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Abstract
In this paper, we introduce a modified two-step viscosity iteration process for total asymptotically nonexpansive mappings

in CAT(0) spaces. We prove strong convergence of the proposed iteration process to a fixed point of total asymptotically
nonexpansive mappings in CAT(0) spaces, which also shows that the limit of the sequence generated by proposed iteration
process solves the solution of the variational inequality. We also provide illustrating a numerical example for supporting our
main results. Moreover, we show the existence of solutions of our consequently results for some applications.
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1. Introduction

Let C be a nonempty closed subset of a metric space X. Let T : C→ C be a self-mapping. Recall that a
mapping T is said to be:

(i) contraction if there exist a constant k ∈ [0, 1) such that d(Tx, Ty) 6 kd(x,y), ∀x,y ∈ C;
(ii) nonexpansive if d(Tx, Ty) 6 d(x,y), ∀x,y ∈ C;
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(iii) asymptotically nonexpansive if there exists a sequence {kn} in [1,∞) with limn→∞ kn = 1 such that
d(Tnx, Tny) 6 knd(x,y), ∀x,y ∈ C and ∀n > 1;

(iv) uniformly L-Lipschitz if there exist a constant L > 0 such that d(Tnx, Tny) 6 Ld(x,y), ∀x,y ∈ C
and ∀n > 1.

In 2006, Alber et al. [4] first introduced the concept of the class of total asymptotically nonexpansive
mappings. Recall that the self mapping T is said to be (µ, ξ,ψ)-total asymptotically nonexpansive, if there
exist non-negative real sequences {µn}, {ξn} with µn → 0, ξn → 0 as n → ∞ and a continuous strictly
increasing function ψ : [0,∞)→ [0,∞) with ψ(0) = 0 such that

d(Tnx, Tny) 6 d(x,y) + µnψ(d(x,y)) + ξn, ∀n > 1, x,y ∈ C.

From definition, it is easy to know that each nonexpansive mapping be an asymptotically nonexpansive
with kn := 1, and each asymptotically nonexpansive mapping be a (µ, ξ,ψ)-total asymptotically nonex-
pansive mapping with µn := kn − 1, ξn := 0, ∀n > 1 and ψ(t) = t, t > 0.

A point x ∈ C is called a fixed point of T if x = T(x). We denote with F(T) the fixed point set of T . A
sequence {xn} in C is said to be approximating fixed point sequence (in short term, AFPS) of T if

lim
n→∞d(xn, Txn) = 0.

The class of such a mapping generalized the basic concepts of asymptotically nonexpansive mappings
introduced by Kirk and Goebel [17]. Likewise, the basics concept of nearly asymptotically nonexpansive
mappings introduced by Sahu [25].

Recall that (X,d) be a metric space. Such a space is called a CAT(0) space if it is geodesically connected
and every geodesic triangle in X is at least as ‘thin’ as its comparison triangle in Euclidean plane R2. Some
examples of CAT(0) spaces are

(C1) R-trees;
(C2) simply connected Riemannian manifold of non-positive sectional curvature;
(C3) Hilbert spaces [7];
(C4) Euclidean spaces [8].

A subset K of a CAT(0) space X is said to be convex if, for any x,y ∈ K, [x,y] ⊂ K, where [x,y] :=
{λx⊕ (1 − λ)y; 0 6 λ 6 1} is the unique geodesic joining x and y. For although discussion of CAT(0)
spaces, some fundamental geometric properties and important conclusions, we refer to Bridson, Haefliger
[7] and some authors [3, 8, 11, 12, 21–24, 29, 30]. A complete CAT(0) space is often called a Hadamard
space.

In 2012, Chang et al. [10] studied and proved demiclosedness principle and some convergence theo-
rems for total asymptotically nonexpansive mappings in a CAT(0) space. Since then, some convergence
theorems of many iterative algorithms for a type of such a mapping has been rapidly developed and
several of articles have cited in references (see e.g.[5, 9, 18, 28, 31, 32, 37–39]).

In 2008 Berg and Nikolaev [6] introduced the concept of quasi-linearization in X.
Denote a pair (p,q) ∈ X×X by −→pq and call it a vector. Then quasi-linearization is defined as a mapping

〈·, ·〉 : (X×X)× (X×X)→ R such that

〈−→pq,−→rs〉 = 1
2
(d2(p, s) + d2(q, r) − d2(p, r) − d2(q, s))

for all p,q, r, s ∈ X.
In 2012, Dehghan and Rooin [13] introduced the basic of duality mapping in a CAT(0) space and

studied its relation with subdifferential by using the concept of quasi-linearization. Then they proposed
a characterization of metric projection in a CAT(0) space as follows.
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Let (X,d) be a complete CAT(0) space and C a nonempty closed convex subset of X. Let u ∈ C and x ∈
X. Then u = PCx if and only if

〈−→yu,−→ux〉 > 0, ∀y ∈ C.

In 2013, Wangkeeree and Preechasilp [34] used the concept of quasi-linearization and studied strong
convergence theorems of viscosity iteration for nonexpansive mapping in a complete CAT(0) space as
follows.

Let f is contraction on C such that for arbitrary chosen x1 ∈ C, the sequence {xn} is generated by

xn+1 = αnf(xn)⊕ (1 −αn)Txn, ∀n > 1, (1.1)

where {αn} ⊂ [0, 1]. They proved the sequence defined by (1.1) converging strongly to p̃ such that p̃ =
PF(T)f(p̃) which is the unique solution of the variational inequality:

〈
−−−→
p̃f(p̃),

−→
pp̃〉 > 0, p ∈ F(T). (1.2)

In 2015, Wangkeeree et al. [33] studied the strong convergence theorem of the viscosity iteration for
asymptotically nonexpansive mapping in a complete CAT(0) space: Let f is contraction on C such that the
sequence {xn} for arbitrary chosen{

x1 ∈ C,
xn+1 = αnf(xn)⊕ (1 −αn)T

nxn, ∀n > 1. (1.3)

Where {αn} ⊂ [0, 1]. They proved that the sequence defined by (1.3) converges strongly to p̃ = PF(T)f(p̃)
which is the unique solution of the variational inequality (1.2).

Motivated and inspired by (1.3) in [33], we introduce the modified two-step viscosity iteration process
for a total asymptotically nonexpansive mapping in a complete CAT(0) space, for arbitrary chosen x1 ∈ C
the sequence generated by {

xn+1 = αnf(xn)⊕ (1 −αn)T
nyn,

yn = βnxn ⊕ (1 −βn)T
nxn

(1.4)

for all n > 1, where αn,βn ∈ [0, 1]. T : C → C is a total asymptotically nonexpansive mapping and
f : C→ C is a contraction mapping.

The purpose of this paper is to prove strong convergence theorem of iterative scheme generated by
(1.4) for a total asymptotically nonexpansive mapping in a CAT(0) space under some conditions. We also
show that the limit of the sequence generated by (1.4) solves the solution of the variational inequality (1.2).
We then give a numerical example for supporting our main results. Moreover, we show the existence of
solutions of our consequently results for some applications.

2. Preliminaries

In this section, we always suppose that X is a CAT(0) space and write (1 − t)x⊕ ty for the unique
point w in the geodesic segment joining form x to y, which is [x,y] = (1 − λ)x⊕ λy : λ ∈ [0, 1],

d(w, x) = λd(x,y) and d(w,y) = (1 − λ)d(x,y).

Lemma 2.1 ([16]). Let K be a CAT(0) space. For all x,y, z ∈ X and λ,γ ∈ [0, 1], we have the following:

(i) d(λx⊕ (1 − λ)y, z) 6 λd(x, z) + (1 − λ)d(y, z);
(ii) d2(λx⊕ (1 − λ)y, z) 6 λd2(x, z) + (1 − λ)d2(y, z) − λ(1 − λ)d2(x,y);

(iii) d(λx⊕ (1 − λ)y,γx⊕ (1 − γ)y) = |λ− γ|d(x,y);
(iv) d(λx⊕ (1 − λ)y, tu⊕ (1 − λ)w) 6 λd(x,u) + (1 − λ)d(y,w).
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Next, we refer to some elementary properties about CAT(0) spaces as follows.
Let {xn} be a bounded sequence in a CAT(0) space (X,d). For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞ d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is well known that in a complete CAT(0) space, A({xn}) consists of exactly one point [15].
In 1976, the concept of convergence in a general metric space introduced by Lim [20] setting which

is called ‘∆-convergent’. Later, Kirk and Panyanak [19] used the concept of ∆-convergent to prove in a
CAT(0) space.

Definition 2.2 ([26]). A sequence {xn} in X is said to ∆-converge to x ∈ X if x is the unique asymptotic
center of {un} for every subsequence {un} of {xn}. In this case we write ∆− lim

n→∞ xn = x and call x the

∆-limit of {xn}.

Kakavandi and Amini [2] introduced the following notion of quasi-linearization of convergence.
A sequence {xn} in the complete CAT(0) space (X,d) w-convergences to x ∈ X if

lim
n→∞〈−−→xxn,−→xy〉 = 0,

i.e. limn→∞(d2(xn, x) − d2(xn,y) + d2(x,y)) = 0, ∀y ∈ X.
It is obvious that convergence in the metric implies w-convergence, and it is easy to investigate that

w-convergence implies ∆-convergence [1], but it is showed in [2] that the inverse is false. However, the
following lemma shows another characterization of ∆-convergence as well as, more explicitly, a relation
between w-convergence and ∆-convergence.

Lemma 2.3 ([19]). Every bounded sequence in a complete CAT(0) space always has a ∆-convergent subsequence.

Lemma 2.4 ([14]). If C is a closed convex subset of a complete CAT(0) space and {xn} is a bounded sequence in C,
then the asymptotic center of {xn} is in C.

Lemma 2.5 ([18]). If C is a closed convex subset of X and T : C → X is a total asymptotically nonexpansive
mapping, then the conditions {xn} ∆-convergence to x and d(xn, Txn)→ 0, and imply x ∈ C and x ∈ F(T).

Lemma 2.6 ([1]). Let X be a complete CAT(0) space, {xn} be a sequence in X and x ∈ X. Then {xn} ∆-converges to
x if and only if lim supn→∞〈−−→xxn,−→xy〉 6 0 for all y ∈ X.

The following two important lemmas can be found in [34].

Lemma 2.7 ([34]). Let X be a complete CAT(0) space. Then for all u, x,y ∈ X, the following inequality holds

d2(x,u) 6 d2(y,u) + 2〈−→xy,−→xu〉.

Lemma 2.8 ([34]). Let X be a CAT(0) space. For any t ∈ [0, 1] and u, v ∈ X, let ut = tu⊕ (1 − t)v. Then, for all
x,y ∈ X,

(i) 〈−−→utx,−−→uty〉 6 t〈−→ux,−−→uty〉+ (1 − t)(−→vx,−−→uty〉;
(ii) 〈−−→utx,−→uy〉 6 t〈−→ux,−→uy〉+ (1 − t)〈−→vx,−→uy〉 and 〈−−→utx,−→uy〉 6 t〈−→ux,−→vy〉+ (1 − t)(−→vx,−→vy〉.
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Lemma 2.9 ([35]). Let {an} be a sequence of non-negative real numbers satisfying the property

an+1 6 (1 −αn)an +αnβn, n > 0,

where {αn} ⊆ (0, 1) and {βn} ⊆ R such that

(i)
∑∞
n=0 αn =∞;

(ii) lim supn→∞ βn 6 0 or
∑∞
n=0 |αnβn| <∞.

Then {an} converges to zero, as n→∞.

3. Main results

3.1. Strong convergence theorem
Theorem 3.1. Let C be nonempty closed and convex subset of a complete CAT(0) space X and T : C→ C be a total
asymptotically nonexpansive mapping with sequence µn and ξn satisfying Σ∞n=1µn <∞ and Σ∞n=1ξn <∞ such
that F(T) 6= ∅. Let f be a contraction on C with the coefficient k ∈ [0, 1) and for arbitrary initial point x1 ∈ C. Let
sequence {xn} be generated by (1.4) satisfying the following conditions:

(i) there exist constant M > 0 such that ψ(r) 6Mr, r > 0;
(ii) lim

n→∞αn = 0;

(iii)
∑∞
n=1 αn =∞;

(iv) T satisfies the asymptotically regular lim
n→∞d(xn, Tnxn) = 0.

Then the sequence {xn} converges strongly to p̃ which is a fixed point of T such that p̃ ∈ PF(T)f(p̃) and also
equivalent to the solution of the variational inequality (1.2).

Proof.

Step I. First, for all w ∈ C we define a mapping Fw : C→ C such that

Fw(x) = αf(w)⊕ (1 −α)Tn(β⊕ (1 −β)Tnx)

for all n > 1, where α,β ∈ (0, 1) and we will show that Fw is a contraction mapping.
Indeed, it follows from Lemma 2.1 that, for all x,y ∈ C

d(Fw(x), Fw(y)) = d(αf(w)⊕ (1 −α)Tn(βx⊕ (1 −β)Tnx), (αf(w)⊕ (1 −α)Tn(βy⊕ (1 −β)Tny))

6 αd(f(w), f(w)) + (1 −α)d(Tn(βx⊕ (1 −β)Tnx), Tn(βy⊕ (1 −β)Tny))

6 (1 −α){d(βx⊕ (1 −β)Tnx,βy⊕ (1 −β)Tny)

+ µnψ(d(βx⊕ (1 −β)Tnx,βy⊕ (1 −β)Tny) + ξn}

6 (1 −α){βd(x,y) + (1 −β)d(Tnx, Tny) + µnψ(βd(x,y)
+ (1 −β)d(Tnx, Tny)) + ξn}

6 (1 −α){βd(x,y) + (1 −β)(d(x,y) + µnψ(d(x,y)) + ξn) + µnψ(βd(x,y)
+ (1 −β)(d(x,y) + µnψ(d(x,y)) + ξn) + ξn}

6 (1 −α){βd(x,y) + (1 −β)((1 + µnM)d(x,y) + ξn) + µnψ(βd(x,y)
+ (1 −β)((1 + µnM)d(x,y) + ξn) + ξn}

= (1 −α){d(x,y) + (1 −β)(µnMd(x,y) + ξn) + µnψ(d(x,y)
+ (1 −β)(µnMd(x,y) + ξn)) + ξn}

6 (1 −α)d(x,y).

Since Σ∞n=1µn < ∞ and Σ∞n=1ξn < ∞. This implies that Fw is a contraction mapping. That means
sequence {xn} is well define.
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Step II. Next, we prove that {xn} is bounded.
Let p ∈ F(T) to deduce that

d(yn,p) = d(βnxn ⊕ (1 −βn)T
nxn,p)

6 βnd(xn,p) + (1 −βn)d(T
nxn,p)

6 βnd(xn,p) + (1 −βn)(d(xn,p) + µnψ(d(xn,p)) + ξn)
6 (1 + (1 −βn)µnM)d(xn,p) + (1 −βn)ξn

and we have

d(xn+1,p) = d(αnf(xn)⊕ (1 −αn)T
nyn,p)

6 αnd(f(xn),p) + (1 −αn)d(T
nyn,p)

6 αn(d(f(xn), f(p)) + d(f(p),p)) + (1 −αn)(d(yn,p) + µnψ(d(yn,p)) + ξn)
6 αnkd(xn,p) +αnd(f(p),p) + (1 −αn)((1 + µnM)d(yn,p) + ξn)
6 αnkd(xn,p) +αnd(f(p),p)
+ (1 −αn)((1 + µnM)((1 + (1 −βn)µnM)d(xn,p) + (1 −βn)ξn) + ξn

= (αnk+ (1 −αn)(1 + µnM)(1 + (1 −βn)µnM)d(xn,p)
+ ((1 −αn)(1 −βn) + 1)ξn +αnd(f(p),p).

Since
∑∞
n=1 µn <∞ and

∑∞
n=1 ξn <∞, we obtain

d(xn+1,p) 6 (1 − (1 − k)αn)d(xn,p) +αnd(f(p),p) 6 max{d(xn,p),
1

1 − k
d(f(p),p)}

for all n > 0. This implies that {xn} is bounded, and so {f(xn)}, {Tnxn}, and {Tnyn} are also bounded.
Next, we claim that sequence {xn} is AFPS. That means limn→∞ d(xn, Txn) = 0. Indeed, we have

d(xn+1, xn) 6 d(xn+1, Tnxn) + d(Tnxn, xn)
= d(αnf(xn)⊕ (1 −αn)T

nyn, Tnxn) + d(Tnxn, xn)
6 αnd(f(xn), Tnxn) + (1 −αn)d(T

nyn, Tnxn) + d(Tnxn, xn)
→ 0 as n →∞,

d(xn, Tn−1xn) = d(αn−1f(xn−1)⊕ (1 −αn−1)T
n−1xn−1, Tn−1xn)

6 αn−1d(f(xn−1), Tn−1xn) + (1 −αn−1)d(T
n−1xn−1, Tn−1xn)

6 αn−1d(f(xn−1), Tn−1xn) + (1 −αn−1)(1 + µnM)d(xn+1, xn) + ξn
→ 0 as n →∞.

Therefore

d(xn, Txn) 6 d(xn, Tnxn) + d(Tnxn, Txn)

= d(xn, Tnxn) + d(TTn−1xn, Txn)

6 d(xn, Tnxn) + Ld(Tn−1xn, xn)
→ 0 as n→∞.

Since {xn} is bounded, there exists a subsequence {xnj} of {xn}, which ∆-converges to p̃ such that
p̃ = PF(T)f(p̃), which is also equivalent to the following solution of the variational inequality (1.2).

By Lemmas 2.3 and 2.5 we can suppose that {xnj} ∆-converges to a point p̃ and p̃ ∈ F(T). It follows
from Lemma 2.8 (i) that

d2(xnj , p̃) = 〈
−−→
xnj p̃,

−−→
xnj p̃〉 6 αnj〈

−−−−−→
f(xnj)p̃,

−−→
xnj p̃〉+ (1 −αnj)〈

−−−−−→
Tnjxnj p̃,

−−→
xnj p̃〉
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6 αnj〈
−−−−−→
f(xnj)p̃,

−−→
xnj p̃〉+ (1 −αnj)d(T

njxnj , p̃)d(xnj , p̃)

6 αnj〈
−−−−−→
f(xnj)p̃,

−−→
xnj p̃〉+ (1 −αnj)((1 + µnM)d(xnj , p̃) + ξn)d(xnj , p̃)

= αnj〈
−−−−−→
f(xnj)p̃,

−−→
xnj p̃〉+ (1 −αnj)((1 + µnM)d2(xnj , p̃) + ξnd(xnj , p̃)).

Since
∑∞
n=1,µn <∞ and

∑∞
n=1 ξn <∞, which implies that

d2(xnj , p̃) 6 〈
−−−−−→
f(xnj)p̃,

−−→
xnj p̃〉 = 〈

−−−−−−−→
f(xnj)f(p̃),

−−→
xnj p̃〉+ 〈

−−−→
f(p̃)p̃,

−−→
xnj p̃〉

6 d(f(xnj), f(p̃))d(xnj , p̃) + 〈
−−→
f(p̃),

−−→
xnj p̃〉

6 kd2(xnj , p̃) + 〈
−−−−→
f(p̃), p̃,

−−→
xnj p̃〉,

hence,

d2(xnj , p̃) 6
1

1 − k
〈
−−−−→
f(p̃), p̃,

−−→
xnj p̃〉.

Since {xnj} ∆-converges to p̃, by Lemma 2.6, we have

lim sup
n→∞ 〈

−−−→
f(p̃)p̃,

−−→
xnj p̃〉 6 0,

thus,
lim sup
n→∞ 〈

−−−→
f(p̃)p̃,

−−→
xnp̃〉 6 0. (3.1)

Step III. Finally, we prove that xn → p̃ as n → ∞ for all n ∈ N, such that yn = βnxn ⊕ (1 − βn)T
nxn.

Now we set wn = αnp̃⊕ (1 −αn)T
nyn. It follows form Lemmas 2.5, 2.7, and 2.8 (i), (ii) that

d2(xn+1, p̃) = d2(αnf(xn)⊕ (1 −αn)T
nyn, p̃)

6 d2(wn, p̃) + 2〈−−−−−→xn+1wn,
−−−−→
xn+1p̃〉

6 (αnd(p̃, p̃) + (1 −αn)d(T
nxn, p̃))2 + 2[αn〈

−−−−−−→
f(xn)wn,

−−−−→
xn+1p̃〉+ (1 −αn)〈

−−−−−−→
Tnynwn,

−−−−→
xn+1p̃〉]

6 (1 −αn)
2((1 + µnM)d(xn, p̃) + ξ)2 + 2[α2

n〈
−−−−→
f(xn)p̃,

−−−−→
xn+1p̃〉

+αn(1 −αn)〈
−−−−−−−→
f(xn)T

nxn,
−−−−→
xn+1p̃〉+αn(1 −αn)〈

−−−−→
Tnynp̃,

−−−−→
xn+1p̃〉

+ (1 −αn)
2〈
−−−−−−−→
TnynT

nxn,
−−−−→
xn+1p̃〉]

6 (1 −αn)
2((1 + µnM)d(xnp̃) + ξn)

2 + 2[α2
n〈
−−−−→
f(xn)p̃,

−−−−→
xn+1p̃〉

+αn(1 −αn)〈
−−−−−−−→
f(xn)T

nxn,
−−−−→
xn+1p̃〉+αn(1 −αn)d(T

nyn, p̃)d(xn+1, p̃)

+ (1 −αn)
2d(Tnyn, Tnxn)d(xn+1, p̃)]

6 (1 −αn)
2((1 + µnM)d(xn, p̃) + ξn)2 + 2[α2

n〈
−−−−→
f(xn)p̃,

−−−−→
xn+1p̃

+αn(1 −αn)〈
−−−−−−−→
f(xn)T

nxn,
−−−−→
xn+1p̃〉+αn(1 −αn)((1 + µnM)d(yn, p̃) + ξn)d(xn+1, p̃)

+ (1 −αn)
2((1 + µnM)d(yn, xn) + ξn)d(xn+1, p̃)]

= (1 −αn)
2((1 + µnM)d(xn, p̃) + ξn)2 + 2[α2

n〈
−−−−→
f(xn)p̃,

−−−−→
xn+1p̃〉

+αn(1 −αn)((1 + µnM)d(yn, p̃) + ξn)d(xn+1, p̃)

+ (1 −αn)
2((1 + µnM)d(yn, xn) + ξn)d(xn+1, p̃)]

6 (1 −αn)
2((1 + µnM)d(xn, p̃) + ξn)2 + 2[α2

nd(f(xn), p̃)d(xn+1, p̃)

+αn(1 −αn)((1 + µnM)d(f(xn), p̃)d(xn+1, p̃) + ξn) + (1 −α)2(ξn)d(xn+1, p̃)].
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Since
∑∞
n=1 µn <∞ and

∑∞
n=1 ξn <∞, we get

d2(xn+1, p̃) 6 (1 −αn)
2d2(xn, p̃) + 2αnd(f(xn), p̃)d(xn+1, p̃)

= (1 −αn)
2d2(xn, p̃) + 2αnd(f(xn), f(p̃))d(xn+1, p̃) + 2αn〈

−−−→
f(p̃)p̃,

−−−−→
xn+1p̃〉

6 (1 −αn)
2d2(xn, p̃) + 2αnkd(xn, p̃)d(xn+1, p̃) + 2αn〈

−−−→
f(p̃)p̃,

−−−−→
xn+1p̃〉

6 (1 −αn)
2d2(xn, p̃) +αnk(d2(xn, p̃) + d2(xn+1, p̃)) + 2αn〈

−−−→
f(p̃)p̃,

−−−−→
xn+1p̃〉.

Since the sequences {αn} and {xn} are bounded, there is M∗ > 0 such that

1
1 −αnk

d2(xn, p̃) 6M∗.

It follows that

d2(xn+1, p̃) 6
1

1 −αnk
(1 −αn)

2d2(xn, p̃) +
αnk

1 −αnk
d2(xn, p̃) + 2αn〈

−−−→
f(p̃)p̃,

−−−−→
xn+1p̃〉

6
(1 − 2αn +αnk)

1 −αnk
d2(xn, p̃) +

2αn
1 −αnk

〈
−−−→
f(p̃)p̃,

−−−−→
xn+1p̃〉+α2

nM
∗

6 (1 −
2αn(1 − k)

1 −αnk
)d2(xn, p̃) +αn(

2
1 −αnk

〈
−−−→
f(p̃)p̃,

−−−−→
xn+1p̃〉+αnM∗).

Now, taking ζn =
2αn(1 − k)

1 −αnk
, δn = αn(

2
1 −αnk

〈
−−−→
f(p̃)p̃,

−−−−→
xn+1p̃〉 + αnM∗). By Lemma 2.9 and (3.1),

therefore we conclude that xn → p̃ which is a fixed point of T such that p̃ ∈ PF(T)f(p̃) and also equivalent
to the following solution of the variational inequality (1.2). This completes the proof.

Remark 3.2. Since every Hilbert space is a complete CAT(0) space, Theorem 3.1 improves and generalizes
the main results in Wangkeeree et al. [34] and Xu et al. [36].

The following result can be obtained from Theorem 3.1 immediately.

Theorem 3.3. Let C be a nonempty closed and convex subset of a real Hilbert space H and T : C → C be a total
asymptotically nonexpansive mapping with

∑∞
n=1 µn < ∞ such that F(T) 6= ∅. Let f be a contraction on C with

the coefficient k ∈ [0, 1) and for arbitrary initial point x1 ∈ C. Let sequence {xn} be the generated by{
xn+1 = αnf(xn) + (1 −αn)T

nyn,
yn = βnxn + (1 −βn)T

nxn
(3.2)

for all n > 1, where αn,βn ∈ [0, 1], which satisfies the conditions (i)-(iv) as in Theorem 3.1. Then the sequence
{xn} converges strongly to p̃ such that

p̃ = PF(T)f(p̃),

which is also equivalent to the solution of the variational inequality

〈p̃− f(p̃),p− p̃〉 > 0, ∀p ∈ F(T). (3.3)

3.2. Consequently results
From Theorem 3.1 if we set µn := kn − 1, ξn := 0, ∀n > 1, and ψ(t) := t, t > 0, then we obtain the

following result immediately.

Corollary 3.4. Let C be a nonempty closed convex subset of a complete CAT(0) space X and T : C → C be an
asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,∞) and limn→∞ kn = 1 such that F(T) 6= ∅. Let
f : C → C be a contraction with coefficient k ∈ [0, 1) and, for arbitrary initial point x1 ∈ C. Let {xn} be generated
by (1.4) satisfying the following conditions:
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(i) limn→∞ αn = 0;
(ii) Σ∞n=0αn =∞;

(iii) limn→∞ kn − 1
αn

= 0;

(iv)
|αn −αn−1|

α2
n

→ 0, as n→∞;

(v) T satisfies the asymptotically regular limn→∞ d(xn, Tnxn) = 0.

Then {xn} converges strongly to p̃ = PF(T)f(p̃), which is a fixed point of T such that p̃ ∈ PF(T)f(p̃) and also
equivalent to the solution of the variational inequality (1.2).

From Theorem 3.1, if µn = 0, ξn = 0, and n = 1, then we obtain the following result immediately.

Corollary 3.5. Let C be a nonempty closed and convex subset of complete CAT(0) space X and T : C → C be a
nonexpansive mapping with F(T) 6= ∅. Let f : C → C be a contraction with coefficient k ∈ [0, 1) and, for arbitrary
initial point x1 ∈ C. Let {xn} be generated by (1.4) and satisfies the following conditions:

(i) limn→∞ αn = 0;
(ii) Σ∞n=0αn =∞;

(iii)
|αn −αn−1|

α2
n

→ 0 as n→∞.

Then {xn} converges strongly to p̃ such that p̃ = PF(T)f(p̃), which is a fixed point of T such that p̃ ∈ PF(T)f(p̃)
and also equivalent to the solution of the variational inequality (1.2).

Since every Hilbert space is a complete CAT(0) space, we obtain results form Corollary 3.4 and 3.5
respectively.

Corollary 3.6. Let C be nonempty closed and convex subset of a real Hilbert space H and T : C → C be an
asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,∞) and limn→∞ kn = 1 such that F(T) 6= ∅. Let
f : C → C be a contraction with coefficient k ∈ [0, 1) and, for arbitrary initial point x1 ∈ C. Let {xn} be generated
by (3.2) satisfying the conditions (i)-(v) as in Corollary 3.4. Then {xn} generated by (3.2) converges strongly to p̃,
which is also equivalent to the solution of the variational inequality (3.3).

Corollary 3.7. Let C be nonempty closed and convex subset of a real Hilbert space H and T : C → C be a
nonexpansive mapping with F(T) 6= ∅. Let f : C → C be a contraction with coefficient k ∈ [0, 1) and, for arbitrary
initial point x1 ∈ C. Let {xn} be generated by (3.2) satisfying the conditions (i)-(iii) as in Corollary 3.5. Then {xn}

converges strongly to p̃, which is also equivalent to the solution of the variational inequality (3.3).

3.3. An example of numerical results

In this section, we will illustrate reckoning the convergence behavior of modified two-step viscos-
ity iteration process (1.4) for total asymptotically nonexpansive mappings with the reckoning numerical
results for supporting the main theorem.

Example 3.8. Let X = R be a Euclidean metric space, which is also a complete CAT(0) space and C =
[1, 10]. Let T : C→ C be defined by

Tx =
3
√

3x2 − 2x+ 6.

It’s obvious that T is a total asymptotically nonexpansive mapping. Let f : C→ C be defined by

fx =
x+ 3

2
.

It’s easy to check that f is a contraction mapping.
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Table 1: The values of sequence {xn} and the error values.
number of iterates xn |xn − p|

1 10.00000000000 7.000000000000
2 6.785274779613 3.785274779613
3 3.839539421270 0.839539421270
4 3.092398253180 0.092398253180
5 3.006483269122 0.006483269122
6 3.000356881905 0.000356881905
7 3.000017184442 0.000017184442
8 3.000000757059 7.5705927E-07
9 3.000000031042 3.1041818E-08
10 3.000000001193 1.1927735E-09
11 3.000000000043 4.3094417E-11
12 3.000000000001 1.4672707E-12
13 3.000000000000 4.7073456E-14
14 3.000000000000 1.3322676E-15
15 3.000000000000 0.00000000000

Figure 1: Convergence behavior of the sequence {xn} in Table 1.

Figure 2: Convergence behavior of the errors in Table 1.

Setting αn = n2−2n+4
n3+18n−15 and βn = e

1
n−1
n for all n > 1 and starting point x1 = 10, then we obtain

numerical results in Table 1 and we see that F(T) = {3}. Furthermore, we then illustrate the convergence
behavior of modified two-step viscosity iteration process (1.4) by the values of sequence {xn} and errors
are shown in Figures 1 and 2, respectively.
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Next, we will show that a fixed point of mapping T is solution of the variational inequality

〈
−−−→
p̃f(p̃),

−→
pp̃〉 > 0, ∀p ∈ F(T),

where p̃ = PF(T)f(p̃).

Proof. Let p ∈ F(T), we have F(T) = {3}, thus p = 3. By Theorem 3.1, we have

p = p̃ = PF(T)f(p̃).

From variational inequality that

〈
−−−→
p̃f(p̃),

−→
pp̃〉 > 0, 〈(3) · f(3), (3) · (3)〉 > 0, 〈(3) · (3), (3) · (3)〉 > 0.

Therefore a fixed point of mapping T which is a solution satisfying the variational inequality.

4. Some applications

Now, we give some applications (see [40] and reference cited therein) of consequently results. In
particular, Corollary 3.7.

4.1. Applications to a nonlinear Volterra integral equation
Let us consider the following nonlinear Volterra integral equation type

x(t) = g(t) +

∫t
0
F(t, s, x(s))ds (4.1)

for all t ∈ [0, 1], where g is a continuous function on [0, 1] and F : [0, 1]× [0, 1]×R→ R is continuous and
satisfies the following condition

|F(t, s, x) − F(t, s,y)| 6 |x− y|

for all t, s ∈ [0, 1] and x,y ∈ R. Define a mapping T : L2[0, 1]→ L2[0, 1] by

(Tx)(t) = g(t) +

∫t
0
F(t, s, x(s))ds

for all t ∈ [0, 1]. It is obvious to see that T is a nonexpansive mapping. This means that finding a solution
of the integral equation (4.5) is reduced to finding a fixed point of the nonexpansive mapping T in L2[0, 1].
For any given function x0 ∈ L2[0, 1], generate sequence {xn} of functions in L2[0, 1] by{

xn+1 = αnf(xn) + (1 −αn)Tyn,
yn = βnxn + (1 −βn)Txn, ∀n > 0. (4.2)

The following result will be obtained from Corollary 3.7 immediately.

Theorem 4.1. Let F,g, T ,L2[0, 1] be the same as above. Let f be a contraction on L2[0, 1] with the coefficient
k ∈ [0, 1). Let {xn} be generated by (4.2). If F(T) 6= ∅ and αn,βn ∈ (0, 1) satisfy the conditions (i)-(iv) in
Corollary 3.5, then {xn} converges strongly in L2[0, 1] to a solution of the integral equation (4.1), its is also a
solution of the variational inequality:

〈q̃− f(q̃),q− q̃〉 > 0; ∀q ∈ F(T).

4.2. Application to variational inequality
Consider the variational inequality (in short term, VI)

〈Ax̃, x− x̃〉 > 0, x ∈ C, (4.3)

where A is a monotone operator (single-valued) in Hilbert space H and C is a closed convex subset of H
with C ⊂ dom(A).
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The example of (4.3) is the constrained minimization problem

min
x∈C

ϕ(x), (4.4)

where ϕ : H → R is a proper convex and lower-semicontinuous function. If ϕ is (Fréchet) differentiable,
then the minimization problem (4.4) is equivalently reformulated as (4.3) with A = ∇ϕ. Notice that the
(VI) (4.3) is equivalent to the fixed point problem

Tx̃ = x̃, Tx = PC(I− λA)x, (4.5)

for all λ > 0. If A is Lipschitzian and strongly monotone, then for λ > 0 small enough, T is a contraction
and its unique fixed point is also the unique solution of the VI (4.3). Whenever, if A is not strongly
monotone, T is no longer a contraction, in general. In this case we must deal with nonexpansive mappings
for solving the VI (4.3). More precisely, we assume

(i) A is L-Lipschitzian if there exists L > 0, such that,

‖ Ax−Ay ‖6 L ‖ x− y ‖, x,y ∈ H.

(ii) A is σ-inverse strongly monotone (σ-ism) if there exists σ > 0, that is,

〈Ax−Ay, x− y〉 > σ ‖ Ax−Ay ‖2, x,y ∈ H.

Note that if ∇ϕ is L-Lipschitzian, then ∇ϕ is 1
L -ism.

Under the conditions (i) and (ii), it is well known [6] that the operator T = PC(I− λA) is nonexpansive
provided that 0 < λ < 2σ.

The following result will be obtained from Corollary 3.7 immediately.

Theorem 4.2. Suppose that the VI (4.3) is solvable. Assume also A satisfies (i) and (ii), and 0 < λ < 2σ. Let
f : C→ C be a contraction. Then sequence {xn} is generated by{

xn+1 = αnf(xn) + (1 −αn)PC(I− λA)yn,
yn = βnxn + (1 −βn)PC(I− λA)xn, ∀n > 0,

where αn,βn ∈ (0, 1). In addition, assume that the conditions (i)-(iii) in Corollary 3.7 are satisfied. Then {xn}

converges in norm to a solution x̃ of the VI (4.3) which is also a solution to the VI

〈(I− f)(x̃), x− x̃〉 > 0, x ∈ A−1(0).

4.3. Application to hierarchical minimization
We next consider a hierarchical minimization problem (see [27]).

Let ϕ0,ϕ1 : H → R be a lower semicontinuous convex function. Consider the following hierarchical
minimization problem:

min
x∈S0

ϕ1(x), S0 = arg min
x∈H

ϕ0(x). (4.6)

Now, we always assume that S0 is nonempty. Let S = arg minx∈S0 ϕ1(x) and assume S 6= ∅. Suppose that
ϕ0 and ϕ1 are differentiable and their gradients satisfy the Lipschitz continuity conditions:

‖ ∇ϕ0(x) −∇ϕ0(y) ‖6 L0 ‖ x− y ‖, ‖ ∇ϕ1(x) −∇ϕ1(y) ‖6 L1 ‖ x− y ‖ . (4.7)

Note that the condition (4.7) implies that ∇ϕi is
1
Li

− ism(i = 0, 1). Now let

T0 = I− γ0∇ϕ0, T1 = I− γ1∇ϕ1,
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where γ0 > 0 and γ1 > 0. Note that Ti is nonexpansive [6] if 0 < γi < 2
Li
(i = 0, 1). Also, it is obviously

seen that S0 = Fix(T0).
The optimality condition for x̃ ∈ S0 to be a solution of the hierarchical minimization (4.6) is the VI:

x̃ ∈ S0, 〈∇ϕ1(x̃〉 > 0, x ∈ S0. (4.8)

This is the VI (4.3) with C = S0 and A = ∇ϕ1.
The following result will be obtained from Corollary 3.7 immediately.

Theorem 4.3. Assume the hierarchical minimization problem (4.6) is solvable. Let f : C → C be a contraction.
Then sequence {xn} is generated by{

xn+1 = αnf(xn) + (1 −αn)PS0(I− λ∇ϕ1)yn,
yn = βnxn + (1 −βn)PS0(I− λ∇ϕ1)xn, ∀n > 0,

where αn,βn ∈ (0, 1). In addition, assume that the conditions (i)-(iii) in Corollary 3.7 are satisfied. If the condition
(4.7) is satisfied and 0 < γi < 2

Li
(i = 0, 1), then {xn} convergence in norm to a solution x̃ of the VI (4.8) that is, a

solution of hierarchical minimization problem (4.6) which also solves the VI

〈(I− f)(x̃), x− x̃〉 > 0, x ∈ S.

4.4. Applications to a nonlinear variation inclusion problem
Let H be a real Hilbert space and K : H → 2H be a multi-valued maximal monotone mapping. Then

the resolvent mapping JKλ : H→ H associated with K is defined by

JKλ (x) := (I+ λK)−1(x)

for all x ∈ H and for some λ > 0, where I stands for the identity mapping on H.
We note that, for all λ > 0, the resolvent mapping JKλ is a single-valued nonexpansive mapping.
The so-called monotone variational inclusion problem (in short term, MVIP) with respect to K is to

find x∗ ∈ H such that
0 ∈ K(x∗). (4.9)

From the definition of the resolvent mapping JKλ , it is easy to know that the problem MVIP (4.9) is
equivalent to find x∗ ∈ H such that

x∗ ∈ Fix(JKλ )

for some λ > 0. For any given function x0 ∈ H, generated sequence {xn} by{
xn+1 = αnf(xn) + (1 −αn)J

K
λyn,

yn = βnxn + (1 −βn)J
K
λxn, ∀n > 0, (4.10)

where f : H→ H, is a contraction.
The following result will be obtained from Corollary 3.7 immediately.

Theorem 4.4. Let K and JKλ be the same as above. Let f : H→ H be a contraction and {xn} be generated by (4.10).
If αn,βn ∈ (0, 1) satisfy the conditions (i)-(iii) as in Corollary 3.7 and F(JKλ ) 6= ∅, then {xn} converges strongly to
a solution of MVIP (4.9), which is a solution of the variational inequality:

〈p̃− f(q̃),q− q̃〉 > 0, ∀q ∈ F(JKλ ).
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