yn} converge to x, y, respectively. Then

1
K2d(x,y) 6 lim

n→∞d(xn,yn) 6 lim
n→∞d(xn,yn) 6 K2d(x,y).

In particular, if x = y, then lim
n→∞d(xn,yn) = 0. Moreover, for each z ∈ X,

1
K
d(x, z) 6 lim

n→∞d(xn, z) 6 lim
n→∞d(xn, z) 6 Kd(x, z).

In order to study fixed point theorems of the multi-valued mapping, we introduce the concept of
Hausdorff metric.

Definition 1.5. Let (X,d) be a metric space and CB(X) be the class of all nonempty closed and bounded
subsets of X. For any A,B ∈ CB(X), set

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)},

where d(x,B) = inf
y∈B

d(x,y), then (CB(X),H) is a metric space and H(A,B) is called a Hausdorff metric.
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Similarly, if (X,d) is a b-metric space, then (CB(X),H) is a b-metric space. H(A,B) is called a b-
Hausdorff metric on CB(X). In the following, unless stated in particular, H(A,B) will always denote a
b-Hausdorff metric.
Remark 1.6. Suppose that (X,d) is a metric space, then H(A,B)=0 iff A = B.

Definition 1.7 ([4]). Let X be a b-metric space and T : X → CB(X) be a multi-valued operator. If there
exists k ∈ [0, 1] such that H(Tx, Ty) 6 kd(x,y) for all x,y ∈ X, then T is called a contractive multi-valued
operator.

Definition 1.8. Let (X,d) be a b-metric space and T : X→ CB(X) be a multi-valued operator. If there exist
constants s, r with r ∈ [0, 1], s > r such that for all x,y ∈ X,

d(y, Tx) 6 Ksd(x,y)⇒ H(Tx, Ty) 6 rMT (x,y),

where

MT (x,y) = max
{
d(x,y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)
2K

}
,

then T is called a (s, r)-contractive multi-valued operator.

The purpose of this paper is to generalize the results of Kamran [12] and introduce the notion of
weakly (s, r)-contractive multi-valued operator and establish some fixed point theorems for this operator
on b-metric space.

2. Main results

In this section we introduce the notion of weakly (s, r)-contractive multi-valued operator and present
our results. We start this section with the following definition.

Definition 2.1. Let (X,d) be a b-metric space and T : X→ CB(X) be a multi-valued operator. If there exist
r ∈ [0, 1] and s > r,L > 0 such that for any x,y ∈ X,

d(x, Ty) 6 Ksd(x,y)⇒ H(Tx, Ty) 6 rMT (x,y) + Lmin{d(x,y), d(y, Tx)},

where

MT (x,y) = max
{
d(x,y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)
2K

}
,

then T is a weakly (s, r)-contractive multi-valued operator on X.

Remark 2.2. When L = 0, the above definition reduces to Definition 1.8.
The following example shows that the notion of weakly (s, r)-contractive operator properly generalizes

the notion of (s, r)-contractive operator.

Example 2.3. Let X = {1, 2, 3} endowed with the b-metric d(x,y) = |x− y|2. Then (X,d) is a complete
b-metric space with the constant K = 2. Define T : X→ CB(X) by

Tx =

{
{1, 2}, x ∈ {1, 2},
{3}, x = 3.

Then H(T1, T1) = H(T2, T2) = H(T3, T3) = H(T1, T2) = H(T2, T1) = 0. By choosing s = 0.4,

d(1, T3) = 4 > 3.2 = K · s · d(1, 3), d(2, T3) = 1 > 0.8 = K · s · d(2, 3), d(3, T2) = 1 < 0.8 = K · s · d(3, 2).

Further, d(3, T1) = 1 < 3.2 = K · s · d(3, 1). Now if we choose L = 1 and r = 0.2, then

H(T3, T1) = 1 < 4.8 = rmax
{
d(3, 1), d(3, T3), d(1, T1),

d(3, T1) + d(1, T3)
2K

}
+ Lmin{d(3, 1), d(1, T3)}.

This shows that T is weakly (0.4, 0.2)-contractive map with L = 1, but not (0.4, 0.2)-contractive. Since



L. Ye, C. Shen, J. Nonlinear Sci. Appl., 11 (2018), 358–367 361

d(3, T1) = 1 < 3.2 = Ksd(3, 1) but

H(T3, T1) = 1 > 0.8 = rmax
{
d(3, 1), d(3, T3), d(1, T1),

d(3, T1) + d(1, T3)
2K

}
.

Lemma 2.4 ([14, 21]). Let (X,d) be a complete b-metric space with the constant K > 1 and {xn} be a sequence in
X such that d(xn+1, xn+2) 6 αd(xn, xn+1) for all n = 0, 1, 2, . . ., where 0 6 α < 1. If Kα < 1, then {xn} is a
Cauchy sequence in X.

The following theorem generalizes the result of Kamran and Hussain [12] to the setting of b-metric
space.

Theorem 2.5. Let (X,d) be a complete b-metric space and T : X → CB(X) be a weakly (s, r)-contractive operator
with r < min{ 1

K , s}. Then T has fixed points.

Proof. Take a real number r1 > 1 such that 0 6 r < r1 < min{ 1
K , s}. Let x1 ∈ X and x2 ∈ Tx1. Then

d(x2, Tx1) = 0 6 Ksd(x2, x1) and using hypothesis,

d(x2, Tx2) 6 H(Tx1, Tx2) 6 rMT (x1, x2) + Lmin{d(x1, x2), d(x2, Tx1)}

= rmax
{
d(x1, x2), d(x2, Tx2), d(x1, Tx1),

d(x1, Tx2) + d(x2, Tx1)

2K

}
6 rmax

{
d(x1, x2), d(x2, Tx2),

d(x1, x2) + d(x2, Tx2)

2

}
.

(1) If d(x1, x2) 6 d(x2, Tx2), then d(x2, Tx2) 6 rd(x2, Tx2). Since r < 1, we have d(x2, Tx2) = 0, and x2 is a
fixed point of T .

(2) If d(x1, x2) > d(x2, Tx2), then d(x2, Tx2) 6 rd(x1, x2). Since r < 1, it follows that there exists x3 ∈ Tx2
such that d(x2, x3) 6 r1d(x1, x2). Continuing in this manner a sequence {xn} can be constructed in X
such that xn+1 ∈ Txn and d(xn+1, xn+2) 6 r1d(xn, xn+1) for all n ∈N.

Since Kr1 < 1, it implies {xn} is a Cauchy sequence by using Lemma 2.4. Since X is a complete, there
is z ∈ X such that {xn} converges to z. Now, we claim that there exists a subsequence {xnk} of {xn} such
that

d(z, Txnk) 6 Ksd(z, xnk), ∀k ∈N.

If not, there exists a positive integer N ∈N such that

d(z, Txn) > Ksd(z, xn), ∀n > N.

This implies
d(z, xn+1) > Ksd(z, xn, ), ∀n > N.

By induction, we obtain
d(z, xn+p) > (Ks)pd(z, xn), ∀n > N,p > 1. (2.1)

Since

d(xn, xn+p) 6 K(d(xn, xn+1) + d(xn+1, xn+p))

6 Kd(xn, xn+1)(1 +Kr1 + · · ·+KP−1r
p−1
1

=
K[1 − (Kr1)

p]

1 −Kr1
d(xn, xn+1), ∀n > N,p > 1.

Let p→∞, using Lemma 1.4,

1
K
d(z, xn) 6 lim

p→∞d(xn, xn+p) 6
K

1 −Kr1
d(xn, xn+1), ∀n > N.
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Thus

d(z, xn+p) 6
K2

1 −Kr1
d(xn+p, xn+p+1) 6

K2r
p
1

1 −Kr1
d(xn, xn+1) ,∀n > N,p > 1. (2.2)

From (2.1) and (2.2), we obtain

d(z, xn) <
K2r

p
1

(Ks)p(1 −Kr1)
d(xn, xn+1).

Set p → ∞, d(z, xn) = 0, ∀n > N, which contradicts to (1). Therefore there exists a subsequence {xnk} of
{xn} such that

d(z, Txnk) 6 Ksd(z, xnk), ∀k ∈N.

Thus

d(xnk+1, Tz) 6 H(Txnk , Tz) 6 rmax
{
d(z, xnk), d(z, Tz), d(xnk , Txnk),

d(z, Txnk) + d(z, Tz)
2K

}
+ Lmin {d(xnk , z), d(xnk , Tz)} .

Letting k→∞,

lim
k→∞d(xnk+1, Tz) 6 rmax

{
d(z, Tz),

d(z, Tz)
2K

}
= rd(z, Tz).

By the triangle inequality,
d(z, Tz) 6 K[d(z, xnk+1) + d(xnk+1, Tz)].

Thus

lim
k→∞ 1

K
d(z, Tz) 6 lim

k→∞[d(z, xnk+1) + d(xnk+1, Tz)],
1
K
d(z, Tz) 6 lim

k→∞d(xnk+1, Tz) 6 rd(z, Tz).

As Kr < 1, d(z, Tz) = 0. Since Tz ∈ CB(X), z ∈ Tz, T has fixed point.

From the following example, one can see that under the condition of Theorem 2.5, the fixed point may
not be unique.

Example 2.6. Let X = [1,∞) and d(x,y) = |x− y|2 for all x,y ∈ X. Then d is a complete b-metric but not a
metric on X with the constant K = 2. Define T : X→ CB(X) by

Tx = [2, 2 +
x

3
]

for all x ∈ X. Consider H(Tx, Ty) = 1
9(x− y)

2 = 1
9d(x,y), where we choose r = 1

9 ∈ [0, 1), s = 1
5 > r, L =

1 > 0. Then the conditions of Theorem 2.5 are satisfied. Moreover, 2 and 3 are the two fixed points of T .

It is necessary for us to consider the uniqueness of the fixed point of the weakly (s, r)-contractive
multi-valued operator.

Corollary 2.7. Let (X,d) be a complete b-metric space and T : X→ X be a weakly (s, r)-contractive single-valued
operator with r < min{ 1

K , s}. Then T has a fixed point. Moreover, if Ks > 1 and r+ L < 1, then T has a unique
fixed point.

Proof. From Theorem 2.5, T has a fixed point. Let Ks > 1 and (r+ L) < 1. Suppose that there exist two
different fixed points x and y of T . Then

d(y, Tx) = d(y, x) 6 Ksd(y, x).
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Thus

d(Tx, Ty)) 6 rMT (x,y) + Lmin{d(x,y), d(y, Tx)},
d(x,y) 6 rMT (x,y) + Lmin{d(x,y), d(y, Tx)}

= rmax
{
d(x,y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)
2K

}
+ Lmin{d(x,y),d(y, Tx)}

= rd(x,y) + Ld(x,y) = (r+ L)d(x,y).

It is a contradiction, since (r+ L) < 1.

Next, we introduce the other theorem about the weakly (s, r)-contractive multi-valued operator.

Theorem 2.8. Let (X,d) be a complete b-metric space and T : X → CB(X) be a multi-valued operator. Assume
that there exist constants r, s ∈ [0, 1) and r < s < 1

K such that

1
K(1 +Kr)

d(x, Tx) 6 d(x,y) 6
K2

1 −Ks
d(Tx, x)

implies
H(Tx, Ty) 6 rMT (x,y) + Lmin{d(x,y),d(y, Tx)},

where

MT (x,y) = max
{
d(x,y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)
2K

}
.

Then T has a fixed point.

Proof. Take a real number r1 such that 0 6 r < r1 < s <
1
K . Since 1−Kr1

1−Ks > 1, it follows that for x1 ∈ X there
exists x2 ∈ Tx1 such that

d(x1, x2) 6
1 −Kr1

1 −Ks
d(x1, Tx1).

Then
1

K(1 +Kr)
d(x1, Tx1) 6 d(x1, Tx1) 6 d(x1, x2) 6

1
1 −Ks

d(x1, Tx1) 6
K2

1 −Ks
d(x1, Tx1),

and by hypothesis

d(x1, Tx2) 6 H(Tx1, Tx2) 6 rMT (x1, x2) + Lmin{d(x1, x2), d(x2, Tx1)}

6 rmax
{
d(x1, x2), d(x2, Tx2),

d(x1, x2) − d(x2, Tx2)

2K

}
6 rmax

{
d(x1, Tx1), d(x2, Tx2),

d(x1 + x2) + d(x2, Tx2)

2

}
.

(1) If d(x1, x2) 6 d(x2, Tx2), then d(x2, Tx2) 6 rd(x2, Tx2). Since r < 1, we have d(x2, Tx2) = 0. Then x2 is
the fixed point of T .

(2) If d(x1, x2) > d(x2, Tx2), then d(x2, Tx2) 6 rd(x1, x2). Since r < 1, it follows that there exists x3 ∈ Tx2
such that

d(x2, x3) 6 r1d(x1, x2), d(x2, x3) 6
1 −Kr1

1 −Ks
d(x2, Tx2).

Therefore a sequence {xn} can be constructed in X such that xn+1 ∈ Txn and

d(xn+1, xn+2) 6 r1d(xn, xn+1), ∀n ∈N,

d(xn, xn+1) 6
1 −Kr1

1 −Ks
d(xn, Txn), ∀n ∈N. (2.3)
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Since Kr1 < 1, it implies {xn} is a Cauchy sequence by using Lemma 2.4. Since X is complete, there is
z ∈ X such that xn converges to z, that is

lim
n→∞d(xn, z) = 0.

Since

d(xn+p, xn) 6 Kd(xn, xn+1) +K
2d(xn+1, xn+2) + · · ·+Kpd(xn+p−1, xn+p),

d(xn+p, xn) 6 Kd(xn, xn+1)(1 +Kr1 +K
2r2

1 + · · ·+Kp−1r
p−1
1 ) =

K[1 − (Kr1)
p]

1 −Kr1
d(xn, xn+1), ∀n > N,p > 1.

Set p→∞,
1
K
d(z, xn) 6 lim

p→∞d(xn+p, xn) 6
K

1 −Kr1
d(xn, xn+1).

Thus

d(z, xn) 6
K2

1 −Kr1
d(xn, xn+1), ∀n > 1.

From (2.3),

d(z, xn) 6
K2

1 −Ks
d(xn, Txn), ∀n ∈N. (2.4)

Now suppose that there exists N > 0 such that

d(z, xn) 6
1

K(1 +Kr)
d(xn, Txn), ∀n > N.

Therefore

d(xn, xn+1) 6 K(d(xn, z) + d(z, xn+1)) <
1

1 +Kr
[d(xn, Txn) + d(xn+1, Txn+1)]

6
1

1 +Kr
[d(xn, Txn) + rd(xn, xn+1)].

This implies
d(xn, xn+1) < d(xn, Txn),

which is impossible. So there exists a subsequence {xnk} of {xn} such that

d(z, xnk) >
1

K(1 +Kr)
d(xnk , Txnk), ∀k > N. (2.5)

From (2.4) and (2.5) and using the hypothesis,

d(xnk+1, Tz) 6 H(Txnk , Tz) 6 rMT (xnk , z) + Lmin{d(xnk , z), d(xnk , Tz)}

= rmax
{
d(xnk , z), d(xnk , Txnk), d(z, Tz),

d(xnk , Tz) + d(z, Txnk
2K

}
+ Lmin{d(xnk , z), d(xnk , Tz)}.

Therefore
1
K
d(z, Tz) 6 lim

k→∞d(xnk+1, Tz) 6 rmax
{
d(z, Tz),

d(z, Tz)
2K

}
= rd(z, Tz).

As Kr < 1, we get d(z, Tz) = 0. Since Tz ∈ CB(X), z ∈ Tz, T has the fixed point.
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Corollary 2.9. Let (X,d) be a complete b-metric space and T : X→ X be a weakly (s, r)-contractive single-valued
operator. Assume there exists r ∈ [0, 1) and r < 1

K such that ∀x,y ∈ X

1
K(1 +Kr)

d(x, Tx) 6 d(x,y) 6
K2

1 −Kr
d(x, Tx)

⇒ H(Tx, Ty) 6 rMT (x,y) + Lmin{d(x,y), d(y, Tx)}, ∀x,y ∈ X,

where

MT (x,y) = max
{
d(x,y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)
2K

}
.

Then there exists z ∈ X such that Tz = z.

Proof. For every x1 ∈ X the sequence {xn} is defined by xn+1 = Txn. One can easily prove that
d(xn+1, xn+2) 6 rd(xn, xn+1) and {xn} is a Cauchy sequence. Then there is a point z ∈ X such that
lim
n→∞ xn = z. From above theorem we have d(xn, z) 6 K2

1−Krd(xn, xn+1) for all n > 1 and there exists a

subsequence {xnk} such that

d(z, xnk) >
1

K(1 −Kr)
d(xnk , xnk+1), ∀k > N.

Therefore

d(xnk+1, Tz) 6 H(Txnk , Tz) 6 rmax
{
d(xnk , z), d(xnk , Txnk), d(z, Tz),

d(xnk , Tz) + d(z, Txnk)
2K

}
+ Lmin{d(xnk , z), d(xnk , Tz)}.

Letting k→∞, using the triangle inequality,

1
K
d(z, Tz) 6 lim

k→∞d(xnk+1, Tz) 6 rmax
{
d(z, Tz),

d(z, Tz)
2K

}
.

Then we get d(z, Tz) = 0 as Kr < 1. Since Tz ∈ CB(X), z ∈ Tz, T has a fixed point.

3. Application

For fixed point theorems, there are a number of applications in differential equations and integral
equations.

Let X be a set of the continuous functions on the closed interval [a,b] and we define the b-metric by

d(x,y) = max
t∈[a,b]

|x(t) − y(t)|2, ∀x,y ∈ X.

Then (X,d) is a complete b-metric space with the constant K = 2.
Consider the differential equation {

dx
dy = f(x,y),
y(x0) = y0.

(3.1)

The equation (3.1) is equivalent to the following integral equation,

y(x) = y0 +

∫x
x0

f(x,y(t))dt. (3.2)

We choose a constant 0 < δ < 1, and define a map T on the continuous functional space C[x0 − δ, x0 + δ]
by

Ty(x) = y0 +

∫x
x0

f(x,y(t))dt.
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Then the integral equation (3.2) has a solution which is equivalent to that the map T has a fixed point.
Now we suppose that
(1) there exist constants r ∈ [0, 1], s > 0 and r < min{1

2 , s} , such that for all y1,y2 ∈ X,

|y2 − [y0 +

∫x
x0

f(x,y(t))dt]|2 6 2s|y1 − y2|
2 ⇒ |f(z,y1) − f(z,y2)|

2 6 r|y1 − y2|
2.

We have

d(Ty1, Ty2) = max
|x−x0|<δ

|

∫x
x0

[f(t,y1(t)) − f(t,y2(t))]dt|
2

6 max
|x−x0|<δ

∫x
x0

|[f(t,y1(t)) − f(t,y2(t))]|
2dt

6 max
|x−x0|<δ

∫x
x0

r|y1(t) − y2(t)|
2dt

6 rδ max
|t−x0|<δ

|y1(t) − y2(t)|
2

= rδd(y1(t),y2(t))

6 rMT (y1(t),y2(t)) + Lmin{d(y1(t),y2(t)),d(y2(t), Ty1(t))},

where

MT (y1,y2) = max
{
d(y1,y2),d(y1, Ty1),d(y2, Ty2),

d(y1, Ty2) + d(y2, Ty1)

4

}
.

Then T satisfies the conditions of Theorem 2.5 and T has a fixed point. So there exists a continuous
function y0(t) such that

y0(t) =

∫x
x0

f(x,y0(t))dt, ∀x ∈ [x0 − δ, x0 + δ].
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[16] J. J. Nieto, R. Rodrı́guez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary

differential equation, Order, 22 (2005), 223–239. 1
[17] O. Popescu, A new type of contractive multivalued operators, Bull. Sci. Math., 137 (2013), 30–44. 1
[18] S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital., 5 (1972), 26–42. 1
[19] S. Reich, A. J. Zaslavski, Genericity in Nonlinear Analysis, Springer, New York, (2014). 1
[20] B. H. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683–2693. 1
[21] J. R. Roshan, V. Parvaneh, Z. Kadelburg, Common fixed point theorems for weakly isotone increasing mappings in ordered

b-metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 229–245. 1, 1.4, 2.4
[22] J. R. Roshan, V. Parvaneh, Z. Kadelburg, N. Hussain, New fixed point results in b-rectangular metric spaces, Nonlinear

Anal. Model. Control, 21 (2016), 614–634.
[23] I. A. Rus, Basic problems of the metric fixed point theory revisited (II), Studia Univ. Babeş-Bolyai Math., 36 (1991),
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