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1. Introduction

In this paper we present coincidence principles for multimaps. We present two approaches. The
first approach is based on the new notion of Φ-essential and d-Φ-essential maps (see [1, 3–5]) and the
second approach is based on the notion of extendability (see [2]). The arguments presented are based on
a Urysohn type lemma and homotopy type arguments.

2. Continuation principles

Let E be a completely regular topological space and U an open subset of E.
We consider classes A and B of maps.

Definition 2.1. We say F ∈ A(U,E) (respectively F ∈ B(U,E)) if F : U → 2E and F ∈ A(U,E) (respectively
F ∈ B(U,E)); here 2E denotes the family of nonempty subsets of E.

In this section we fix a Φ ∈ B(U,E).

Definition 2.2. We say F ∈ A∂U(U,E) if F ∈ A(U,E) with F(x)∩Φ(x) = ∅ for x ∈ ∂U; here ∂U denotes the
boundary of U in E.
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Definition 2.3. Let E be a completely regular (respectively normal) topological space, and U an open
subset of E. Let F,G ∈ A∂U(U,E). We say F ∼= G in A∂U(U,E) if there exists a map H : U× [0, 1] → 2E

with H(.,η(.)) ∈ A(U,E) for any continuous function η : U → [0, 1] with η(∂U) = 0, Ht(x) ∩Φ(x) = ∅ for
any x ∈ ∂U and t ∈ [0, 1], H1 = F, H0 = G and

{
x ∈ U : Φ(x)∩H(x, t) 6= ∅ for some t ∈ [0, 1]

}
is compact

(respectively closed); here Ht(x) = H(x, t).

Definition 2.4. Let F ∈ A∂U(U,E). We say F : U → 2E is Φ-essential in A∂U(U,E) if for every map
J ∈ A∂U(U,E) with J|∂U = F|∂U and J ∼= F in A∂U(U,E) there exists x ∈ U with J(x)∩Φ(x) 6= ∅.

Theorem 2.5. Let E be a completely regular (respectively normal) topological space, U an open subset of E, and let
F ∈ A∂U(U,E) be Φ-essential in A∂U(U,E). Suppose there exists a map H : U× [0, 1] → 2E with H(.,η(.)) ∈
A(U,E) for any continuous function η : U → [0, 1] with η(∂U) = 0, Φ(x) ∩ Ht(x) = ∅ for any x ∈ ∂U

and t ∈ (0, 1], H0 = F, and
{
x ∈ U : Φ(x)∩H(x, t) 6= ∅ for some t ∈ [0, 1]

}
is compact (respectively closed). In

addition assume {
if µ : U→ [0, 1] is any continuous map with µ(∂U) = 0, then{
x ∈ U : ∅ 6= Φ(x)∩H(x, tµ(x)) for some t ∈ [0, 1]

}
is closed.

(2.1)

Then there exists x ∈ U with Φ(x)∩H1(x) 6= ∅; here Ht(x) = H(x, t).

Proof. Let
D =

{
x ∈ U : Φ(x)∩H(x, t) 6= ∅ for some t ∈ [0, 1]

}
.

Notice D 6= ∅ since F is Φ-essential in A∂U(U,E) (note from (2.1) that F ∼= F in A∂U(U,E)). Also D is
compact (respectively closed) if E is a completely regular (respectively normal) topological space. Note
D ∩ ∂U = ∅ (note H0 = F so for t = 0 we have Φ(x) ∩H0(x) = ∅ for x ∈ ∂U since F ∈ A∂U(U,E)). Thus
there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(D) = 1. Define J : U → 2E by
J(x) = H(x,µ(x)). Note J ∈ A∂U(U,E) with J|∂U = F|∂U (note if x ∈ ∂U then J(x) = H0(x) = F(x) and
J(x)∩Φ(x) = F(x)∩Φ(x) = ∅). We now claim

J ∼= F in A∂U(U,E). (2.2)

If the claim is true then since F is Φ-essential in A∂U(U,E) then there exists a x ∈ U with J(x)∩Φ(x) 6= ∅
(i.e., Hµ(x)(x)∩Φ(x) 6= ∅), and thus x ∈ D so µ(x) = 1 and as a result H1(x)∩Φ(x) 6= ∅.

It remains to show (2.2). Let Q : U× [0, 1] → 2E be given by Q(x, t) = H(x, tµ(x)). Note Q(.,η(.)) ∈
A(U,E) for any continuous function η : U→ [0, 1] with η(∂U) = 0 and (see (2.1) and Definition 2.3){

x ∈ U : ∅ 6= Φ(x)∩Q(x, t) = Φ(x)∩H(x, tµ(x)) for some t ∈ [0, 1]
}

is compact (respectively closed). Note Q0 = F and Q1 = J. Finally if there exists a t ∈ [0, 1] and x ∈ ∂U
with Φ(x) ∩Qt(x) 6= ∅ then Φ(x) ∩Htµ(x)(x) 6= ∅ so x ∈ D, and so µ(x) = 1, i.e., Φ(x) ∩Ht(x) 6= ∅, a
contradiction. Thus (2.2) holds.

Remark 2.6. Suppose we change Definition 2.4 as follows. Let F ∈ A∂U(U,E). We say F : U → 2E is
Φ-essential in A∂U(U,E) if for every map J ∈ A∂U(U,E) with J|∂U = F|∂U there exists x ∈ U with
J(x) ∩Φ(x) 6= ∅. The argument above (note (2.2) is not needed) yields the following result. Let E be a
completely regular (respectively normal) topological space, U an open subset of E and let F ∈ A∂U(U,E)
be Φ-essential in A∂U(U,E). Suppose there exists a map H : U× [0, 1] → 2E with H(.,η(.)) ∈ A(U,E) for
any continuous function η : U → [0, 1] with η(∂U) = 0, Φ(x) ∩Ht(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1],
H0 = F and

{
x ∈ U : Φ(x)∩H(x, t) 6= ∅ for some t ∈ [0, 1]

}
is compact (respectively closed). Then there

exists x ∈ U with Φ(x)∩H1(x) 6= ∅; here Ht(x) = H(x, t).

Again we consider the map F : U → 2E. In our (quite abstract) result we will assume that we have a
homotopy extension type property (i.e., a H : E× [0, 1]→ 2E with H1|U = F).
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Definition 2.7. We say F ∈ A(E,E) if F : E→ 2E and F ∈ A(E,E).

Definition 2.8. Let E be a completely regular (respectively normal) topological space. If F,G ∈ A(E,E),
then we say F ∼= G in A(E,E) if there exists a map Λ : E× [0, 1] → 2E with Λ(.,η(.)) ∈ A(E,E) for any
continuous function η : E → [0, 1], Λ1 = G, Λ0 = F (here Λt(x) = Λ(x, t)) and {x ∈ E : Φ(x) ∩Λ(x, t) 6=
∅ for some t ∈ [0, 1]} is compact (respectively closed).

We now fix a Φ ∈ B(E,E).

Theorem 2.9. Let E be a completely regular (respectively normal) topological space and U an open subset of E.
Suppose there exists a map H : E× [0, 1] → 2E with H(.,η(.)) ∈ A(E,E) for any continuous function η : E →
[0, 1] and with Φ(x) ∩H(x, 0) = ∅ for x ∈ E\U, and Φ(x) ∩Ht(x) = ∅ for any x ∈ ∂U and t ∈ [0, 1], and
{x ∈ E : Φ(x)∩H(x, t) 6= ∅ for some t ∈ [0, 1]} is compact (respectively closed). In addition assume the following
hold:

for any J ∈ A(E,E) with J ∼= H0 in A(E,E) there exists x ∈ E with Φ(x)∩ J(x) 6= ∅, (2.3)

{x ∈ E\U : Ht(x)∩Φ(x) 6= ∅ for some t ∈ [0, 1]} is closed, (2.4)

and {
if µ : E→ [0, 1] is any continuous map with µ(U) = 1, then
{x ∈ E : ∅ 6= Φ(x)∩H(x, tµ(x)) for some t ∈ [0, 1]} is closed.

(2.5)

Then there exists x ∈ U with Φ(x)∩H1(x) 6= ∅; here Ht(x) = H(x, t).

Proof. Let
D = {x ∈ E\U : Φ(x)∩Ht(x) 6= ∅ for some t ∈ [0, 1]} .

We consider two cases, as D 6= ∅ and D = ∅.
Case (i). D = ∅.

Then for every t ∈ [0, 1] we have Φ(x)∩Ht(x) = ∅ for x ∈ E\U. Also from H1 ∼= H0 in A(E,E) and (2.3)
we know there exists y ∈ E with Φ(y) ∩H1(y) 6= ∅. Since Φ(x) ∩H1(x) = ∅ for x ∈ E\U we deduce that
y ∈ U, and we are finished.

Case (ii). D 6= ∅.
Now (note H1 ∼= H0 in A(E,E) and (2.4)) D is compact (respectively closed) and D ∩U 6= ∅ (since

Φ(x) ∩Ht(x) = ∅ for x ∈ ∂U and t ∈ [0, 1]). Then there exists a continuous map µ : E → [0, 1] with
µ(D) = 0 and µ(U) = 1. Define a map R : E→ 2E by

R(x) = H(x,µ(x)).

Now R ∈ A(E,E). In fact R ∼= H0 in A(E,E). To see this let Ω : E× [0, 1]→ 2E be given by

Ω(x, t) = H(x, tµ(x)).

NoteΩ(.,η(.)) ∈ A(E,E) for any continuous function η : E→ [0, 1], and (note (2.5) and H1 ∼= H0 in A(E,E)),

{x ∈ E : Φ(x)∩Ω(x, t) = Φ(x)∩H(x, tµ(x)) 6= ∅ for some t ∈ [0, 1]}

is compact (respectively closed). Also Ω1 = R and Ω0 = H0.
Now (2.3) guarantees that there exists x ∈ E with Φ(x) ∩ R(x) = Φ(x) ∩Hµ(x)(x) 6= ∅. If x ∈ E\U

then since x ∈ D we have ∅ 6= Φ(x) ∩H(x,µ(x)) = Φ(x) ∩H(x, 0), a contradiction. Thus x ∈ U and so
∅ 6= Φ(x)∩H(x,µ(x)) = Φ(x)∩H(x, 1).

Remark 2.10. In Definition 2.8 and in the statement of Theorem 2.9 we could replace, any continuous map
η : E→ [0, 1], with any continuous map η : E→ [0, 1] with η(U) = 1.
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We now show that the ideas in this section can be applied to other natural situations. Let E be a
Hausdorff topological vector space (so automatically a completely regular space), Y a topological vector
space, and U an open subset of E. Also let L : dom(L) ⊆ E→ Y be a linear single valued map; here dom(L)
is a vector subspace of E. Finally T : E→ Y will be a linear single valued map with L+ T : dom(L)→ Y a
bijection; for convenience we say T ∈ HL(E, Y).

Definition 2.11. We say F ∈ A(U, Y;L, T) (respectively F ∈ B(U, Y;L, T)) if F : U→ 2Y and (L+T)−1(F+T) ∈
A(U,E) (respectively (L+ T)−1(F+ T) ∈ B(U,E)).

We now fix a Φ ∈ B(U, Y;L, T).

Definition 2.12. We say F ∈ A∂U(U, Y;L, T) if F ∈ A(U, Y;L, T) with (L+ T)−1(F+ T)(x) ∩ (L+ T)−1(Φ+
T)(x) = ∅ for x ∈ ∂U.

Definition 2.13. Let F,G ∈ A∂U(U, Y;L, T). We say F ∼= G in A∂U(U, Y;L, T) if there exists a map H :
U× [0, 1] → 2Y with (L+ T)−1(H(.,η(.)) + T(.)) ∈ A(U,E) for any continuous function η : U → [0, 1] with
η(∂U) = 0, (L+ T)−1(Ht + T)(x) ∩ (L+ T)−1(Φ+ T)(x) = ∅ for any x ∈ ∂U and t ∈ [0, 1], H1 = F, H0 = G

and {
x ∈ U : (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(Ht + T)(x) 6= ∅ for some t ∈ [0, 1]

}
is compact; here Ht(x) = H(x, t).

Definition 2.14. Let F ∈ A∂U(U, Y;L, T). We say F is L-Φ-essential in A∂U(U, Y;L, T) if for every map
J ∈ A∂U(U, Y;L, T) with J|∂U = F|∂U and J ∼= F in A∂U(U, Y;L, T) there exists x ∈ U with (L+ T)−1(J+
T)(x)∩ (L+ T)−1(Φ+ T)(x) 6= ∅.

Theorem 2.15. Let E be a topological vector space (so automatically completely regular), Y a topological vector
space, U an open subset of E, L : dom(L) ⊆ E → Y a linear single valued map, and T ∈ HL(E, Y). Let
F ∈ A∂U(U, Y;L, T) be L-Φ-essential in A∂U(U, Y;L, T). Suppose there exists a map H : U × [0, 1] → 2Y

with (L+ T)−1(H(.,η(.)) + T(.)) ∈ A(U,E) for any continuous function η : U → [0, 1] with η(∂U) = 0, (L+
T)−1(Ht + T)(x) ∩ (L+ T)−1(Φ+ T)(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1], H0 = F (here Ht(x) = H(x, t)) and{
x ∈ U : (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(Ht + T)(x) 6= ∅ for some t ∈ [0, 1]

}
is compact. In addition assume{

if µ : U→ [0, 1] is any continuous map with µ(∂U) = 0, then
{x ∈ U : (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(Htµ(x) + T)(x) 6= ∅ for some t ∈ [0, 1]} is closed.

Then there exists x ∈ U with (L+ T)−1(H1 + T)(x)∩ (L+ T)−1(Φ+ T)(x) 6= ∅.

Proof. Let

D =
{
x ∈ U : (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(Ht + T)(x) 6= ∅ for some t ∈ [0, 1]

}
.

Note D 6= ∅ (note F is L-Φ-essential in A∂U(U, Y;L, T)) and D is compact, D ∩ ∂U = ∅ so there exists a
continuous map µ : U→ [0, 1] with µ(∂U) = 0 and µ(D) = 1. Define J : U→ 2Y by J(x) = H(x,µ(x)). Note
J ∈ A∂U(U, Y;L, T) and J|∂U = F|∂U. Also note J ∼= F in A∂U(U, Y;L, T) (to see this let Q : U× [0, 1] → 2Y

be given by Q(x, t) = H(x, tµ(x))). Now since F is L-Φ-essential in A∂U(U, Y;L, T) there exists x ∈ U with
(L+ T)−1(J+ T)(x)∩ (L+ T)−1(Φ+ T)(x) 6= ∅ (i.e., (L+ T)−1(Hµ(x) + T)(x)∩ (L+ T)−1(Φ+ T)(x) 6= ∅), and
thus x ∈ D so µ(x) = 1 and we are finished.

Remark 2.16. Suppose we change Definition 2.14 as follows. Let F ∈ A∂U(U, Y;L, T). We say F is L-Φ-
essential in A∂U(U, Y;L, T) if for every map J ∈ A∂U(U, Y;L, T) with J|∂U = F|∂U there exists x ∈ U with
(L+ T)−1(J+ T)(x)∩ (L+ T)−1(Φ+ T)(x) 6= ∅. The argument above yields the following result. Let E be a
topological vector space, Y a topological vector space, U an open subset of E, L : dom(L) ⊆ E→ Y a linear
single valued map, and T ∈ HL(E, Y). Let F ∈ A∂U(U, Y;L, T) be L-Φ-essential in A∂U(U, Y;L, T). Suppose
there exists a map H : U × [0, 1] → 2Y with (L + T)−1(H(.,η(.)) + T(.)) ∈ A(U,E) for any continuous
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function η : U → [0, 1] with η(∂U) = 0, (L+ T)−1(Ht + T)(x) ∩ (L+ T)−1(Φ+ T)(x) = ∅ for any x ∈ ∂U
and t ∈ (0, 1], H0 = F (here Ht(x) = H(x, t)) and {x ∈ U : (L+ T)−1(Φ+ T)(x) ∩ (L+ T)−1(Ht + T)(x) 6= ∅
for some t ∈ [0, 1]} is compact. Then there exists x ∈ U with (L+ T)−1(H1 + T)(x)∩ (L+ T)−1(Φ+ T)(x) 6=
∅.
Remark 2.17. If E is a normal topological vector space then the assumption that D (in the proof of Theorem
2.15) is compact, can be replaced by D is closed, in the statement (and proof) of Theorem 2.15 and also
the assumption that{

x ∈ U : (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(Ht + T)(x) 6= ∅ for some t ∈ [0, 1]
}

is compact, can be replaced by{
x ∈ U : (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(Ht + T)(x) 6= ∅ for some t ∈ [0, 1]

}
is closed, in Definition 2.13.

Definition 2.18. Let F : E→ 2Y . We say F ∈ A(E, Y;L, T) if (L+ T)−1(F+ T) ∈ A(E,E).

Definition 2.19. If F,G ∈ A(E, Y;L, T) then we say F ∼= G in A(E, Y;L, T) if there exists a map Λ : E× [0, 1]→
2Y with (L+ T)−1(Λ(.,η(.)) + T) ∈ A(E,E) for any continuous function η : E→ [0, 1], Λ1 = F, Λ0 = G (here
Λt(x) = Λ(x, t)) and{

x ∈ E : (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(Λt + T)(x) 6= ∅ for some t ∈ [0, 1]
}

is compact.

We now fix a Φ ∈ B(E, Y;L, T).

Theorem 2.20. Let E be a completely regular topological vector space, Y a topological vector space, U an open
subset of E, L : dom(L) ⊆ E → Y a linear single valued map, and T ∈ HL(E, Y). Suppose there exists a
map H : E× [0, 1] → 2Y with (L+ T)−1(H(.,η(.)) + T) ∈ A(E,E) for any continuous function η : E → [0, 1],
(L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(H0 + T)(x) = ∅ for x ∈ E\U, (L+ T)−1(Ht+ T)(x)∩ (L+ T)−1(Φ+ T)(x) = ∅
for any x ∈ ∂U and t ∈ [0, 1], and{

x ∈ E : (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(Ht + T)(x) 6= ∅ for some t ∈ [0, 1]
}

is compact. In addition assume the following conditions holds:{
for any J ∈ A(E, Y;L, T) with J ∼= H0 in A(E, Y;L, T) there exists x ∈ E with
(L+ T)−1(J+ T)(x)∩ (L+ T)−1(Φ+ T)(x) 6= ∅, (2.6)

{x ∈ E\U : (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(Ht + T)(x) 6= ∅ for some t ∈ [0, 1]} is closed, (2.7)

and {
if µ : E→ [0, 1] is any continuous map with µ(U) = 1, then
{x ∈ E : (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(Htµ(x) + T)(x) 6= ∅ for some t ∈ [0, 1]} is closed.

Then there exists x ∈ U with (L+ T)−1(H1 + T)(x)∩ (L+ T)−1(Φ+ T)(x) 6= ∅; here Ht(x) = H(x, t).

Proof. Let

D =
{
x ∈ E\U : (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(Ht + T)(x) 6= ∅ for some t ∈ [0, 1]

}
.

We consider two cases, as D 6= ∅ and D = ∅.
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Case (i). D = ∅.
Then for every t ∈ [0, 1] we have (L+ T)−1(Φ+ T)(x) ∩ (L+ T)−1(Ht + T)(x) = ∅ for x ∈ E\U. Also

from H1 ∼= H0 in A(E, Y;L, T) and (2.6) we see there exists y ∈ E with (L+ T)−1(Φ+ T)(y)∩ (L+ T)−1(H1 +
T)(y) 6= ∅. Since D = ∅ we see that y ∈ U, and we are finished.

Case (ii). D 6= ∅.
Now (note H1 ∼= H0 in A(E, Y;L, T) and (2.7))D is compact, andD∩U 6= ∅ (since (L+ T)−1(Ht+ T)(x)∩

(L+ T)−1(Φ+ T)(x) = ∅ for x ∈ ∂U and t ∈ [0, 1]). Then there exists a continuous map µ : E→ [0, 1] with
µ(D) = 0 and µ(U) = 1. Define a map R : E → 2Y by R(x) = H(x,µ(x)). Note R ∈ A(E, Y;L, T). Also note
R ∼= H0 in A(E, Y;L, T) (to see this let Ω : E× [0, 1] → 2E be given by Ω(x, t) = H(x, tµ(x))). Also Ω1 = R

and Ω0 = H0.
Now (2.6) guarantees that there exists x ∈ E with ∅ 6= (L+ T)−1(Φ+ T)(x) ∩ (L+ T)−1(R+ T)(x) =

(L+ T)−1(Φ+ T)(x) ∩ (L+ T)−1(Hµ(x) + T)(x). If x ∈ E\U then since x ∈ D we have ∅ 6= (L+ T)−1(Φ+

T)(x)∩ (L+ T)−1(Hµ(x) + T)(x) = (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(H0 + T)(x), a contradiction. Thus x ∈ U
and so ∅ 6= (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(Hµ(x)+ T)(x) = (L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(H1 + T)(x).

Remark 2.21. In Definition 2.19 and in the statement of Theorem 2.20 we could replace any continuous
map η : E→ [0, 1] with any continuous map η : E→ [0, 1] with η(U) = 1.

Remark 2.22. There is an analogue of Remark 2.17 (for normal topological vector spaces) in the statement
of Theorem 2.20 and in Definition 2.19.

3. Generalized continuation principles

Let E be a completely regular topological space and U an open subset of E. Again we consider classes
A and B of maps.

In this section we fix a Φ ∈ B(U,E).
For any map F ∈ A(U,E) let F? = I× F : U→ 2U×E, with I : U→ U given by I(x) = x, and let

d :
{
(F?)−1 (B)

}
∪ {∅}→ Ω (3.1)

be any map with values in the nonempty set Ω; here B =
{
(x,Φ(x)) : x ∈ U

}
.

Definition 3.1. Let E be a completely regular (respectively normal) topological space, and U an open
subset of E. Let F,G ∈ A∂U(U,E). We say F ∼= G in A∂U(U,E) if there exists a map H : U× [0, 1]→ 2E with
H(.,η(.)) ∈ A(U,E) for any continuous function η : U → [0, 1] with η(∂U) = 0, Ht(x) ∩Φ(x) = ∅ for any
x ∈ ∂U and t ∈ [0, 1], H1 = F, H0 = G and

{
x ∈ U : (x,Φ(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]

}
is compact

(respectively closed); here H?(x, t) = (x,H(x, t)) and Ht(x) = H(x, t).

Definition 3.2. Let F ∈ A∂U(U,E) with F? = I× F. We say F? : U → 2U×E is d-Φ-essential if for every
map J ∈ A∂U(U,E) with J? = I× J and J|∂U = F|∂U and J ∼= F in A∂U(U,E) we have that d

(
(F?)−1 (B)

)
=

d
(
(J?)−1 (B)

)
6= d(∅).

Remark 3.3. If F? is d-Φ-essential then

∅ 6= (F?)−1 (B) = {x ∈ U : F?(x)∩B 6= ∅} = {x ∈ U : (x, F(x))∩ (x,Φ(x)) 6= ∅},

and this together with F(x)∩Φ(x) = ∅ for x ∈ ∂U implies that there exists x ∈ U with (x,Φ(x))∩ F?(x) 6= ∅
(i.e., Φ(x)∩ F(x) 6= ∅).

Theorem 3.4. Let E be a completely regular (respectively normal) topological space, U an open subset of E,
B = {(x,Φ(x)) : x ∈ U}, d a map defined in (3.1) and let F ∈ A∂U(U,E) and F? be d-Φ-essential (here
F? = I × F). Suppose there exists a map H : U × [0, 1] → 2E with H(.,η(.)) ∈ A(U,E) for any continuous
function η : U → [0, 1] with η(∂U) = 0, Ht(x) ∩Φ(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1], H0 = F and
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x ∈ U : (x,Φ(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]

}
is compact (respectively closed); here H?(x, t) = (x,H(x, t))

and Ht(x) = H(x, t). In addition assume{
if µ : U→ [0, 1] is any continuous map with µ(∂U) = 0, then{
x ∈ U : (x,Φ(x))∩ (x,H(x, tµ(x))) 6= ∅ for some t ∈ [0, 1]

}
is closed.

Let H?
1 = I×H1. Then

d
(
(H?

1)
−1 (B)

)
= d

(
(F?)−1 (B)

)
6= d(∅).

Proof. Let
D =

{
x ∈ U : (x,Φ(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]

}
,

where H?(x, t) = (x,H(x, t)). Notice D 6= ∅ since F? is d-Φ-essential. Also D is compact (respectively
closed) if E is a completely regular (respectively normal) topological space and D ∩ ∂U = ∅. Thus there
exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(D) = 1. Define Rµ : U → 2E by Rµ(x) =
H(x,µ(x)) and let R?µ = I× Rµ. Note Rµ ∈ A∂U(U,E) with Rµ|∂U = F|∂U (note if x ∈ ∂U then Rµ(x) =
H0(x) = F(x) and Rµ(x)∩Φ(x) = F(x)∩Φ(x) = ∅).

Next we note since µ(D) = 1 that(
R?µ

)−1
(B) =

{
x ∈ U : (x,Φ(x))∩ (x,H(x,µ(x)) 6= ∅

}
=

{
x ∈ U : (x,Φ(x))∩ (x,H(x, 1) 6= ∅

}
= (H?

1)
−1 (B),

so

d
((
R?µ

)−1
(B)

)
= d

(
(H?

1)
−1 (B)

)
. (3.2)

Also note Rµ ∼= F in A∂U(U,E) (to see this let Q : U× [0, 1] → 2E be given by Q(x, t) = H(x, tµ(x))).

As a result since F? is d-Φ-essential we have d
((
R?µ

)−1
(B)

)
= d

(
(F?)−1 (B)

)
6= d(∅). This together with

(3.2) yields d
((
H?

1

)−1
(B)

)
= d

(
(F?)−1 (B)

)
6= d(∅).

Remark 3.5. Suppose we change Definition 3.2 as follows. Let F ∈ A∂U(U,E) with F? = I × F. We
say F? : U → 2U×E is d-Φ-essential if for every map J ∈ A∂U(U,E) with J? = I× J and J|∂U = F|∂U

we have that d
(
(F?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅). The argument above yields the following re-

sult. Let E be a completely regular (respectively normal) topological space, U an open subset of E,
B = {(x,Φ(x)) : x ∈ U}, d a map defined in (3.1) and let F ∈ A∂U(U,E) and F? be d-Φ-essential (here
F? = I × F). Suppose there exists a map H : U × [0, 1] → 2E with H(.,η(.)) ∈ A(U,E) for any con-
tinuous function η : U → [0, 1] with η(∂U) = 0, Ht(x) ∩Φ(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1],
H0 = F and

{
x ∈ U : (x,Φ(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]

}
is compact (respectively closed); here

H?(x, t) = (x,H(x, t)) and Ht(x) = H(x, t). Then d
((
H?

1

)−1
(B)

)
= d

(
(F?)−1 (B)

)
6= d(∅).

Remark 3.6. Suppose the following conditions holds (which is common in the literature on topological
degree): {

if F,G ∈ A∂U(U,E) with F|∂U = G|∂U and F ∼= G

in A∂U(U,E), then d
(
(F?)−1 (B)

)
= d

(
(G?)−1 (B)

)
.

(3.3)

Then Definition 3.2 reduces to the following. Let F ∈ A∂U(U,E) with F? = I× F. We say F? : U→ 2U×E is
d-Φ-essential if d

(
(F?)−1 (B)

)
6= d(∅).

Next in this paper we use the notion of extendability to establish new continuation theorems.

Definition 3.7. We say F ∈ A(E,E) if F : E→ 2E and F ∈ A(E,E).
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We now fix a Φ ∈ B(E,E).
For any map F ∈ A(E,E) let F? = I× F : E→ 2E×E, with I : E→ E given by I(x) = x, and let

d :
{
(F?)−1 (B)

}
∪ {∅}→ Ω (3.4)

be any map with values in the nonempty set Ω; here B = {(x,Φ(x)) : x ∈ E}. In our applications we will
be interested in maps F : U→ 2E so F? = I× F : U→ 2U×E and in this case we consider

d :
{
(F?)−1 (BU)

}
∪ {∅}→ Ω,

where BU = {(x,Φ(x)) : x ∈ U}.

Definition 3.8. If F,G ∈ A(E,E), then we say F ∼= G in A(E,E) if there exists a map Λ : E× [0, 1] → 2E

with Λ(.,η(.)) ∈ A(E,E) for any continuous function η : E → [0, 1], Λ1 = F, Λ0 = G (here Λt(x) = Λ(x, t))
and {x ∈ E : (x,Φ(x))∩Λ?(x, t) 6= ∅ for some t ∈ [0, 1]} is compact (respectively closed); here Λ?(x, t) =
(x,Λ(x, t)).

Theorem 3.9. Let E be a completely regular (respectively normal) topological space, U an open subset of E and d a
map defined in (3.4). Suppose there exists a map H : E× [0, 1]→ 2E with H(.,η(.)) ∈ A(E,E) for any continuous
function η : E → [0, 1] and with Φ(x) ∩H(x, 0) = ∅ for x ∈ E\U, and Φ(x) ∩Ht(x) = ∅ for any x ∈ ∂U and
t ∈ [0, 1], and

{x ∈ E : (x,Φ(x))∩ (x,H(x, t)) 6= ∅ for some t ∈ [0, 1]}

is compact (respectively closed). In addition assume the following hold:{
for any J ∈ A(E,E) with J? = I× J and J ∼= H0 in A(E,E) we have that
d
(
(J?)−1 (B)

)
= d

((
H?

0
)−1

(B)
)
6= d(∅), (3.5)

{x ∈ E\U : (x,Φ(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]} is closed,

and {
if µ : E→ [0, 1] is any continuous map with µ(U) = 1, then
{x ∈ E : ∅ 6= (x,Φ(x))∩ (x,H(x, tµ(x))) for some t ∈ [0, 1]} is closed;

(3.6)

here H?
0 = I×H0 and H?(x, t) = (x,H(x, t)). Let H?

1 = I×H1. Then we have

d
(
(H?

1)
−1 (BU)

)
= d

(
(H?

0)
−1 (BU)

)
6= d(∅).

Proof. Let
D = {x ∈ E\U : (x,Φ(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]} ,

where H?(x, t) = (x,H(x, t)).
We consider two cases, as D 6= ∅ and D = ∅.

Case (i). D = ∅.
Then for every t ∈ [0, 1] we have Φ(x)∩Ht(x) = ∅ for x ∈ E\U. Also from H1 ∼= H0 in A(E,E) and (3.5)

we have

d
(
(H?

1)
−1 (B)

)
= d

(
(H?

0)
−1 (B)

)
6= d(∅). (3.7)

Note
(
H?

1

)−1
(B) = {x ∈ E : (x,Φ(x)) ∩ (x,H1(x)) 6= ∅}. Consider y ∈ E and (y,Φ(y)) ∩ H?

1(y) 6= ∅.
Then y ∈ E and Φ(y) ∩ H1(y) 6= ∅. Now since D = ∅ we have y ∈ U and Φ(y) ∩ H1(y) 6= ∅ i.e.,
y ∈ U and (y,Φ(y)) ∩H?

1(y) 6= ∅. Consequently
(
H?

1

)−1
(B) ⊆

(
H?

1

)−1
(BU) and on the other hand it is

immediate that
(
H?

1

)−1
(BU) ⊆

(
H?

1

)−1
(B). Thus

(
H?

1

)−1
(B) =

(
H?

1

)−1
(BU). It is also immediate that(

H?
0
)−1

(B) =
(
H?

0
)−1

(BU).

Thus (3.7) implies d
((
H?

1

)−1
(BU) = d

((
H?

0
)−1

(BU)
))
6= d(∅), and we are finished.
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Case (ii). D 6= ∅.
Note D is compact (respectively closed) and also note D ∩U 6= ∅ (since Φ(x) ∩Ht(x) = ∅ for x ∈ ∂U

and t ∈ [0, 1]). Then there exists a continuous map µ : E → [0, 1] with µ(D) = 0 and µ(U) = 1. Define
a map R : E → 2E by R(x) = H(x,µ(x)). Note R ∈ A(E,E). In fact R ∼= H0 in A(E,E). To see this let
Λ : E× [0, 1]→ 2E be given by Λ(x, t) = H(x, tµ(x)). Note Λ(.,η(.)) ∈ A(E,E) for any continuous function
η : E→ [0, 1], and (note (3.6) and H1 ∼= H0 in A(E,E)),

{x ∈ E : (x,Φ(x))∩ (x,H(x, tµ(x))) 6= ∅ for some t ∈ [0, 1]}

is compact (respectively closed). Also Λ1 = R and Λ0 = H0.
Let R? = I× R. Now (3.5) guarantees that

d
(
(R?)−1 (B)

)
= d

(
(H?

0)
−1 (B)

)
6= d(∅). (3.8)

Note (R?)−1 (B) = {x ∈ E : (x,Φ(x))∩ (x,R(x)) 6= ∅}. Consider x ∈ E and (x,Φ(x))∩ R?(x) 6= ∅. Then x ∈ E
and ∅ 6= Φ(x)∩R(x) = Φ(x)∩Hµ(x)(x). If x ∈ E\U then since x ∈ Dwe have ∅ 6= Φ(x)∩Hµ(x)(x) = Φ(x)∩
H(x, 0), which is a contradiction. Thus x ∈ U and ∅ 6= Φ(x)∩R(x). Consequently (R?)−1 (B) ⊆ (R?)−1 (BU)

and on the other hand it is immediate that (R?)−1 (BU) ⊆ (R?)−1 (B). Thus (R?)−1 (B) = (R?)−1 (BU). Also(
H?

0
)−1

(B) =
(
H?

0
)−1

(BU). Thus (3.8) implies

d
(
(R?)−1 (BU)

)
= d

(
(H?

0)
−1 (BU)

)
6= d(∅). (3.9)

Finally notice (note µ(U) = 1) that

(R?)−1 (BU) = {x ∈ U : (x,Φ(x))∩ (x,H(x,µ(x))) 6= ∅}

= {x ∈ U : (x,Φ(x))∩ (x,H(x, 1)) 6= ∅} = (H?
1)

−1 (BU),

so from (3.9) we have d
((
H?

1

)−1
(BU)

)
= d

((
H?

0
)−1

(BU)
)
6= d(∅).

Remark 3.10. In Definition 3.8 and in the statement of Theorem 3.9 we could replace, any continuous map
η : E→ [0, 1], with, any continuous map η : E→ [0, 1] with η(U) = 1.

Let E be a topological vector space, Y a topological vector space, U an open subset of E, L : dom(L) ⊆
E→ Y a linear single valued map, and T ∈ HL(E, Y).

We now fix a Φ ∈ B(U, Y;L, T).
For any map F ∈ A(U, Y;L, T) let F? = I× (L+ T)−1(F+ T) : U → 2U×E, with I : U → U given by

I(x) = x, and let

d :
{
(F?)−1 (B)

}
∪ {∅}→ Ω (3.10)

be any map with values in the nonempty set Ω; here B =
{
(x, (L+ T)−1(Φ+ T)(x)) : x ∈ U

}
.

Definition 3.11. Let F,G ∈ A∂U(U, Y;L, T). We say F ∼= G in A∂U(U, Y;L, T) if there exists a map H :
U× [0, 1] → 2Y with (L+ T)−1(H(.,η(.)) + T(.)) ∈ A(U,E) for any continuous function η : U → [0, 1] with
η(∂U) = 0, (L+ T)−1(Ht + T)(x) ∩ (L+ T)−1(Φ+ T)(x) = ∅ for any x ∈ ∂U and t ∈ [0, 1], H1 = F, H0 = G

and {
x ∈ U : (x, (L+ T)−1(Φ+ T)(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]

}
is compact; here Ht(x) = H(x, t) and H?(x, λ) = (x, (L+ T)−1(H+ T)(x, λ)).

Definition 3.12. Let F ∈ A∂U(U, Y;L, T) with F? = I× (L+ T)−1(F+ T). We say F? : U → 2U×E is d-L-Φ-
essential if for every map J ∈ A∂U(U, Y;L, T) with J? = I× (L+ T)−1(J+ T) and J|∂U = F|∂U and J ∼= F in
A∂U(U, Y;L, T) we have that d

(
(F?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅).
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Theorem 3.13. Let E be a Hausdorff topological vector space, Y a topological vector space, U an open subset of E,
B =

{
(x, (L+ T)−1(Φ+ T)(x)) : x ∈ U

}
, L : dom(L) ⊆ E → Y a linear single valued map, T ∈ HL(E, Y), d a

map defined in (3.10), and let F ∈ A∂U(U, Y;L, T) and F? be d-L-Φ-essential (here F? = I× (L+ T)−1(F+ T)).
Suppose here exists a map H : U× [0, 1] → 2Y with (L+ T)−1(H(.,η(.)) + T(.)) ∈ A(U,E) for any continuous
function η : U → [0, 1] with η(∂U) = 0, (L+ T)−1(Ht + T)(x) ∩ (L+ T)−1(Φ+ T)(x) = ∅ for any x ∈ ∂U and
t ∈ (0, 1], H0 = F, and{

x ∈ U : (x, (L+ T)−1(Φ+ T)(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact; here Ht(x) = H(x, t) and H?(x, λ) = (x, (L+ T)−1(H+ T)(x, λ)). In addition assume{
if µ : U→ [0, 1] is any continuous map with µ(∂U) = 0, then
{x ∈ U : (x, (L+ T)−1(Φ+ T)(x))∩ (x, (L+ T)−1(Htµ(x) + T)(x)) 6= ∅ for some t ∈ [0, 1]} is closed.

Let H?
1 = I× (L+ T)−1(H1 + T). Then

d
(
(H?

1)
−1 (B)

)
= d

(
(F?)−1 (B)

)
6= d(∅).

Proof. Let
D =

{
x ∈ U : (x, (L+ T)−1(Φ+ T)(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]

}
,

where H?(x, λ) = (x, (L + T)−1(H + T)(x, λ)). Notice D 6= ∅, D is compact, and D ∩ ∂U = ∅. Thus
there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(D) = 1. Define Rµ : U → 2Y by
Rµ(x) = H(x,µ(x)) = Hµ(x)(x) and let R?µ = I × (L + T)−1(Rµ + T). Note Rµ ∈ A∂U(U, Y;L, T) with
Rµ|∂U = F|∂U (note if x ∈ ∂U then Rµ(x) = H0(x) = F(x) and Rµ(x)∩Φ(x) = F(x)∩Φ(x) = ∅).

Next we note, since µ(D) = 1, that(
R?µ

)−1
(B) =

{
x ∈ U : (x, (L+ T)−1(Φ+ T)(x))∩ (x, (L+ T)−1(Hµ(x) + T)(x)) 6= ∅

}
=

{
x ∈ U : (x, (L+ T)−1(Φ+ T)(x))∩ x, (L+ T)−1(H1 + T)(x)) 6= ∅

}
= (H?

1)
−1 (B)

and so

d
((
R?µ

)−1
(B)

)
= d

(
(H?

1)
−1 (B)

)
. (3.11)

Also note Rµ ∼= F in A∂U(U, Y;L, T) (to see this letQ : U× [0, 1]→ 2Y be given byQ(x, t) = H(x, tµ(x))).

As a result since F? is d-L-Φ-essential we have d
((
R?µ

)−1
(B)

)
= d

(
(F?)−1 (B)

)
6= d(∅). This together with

(3.11) yields d
((
H?

1

)−1
(B)

)
= d

(
(F?)−1 (B)

)
6= d(∅).

Remark 3.14. Suppose we change Definition 3.12 as follows. Let F ∈ A∂U(U, Y;L, T) with F? = I× (L+

T)−1(F+ T). We say F? : U → 2U×E is d-L-Φ-essential if for every map J ∈ A∂U(U, Y;L, T) with J? =

I× (L+ T)−1(J+ T) and J|∂U = F|∂U we have that d
(
(F?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅). The argument

above yields the following result. Let E be a Hausdorff topological vector space, Y a topological vector
space, U an open subset of E, B =

{
(x, (L+ T)−1(Φ+ T)(x)) : x ∈ U

}
, L : dom(L) ⊆ E → Y a linear

single valued map, T ∈ HL(E, Y), d a map defined in (3.10) and let F ∈ A∂U(U, Y;L, T) and F? be d-
L-Φ-essential (here F? = I × (L + T)−1(F + T)). Suppose here exists a map H : U × [0, 1] → 2Y with
(L + T)−1(H(.,η(.)) + T(.)) ∈ A(U,E) for any continuous function η : U → [0, 1] with η(∂U) = 0, (L +
T)−1(Ht + T)(x)∩ (L+ T)−1(Φ+ T)(x) = ∅ for any x ∈ ∂U and t ∈ [0, 1], H1 = F, H0 = G and{

x ∈ U : (x, (L+ T)−1(Φ+ T)(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact; here Ht(x) = H(x, t) and H?(x, λ) = (x, (L+ T)−1(H+ T)(x, λ)). Let H?
1 = I× (L+ T)−1(H1 + T).

Then d
((
H?

1

)−1
(B)

)
= d

(
(F?)−1 (B)

)
6= d(∅).
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Remark 3.15. Suppose the following condition holds:{
if F,G ∈ A∂U(U, Y;L, T) with F|∂U = G|∂U and F ∼= G

in A∂U(U, Y;L, T) then d
(
(F?)−1 (B)

)
= d

(
(G?)−1 (B)

)
.

Then Definition 3.12 reduces to the following. Let F ∈ A∂U(U, Y;L, T) with F? = I× (L+ T)−1(F+ T). We
say F? : U→ 2U×E is d-L-Φ-essential if d

(
(F?)−1 (B)

)
6= d(∅).

Remark 3.16. If E is a normal topological vector space then the assumption that D (in the proof of Theorem
2.15) is compact, can be replaced by D is closed, in the statement (and proof) of Theorem 3.13 and also
the assumption that{

x ∈ U : (x, (L+ T)−1(Φ+ T)(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact, can be replaced by{
x ∈ U : (x, (L+ T)−1(Φ+ T)(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]

}
is closed, in Definition 3.11; here H?(x, λ) = (x, (L+ T)−1(H+ T)(x, λ)).

We now fix a Φ ∈ B(E, Y;L, T).

Definition 3.17. Let F : E→ 2Y . We say F ∈ A(E, Y;L, T) if (L+ T)−1(F+ T) ∈ A(E,E).

For any map F ∈ A(E, Y;L, T) let F? = I× (L+ T)−1(F+ T) : E→ 2E×E, with I : E→ E given by I(x) = x,
and let

d :
{
(F?)−1 (B)

}
∪ {∅}→ Ω (3.12)

be any map with values in the nonempty set Ω; here B =
{
(x, (L+ T)−1(Φ+ T)(x)) : x ∈ E

}
. In our

applications we will be interested in maps F : U→ 2Y so F? = I× (L+ T)−1[F+ T ] : U→ 2U×E and in this
case we consider

d :
{
(F?)−1 (BU)

}
∪ {∅}→ Ω,

where BU =
{
(x, (L+ T)−1(Φ+ T)(x)) : x ∈ U

}
.

Definition 3.18. If F,G ∈ A(E, Y;L, T) then we say F ∼= G in A(E, Y;L, T) if there exists a map Λ : E× [0, 1]→
2Y with (L+ T)−1(Λ(.,η(.)) + T) ∈ A(E,E) for any continuous function η : E → [0, 1], Λ1 = F and Λ0 = G

(here Λt(x) = Λ(x, t)) and{
x ∈ E : (x, (L+ T)−1(Φ+ T)(x))∩Λ?(x, t) 6= ∅ for some t ∈ [0, 1]

}
is compact; here Λ?(x, λ) = (x, (L+ T)−1(Λ+ T)(x, λ)).

Theorem 3.19. Let E be a Hausdorff topological vector space, Y a topological vector space, U an open subset of E,
L : dom(L) ⊆ E→ Y a linear single valued map, T ∈ HL(E, Y) and d a map defined in (3.12). Suppose there exists
a map H : E× [0, 1] → 2Y with (L+ T)−1(H(.,η(.)) + T) ∈ A(E,E) for any continuous function η : E → [0, 1],
(L+ T)−1(Φ+ T)(x)∩ (L+ T)−1(H0 + T)(x) = ∅ for x ∈ E\U, (L+ T)−1(Ht+ T)(x)∩ (L+ T)−1(Φ+ T)(x) = ∅
for any x ∈ ∂U and t ∈ [0, 1], and{

x ∈ E : (x, (L+ T)−1(Φ+ T)(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]
}

is compact; here H?(x, λ) = (x, (L+ T)−1(H+ T)(x, λ)). In addition assume the following hold:{
for any J ∈ A(E, Y;L, T) with J? = I× (L+ T)−1(J+ T)

and Φ ∼= H0 in A(E, Y;L, T) we have that d
(
(J?)−1 (B)

)
= d

((
H?

0
)−1

(B)
)
6= d(∅), (3.13)
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x ∈ E\U : (x, (L+ T)−1(Φ+ T)(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]

}
is closed

and {
if µ : E→ [0, 1] is any continuous map with µ(U) = 1, then
{x ∈ U : (x, (L+ T)−1(Φ+ T)(x))∩ (x, (L+ T)−1(Htµ(x) + T)(x)) 6= ∅ for some t ∈ [0, 1]} is closed.

Here H?
0 = I × (L + T)−1(H0 + T). Let H?

1 = I × (L + T)−1(H1 + T). Then we have d
((
H?

1

)−1
(BU)

)
=

d
((
H?

0
)−1

(BU)
)
6= d(∅).

Proof. Let
D =

{
x ∈ E\U : (x, (L+ T)−1(Φ+ T)(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]

}
.

We consider two cases, as D 6= ∅ and D = ∅.
Case (i). D = ∅.

Then for every t ∈ [0, 1] we have (x, (L + T)−1(Φ + T)(x)) ∩ H?(x, t) 6= ∅. Also from H1 ∼= H0 in
A(E, Y;L, T) and (3.13) we have

d
(
(H?

1)
−1 (B)

)
= d

(
(H?

0)
−1 (B)

)
6= d(∅). (3.14)

Note
(
H?

1

)−1
(B) = {x ∈ E : (x, (L+ T)−1(Φ+ T)(x)) ∩ (x, (L+ T)−1(H1 + T)(x)) 6= ∅}. Consider y ∈ E and

(y, (L+ T)−1(Φ+ T)(y))∩H?
1(y) 6= ∅. Then y ∈ E and Φ(y)∩ (L+ T)−1(H1 + T)(y) 6= ∅. Now since D = ∅

we have y ∈ U and Φ(y)∩ (L+ T)−1(H1 + T)(y) 6= ∅ i.e., y ∈ U and (y, (L+ T)−1(Φ+ T)(y))∩H?
1(y) 6= ∅.

Consequently
(
H?

1

)−1
(B) ⊆

(
H?

1

)−1
(BU) and on the other hand it is immediate that

(
H?

1

)−1
(BU) ⊆(

H?
1

)−1
(B). Thus

(
H?

1

)−1
(B) =

(
H?

1

)−1
(BU). It is also immediate that

(
H?

0
)−1

(B) =
(
H?

0
)−1

(BU).

Thus (3.14) implies d
((
H?

1

)−1
(BU)

)
= d

((
H?

0
)−1

(BU)
)
6= d(∅), and we are finished.

Case (ii). D 6= ∅.
Note D is compact and also note D ∩U 6= ∅. Then there exists a continuous map µ : E → [0, 1] with

µ(D) = 0 and µ(U) = 1. Define a map R : E→ 2Y by

R(x) = H(x,µ(x)).

Note R ∈ A(E, Y;L, T). In fact R ∼= H0 in A(E, Y;L, T) (to see this let Λ : E × [0, 1] → 2Y be given by
Λ(x, t) = H(x, tµ(x))).

Let R? = I× (L+ T)−1(R+ T). Now (3.13) guarantees that

d
(
(R?)−1 (B)

)
= d

(
(H?

0)
−1 (B)

)
6= d(∅). (3.15)

Note (R?)−1 (B) = {x ∈ E : (x, (L+ T)−1(Φ+ T)(x)) ∩ (x, (L+ T)−1(R+ T)(x)) 6= ∅}. Consider x ∈ E and
(x, (L+ T)−1(Φ+ T)(x)) ∩ R?(x) 6= ∅. Then x ∈ E and ∅ 6= (L+ T)−1(Φ+ T)(x) ∩ (L+ T)−1(R+ T)(x) =
(L+ T)−1(Φ+ T)(x) ∩ (L+ T)−1(Hµ(x) + T)(x). If x ∈ E\U then since x ∈ D we have ∅ 6= (L+ T)−1(Φ+

T)(x) ∩ (L + T)−1(Hµ(x) + T)(x) = (L + T)−1(Φ + T)(x) ∩ (L + T)−1(H0 + T)(x) which is a contradiction.
Thus x ∈ U and ∅ 6= (L+ T)−1(Φ+ T)(x) ∩ (L+ T)−1(R+ T)(x). Consequently (R?)−1 (B) ⊆ (R?)−1 (BU)

and on the other hand it is immediate that (R?)−1 (BU) ⊆ (R?)−1 (B). Thus (R?)−1 (B) = (R?)−1 (BU). Also(
H?

0
)−1

(B) =
(
H?

0
)−1

(BU). Thus (3.15) implies

d
(
(R?)−1 (BU)

)
= d

(
(H?

0)
−1 (BU)

)
6= d(∅). (3.16)
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Finally notice

(R?)−1 (BU) =
{
x ∈ U : (x, (L+ T)−1(Φ+ T)(x))∩ (x, (L+ T)−1(Hµ(x) + T)(x)) 6= ∅

}
=

{
x ∈ U : (x, (L+ T)−1(Φ+ T)(x))∩ (x, (L+ T)−1(H1 + T)(x)) 6= ∅

}
= (H?

1)
−1 (BU),

so from (3.16) we have d
((
H?

1

)−1
(BU)

)
= d

((
H?

0
)−1

(BU)
)
6= d(∅).

Remark 3.20. In Definition 3.18 and in the statement of Theorem 3.19 we could replace, any continuous
map η : E→ [0, 1], with, any continuous map η : E→ [0, 1] with η(U) = 1.

Remark 3.21. There is an analogue of Remark 3.16 (for normal topological vector spaces) in the statement
of Theorem 3.19 and in Definition 3.18.
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