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Abstract
In this paper, based on the classical Newton method and Halley method, we propose two new Newton methods for solving

the systems of nonlinear equations. The convergence performances of the two new variants of Newton iteration method are
analyzed in details. Some numerical experiments are also presented to demonstrate the feasibility and efficiency of the proposed
methods.

Keywords: Systems of nonlinear equations, Newton iteration method, Armijo linear search, convergence analysis, numerical
tests.

2010 MSC: 65H10.
c©2018 All rights reserved.

1. Introduction

In this paper, we discuss the following system of nonlinear equations, to find a vector x such that

f(x) = 0, (1.1)

where x = (x1, x2, · · · , xn)T ∈ Rn, and f = (f1, f2, · · · , fn)T : S ⊆ Rn → Rn is continuously differentiable
function.

The nonlinear system of form (1.1) has been investigated extensively owing to various scientific and
engineering applications [1, 3, 7, 10, 23, 24]. Normally, it can’t get the exactly solutions even when n
is very small, which promotes greatly the substantial developments of constructing various kinds of
iterative methods. Many research works have been done in some literatures on fast solvers for the system
of nonlinear equations (1.1). One of the most effective methods is the classical Newton method:

xk+1 = xk − (f ′(xk))−1f(xk), k = 1, 2, . . . , (1.2)
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where f ′(xk) is the Jacobian matrix of f at the k-th step xk. The local convergence and quadratic conver-
gence rate of the Newton method attracts many researchers to apply the Newton method (1.2) to other
types of problems, such as weakly nonlinear systems [2, 4], complementarity problems [8, 14], and so
on. Recently, higher order iterative methods also arouse wide concern. In [11], Levin proposed a direc-
tional Halley method with a cubic convergence rate. Then, to avoid computing the second derivative in
Halley method, a directional quasi-Halley method with one more function operation per iteration than
the directional Newton method was also studied in [11]. By using the decomposition technique, Shah
in [18] investigated some higher order iterative schemes for nonlinear equations. A new two-parameter
Chebyshev-Halley-like family of fourth and sixth-order approaches was proposed in [13] for the systems
of nonlinear equations.

However, when the root x∗ of the system (1.1) is multiple, the Newton method (1.2) will be invalid as
the Jacobian matrix f ′(xk) is singular or nearly singular if k is sufficiently large. A family of multi-point
iterative methods was introduced in [15] for deriving the multiple root of the nonlinear equations (1.1).

In [20], by a transformation g(x) =
f(x)
f ′(x) instead of f(x) for calculating a multiple root of f(x) = 0,

Traub utilized the classical Newton method to solve the transformation equation g(x) = 0. The concrete
iterative form can be written as follows:

xk+1 = xk −
(
f ′(xk)(f ′(xk))T − f(xk)∇2f(xk)

)−1(
f(xk)f ′(xk)

)
.

Inspired by above work, we establish a new iterative scheme based on the Newton method (1.2) for
solving the systems of nonlinear equations (1.1). The new iterative method can be formulated as:

xk+1 = xk −
(
βf ′(xk)(f ′(xk))T − γf(xk)∇2f(xk)

)−1(
αf(xk)f ′(xk)

)
. (1.3)

It is easy to see that the proposed method (1.3) can be reduced to the Halley method [11, 16, 17, 22] if
α = 2, β = 2 and γ = −1, and the classical Newton method if α = 1, β = 0 and γ = −1. For accelerating
the convergence of the scheme (1.3), we also analyse a new method by introducing the Armijo line search
technique. For the two above new methods, we establish the convergence under some proper conditions.

The remainder of this paper is organized as follows. In Section 2, two new variants of Newton iteration
method are proposed for solving the systems of nonlinear equations (1.1). A detailed discussion on the
convergence performances of two new variants is shown in Section 3. In Section 4, a variety of numerical
tests are provided to illustrate the superiority of the presented variant 2 of Newton iteration method.
Finally, some concluding remarks are given in Section 5.

2. Two new variants of Newton method

In this section, we give two new variants of the classical Newton method and well-known Halley
method. Moreover, some necessary assumptions and valuable conclusions are provided, these results
contribute significantly to the analysis of the convergence performance of these new variants of Newton
method.

As a matter of convenience, we use the following notations throughout this paper: let x ∈ Rn, A ∈
Rn×m, F(x) ∈ R. AT and A−1 denote transpose and inverse of matrix A, respectively. ∇F and ∇2F denote
the gradient and Hessian matrix of the differentiable scalar function F, respectively. Fk, ∇Fk, ∇2Fk denote
the function values of F(xk), ∇F(xk) and ∇2F(xk) in the k-th step iteration xk, respectively. ‖ · ‖ denotes
the Euclidean norm.

Obviously, the system of nonlinear equations (1.1) can be equivalent to the optimization problem

min
x∈S

F(x) := ‖f(x)‖2 = Σni=1f
2
i(x). (2.1)

In the following content, we will introduce the algorithms for solving the problem (2.1).
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Assumption 2.1. Let F(x) be twice continuously differential. Assume that the level set defined as:

L(x0) = {x : x ∈ S | F(x) 6 F(x0)}

is bounded.

Assumption 2.2. ∇2F(x) is Lipschitz continuous, namely, there exists positive constant L1 such that

‖∇2F(x) −∇2F(y)‖ 6 L1‖x− y‖.

In fact, ∇F(x) is also Lipschitz continuous due to its differentiability, hence we immediately have the
following inequality

‖∇F(x) −∇F(y)‖ 6 L2‖x− y‖,

where L2 is Lipschitz constant.

Algorithm 2.3 (The variant 1 of newton iteration method (VNM1)).

Step 1. Give the initial guess x0, the parameters α, β, γ. Let µ > 0 and any small positive number ε. Set
k := 0.

Step 2. If ‖∇Fk‖ < ε, stop.

Step 3. Solve the linear system

(β∇Fk∇FTk − γFk∇2Fk)p
k = −αFk∇Fk.

If the coefficient matrix β∇Fk∇FTk − γFk∇2Fk is singular, then solve

(β∇Fk∇FTk − γFk∇F2
k + µI)p

k = −αFk∇Fk.

Step 4. Update the iterative sequence

xk+1 = xk + pk.

Set k := k+ 1, return to Step 2.

It is easy to see that the step-size in Algorithm 2.3 is identically equal to 1. Once the initial guess was
not chosen well, the convergence of Algorithm 2.3 can not be guaranteed. So we introduce the Armijo
line search technique and give the following algorithm.

Algorithm 2.4 (The variant 2 of Newton iteration method (VNM2)).

Step 1. Give the initial guess x0, the parameters σ ∈ (0, 0.5), ρ ∈ (0, 1), β, γ. Let µ > 0 and any small
positive number ε. Set k := 0.

Step 2. If ‖∇Fk‖ < ε, stop.

Step 3. Solve the linear system

(β∇Fk∇FTk − γFk∇2Fk)p
k = −Fk∇Fk.

If the coefficient matrix β∇Fk∇FTk − γFk∇2Fk is singular, then solve

(β∇Fk∇FTk − γFk∇F2
k + µI)p

k = −Fk∇Fk.

Step 4. Find the minimum non-negative integer m such that

F(xk + ρmpk) 6 F(xk) + σρm∇FTkpk. (2.2)

Let mk := m.

Step 5. Update the iterative sequence

xk+1 = xk + ρmkpk.

Set k := k+ 1, return to Step 2.
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3. The analysis of convergence

Now we give the following lemmas. First, the famous Sherman-Morrison-Woodbury formula [21] and
its variant [9] are exhibited.

Lemma 3.1. Assume that U, V ∈ Rn×m and W ∈ Rn×n is a nonsingular matrix. If I+ VW−1U ∈ Rn×n is a
nonsingular matrix, then W +UV is also nonsingular. Moreover, it satisfies

(W +UVT )−1 =W−1 −W−1U(I+ VTW−1U)−1VTW−1,

where I denotes the identity matrix with proper dimension.

Lemma 3.2. Assume that u, v ∈ Rn and W ∈ Rn×n is a nonsingular matrix. If 1 + vTW−1u is a non-zero
scalar, then W + uvT is nonsingular. Moreover, it holds

(W + uvT )−1 =W−1 −
1

1 + vTW−1u
W−1uvTW−1,

where I denotes the identity matrix with proper dimension.

Lemma 3.3. Suppose that Assumptions 2.1-2.2 hold. If the parameters β and γ satisfy

β

γ
(∇FTk(Fk∇2Fk)

−1∇Fk) 6
1
2

, (3.1)

then

(a)
∣∣∣ β∇FTk(γFk∇2Fk)

−1∇Fk
β∇FTk(γFk∇2Fk)−1∇Fk − 1

∣∣∣ < 1;

(b) (
−γFk
β
∇2Fk +∇Fk∇FTk)−1 =

−β

γFk
(∇2Fk)

−1
(
I−

∇Fk∇FTk(
−γFk
β ∇

2Fk)
−1

1+∇FTk(
−γFk
β ∇2Fk)−1∇Fk

)
.

Proof. It follows from (3.1) that

β(∇FTk(−γFk∇2Fk)
−1∇Fk) > −

1
2

, (3.2)

which leads to the first result immediately.
Let W = −γFk

β ∇2Fk, u = v = ∇Fk. From Lemmas 3.1-3.2 and (3.2), it yields

1 + vTW−1u = 1 +β(∇FTk(−γFk∇2Fk)
−1∇Fk) >

1
2
6= 0. (3.3)

This implies that the matrix W + uvT is invertible. Then we have

(W + uvT )−1 =
(−γFk
β
∇2Fk +∇Fk∇FTk

)−1

=
(−γFk
β
∇2Fk

)−1
−
(−γFk
β
∇2Fk

)−1

· ∇Fk
(

1 +∇FTk
(−γFk
β
∇2Fk

)−1∇Fk
)−1
∇FTk

(−γFk
β
∇2Fk

)−1

=
−β

γFk
(∇2Fk)

−1
(
I−

∇Fk∇FTk(
−γFk
β ∇2Fk)

−1

1 +∇FTk(
−γFk
β ∇2Fk)−1∇Fk

)
.

This completes the proof.
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Theorem 3.4. Suppose that Assumptions 2.1-2.2 hold. Assume that pk is generated by Algorithm 2.3, i.e.,

pk = α(β∇Fk∇FTk − γ∇Fk∇2∇Fk)−1(−Fk∇Fk). (3.4)

Let

ξ1 :=
δ

2
+ δ|α+ γ|+ δ|α| < 1,

where δ := ρL
γ , L := max{L1,L2}, ρ := ‖(∇2F0)

−1‖. Then the iterative

xk+1 = xk + pk, k = 0, 1, . . . ,

converges to the solution x∗ of the system of nonlinear equations (1.1) if the initial guess is close to the solution x∗

sufficiently.

Proof. By (3.4) and Lemma 3.3 (b), we obtain

p0 =
α

β
(∇F0∇FT0 −

γ∇F0

β
∇2F0)

−1(−F0∇F0) =
α

γ
(∇2F0)

−1
(
I−

∇F0∇FT0 (
−γF0
β ∇

2F0)
−1

1 +∇FT0 (
−γF0
β ∇2F0)−1∇F0

)
∇F0.

Using Lemma 3.3 (a), Assumptions 2.1-2.2, and the boundedness of ‖(∇2F0)
−1‖, it is not difficult to verify

that

‖p0‖ 6
∣∣α
γ

∣∣‖(∇2F0)
−1‖
∥∥∥∇F0 −∇F0

∇FT0 (
−γF0
β ∇

2F0)
−1∇F0

1 +∇FT0 (
−γFk
β ∇2F0)−1∇Fk

∥∥∥ 6
∣∣2α
γ

∣∣ρ‖∇F0‖ 6
∣∣2α
γ

∣∣ρL‖x0 − x∗‖,

where ρ := ‖(∇2F0)
−1‖. Then we can derive

x1 − x∗ = x0 + p0 − x∗ = x0 − x∗ +
α

γ
(∇2F0)

−1
(
I−

∇F0∇FT0 (
−γF0
β ∇2F0)

−1

1 +∇FT0 (
−γF0
β ∇2F0)−1∇F0

)
∇F0

= (∇2F0)
−1
(
∇2F0(x

k − x∗) +
α

γ

(
I−

∇F0∇FT0 (
−γF0
β ∇2F0)

−1

1 +∇FT0 (
−γF0
β ∇2F0)−1∇F0

)
∇F0

)

= (∇2F0)
−1
(
∇2F0(x

0 − x∗) +
α

γ
∇F0 −

α

γ

∇F0∇FT0 (
−γF0
β ∇2F0)

−1∇F0

1 +∇FT0 (
−γF0
β ∇2F0)−1∇F0

)
.

Noticing that ∇F∗ = ∇F(x∗) = 0, it follows

‖x1 − x∗‖ = 1
γ

∥∥∥(∇2F0)
−1
(
γ∇2F0(x

0 − x∗) +α∇F0 −α
∇F0∇FT0 (

−γF0
β ∇2F0)

−1∇F0

1 +∇FT0 (
−γF0
β ∇2F0)−1∇F0

)∥∥∥
6

1
γ

∥∥(∇2F0)
−1∥∥∥∥∥γ∇2F0(x

0 − x∗) +α∇F0 −α
∇F0∇FT0 (

−γF0
β ∇2F0)

−1∇F0

1 +∇FT0 (
−γF0
β ∇2F0)−1∇F0

∥∥∥
6

1
γ

∥∥(∇2F0)
−1∥∥∥∥∥γ∇2F0(x

0 − x∗) − γ(∇F0 −∇F∗) + (α+ γ)(∇F0 −∇F∗)

−α
∇F0∇FT0 (

−γF0
β ∇2F0)

−1∇F0

1 +∇FT0 (
−γF0
β ∇2Fk)−1∇F0

∥∥∥
6

1
γ

∥∥(∇2F0)
−1∥∥[‖γ∇2Fk(x

0 − x∗) − γ(∇F0 −∇F∗)‖+ |α+ γ|‖∇F0 −∇F∗‖

+ |α|‖∇F0‖
∣∣∣ β∇FT0 (γF0∇2F0)

−1∇F0

β∇FT0 (γF0∇2F0)−1∇F0 − 1

∣∣∣].

(3.5)
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By the integral mean value theorem, we have

∇F0 −∇F∗ = −

∫ 1

0
∇2F(x0 + τ(x∗ − x0))(x∗ − x0)dτ.

This shows that

‖∇2F0(x
0 − x∗) − (∇F0 −∇F∗)‖ =

∥∥∥ ∫ 1

0

(
∇2F0 −∇2F

(
x0 + τ(x∗ − x0)

))
(x0 − x∗)dτ

∥∥∥
6
∫ 1

0

∥∥(∇2F0 −∇2F(x0 + τ(x∗ − x0)
)∥∥‖x0 − x∗‖dτ 6 1

2
L‖x0 − x∗‖2.

If the initial guess is close to the x∗, i.e., ‖x0 − x∗‖ → 0, by using the fact ‖∇F0‖ 6 L‖x0 − x∗‖, Lemma
3.3 (a), (3.5), and the above inequality, we can get

‖x1 − x∗‖ 6 1
γ
‖(∇2F0)

−1‖
(1

2
L‖x0 − x∗‖2 + |α+ γ|L‖x0 − x∗‖+ |α|L‖x0 − x∗‖

)
6

1
γ
ρL
(1

2
‖x0 − x∗‖+ |α+ γ|+ |α|

)
‖x0 − x∗‖

= δ
(1

2
‖x0 − x∗‖+ |α+ γ|+ |α|

)
‖x0 − x∗‖ < 1,

where δ = 1
γρL.

By method of induction, we immediately have ‖xk − x∗‖ < 1 and

‖xk+1 − x∗‖ 6 δ
(1

2
‖xk − x∗‖+ |α+ γ|+ |α|

)
‖xk − x∗‖

6 δ
(1

2
+ |α+ γ|+ |α|

)
‖xk − x∗‖

6
(δ

2
+ δ|α+ γ|+ δ|α|

)k+1‖x0 − x∗‖ = ξk+1
1 ‖x0 − x∗‖,

where ξ1 := δ
2 + δ|α+ γ|+ δ|α| < 1. Hence, we have the sequence of {xk} converges to the solution x∗

when k→∞. This completes the proof.

Next, we will give the important convergence results for the proposed variant 2 of Newton method.

Theorem 3.5. Assume that {xk} is generated by Algorithm 2.4. For any x0 ∈ Rn, the gradient ∇F(x) is uniformly
continuous on the level set

L(x0) = {x : x ∈ Rn | F(x) 6 F(x0)}.

If Q := β∇Fk∇FTk − γFk∇2Fk is positive definite. Then it satisfies ∇F(x∗) = 0, i.e., x∗ is the stationary point of
function F(x), where x∗ denotes any accumulation point of the sequence {xk}.

Proof. We give the proof by contradiction. Suppose that x∗ is the accumulation point of the sequence
{xk} and ∇F(x∗) 6= 0. Since the sequence {xk} is bounded on the level set by assumption. Then there
exists a convergent subsequence. Without loss of generality, it is still denoted by {xk}. Hence xk → x∗,
F(xk)→ F(x∗), and F(xk) − F(xk+1)→ 0. Furthermore, from the Armijo line search criterion in Algorithm
2.4, we have

−σ∇FTksk < F(xk) − F(xk+1)→ 0, ∇FTksk → 0, (3.6)

where sk := ρmkpk.
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If ∇FTk 9 0, then by (3.6), we get ‖sk‖ → 0. Since mk is the minimal nonnegative integer such that the
inequality (2.2) holding in Algorithm 2.4 .

So, for ρmk−1 = ρmk
ρ , the inequality can be written as

F(xk + ρmk−1pk) − F(xk) > σρmk−1∇FTkpk. (3.7)

Noticing that ρmk−1pk = sk

ρ and (3.7), it follows

F(xk +
sk

ρ
) − F(xk) > σ∇FTk(

sk

ρ
). (3.8)

Set dk = sk

‖sk‖ . Then sk

ρ =
‖sk‖
ρ dk. By (3.8) and observing that ‖sk‖ → 0, we get

α′k :=
‖sk‖
ρ
→ 0

and

F(xk +α′kd
k) − F(xk)

α′k
> σ∇FTkdk. (3.9)

Noticing that ‖dk‖ = 1, we can know that the sequence {‖dk‖} is bounded. Then there exists a convergent
subsequence. Without loss of generality, we still denote it by ‖dk‖(→ ‖d∗‖), where ‖d∗‖ = 1. Executing
the limit operation on the both sides of (3.9), we have

∇F(x∗)Td∗ > σ∇F(x∗)Td∗.

By σ < 1, we obtain

∇F(x∗)Td∗ > 0. (3.10)

On the other hand, observing that dk = sk

‖sk‖ =
pk

‖pk‖ . If Q := β∇Fk∇FTk −γFk∇2Fk is positive definite,
it yields that

−∇FTkdk = −∇FTk
pk

‖pk‖
=

(pk)T (β∇Fk∇FTk − γFk∇2Fk)
Tpk

Fk‖pk‖
=

(pk)TQTpk

Fk‖pk‖
> 0. (3.11)

If P is non-positive definite, by Algorithm 2.4, we can choose the proper parameter τ > 0 such that
Q̂ := β∇Fk∇FTk − γFk∇2Fk + τI is a positive definite matrix. Then it gives that

−∇FTkdk = −∇FTk
pk

‖pk‖
=

(pk)T (β∇Fk∇FTk − γFk∇2Fk + τI)
Tpk

Fk‖pk‖
=

(pk)T (Q̂)Tpk

Fk‖pk‖
> 0. (3.12)

It follows from (3.11) or (3.12) that

∇F(x∗)Td∗ < 0,

which is contradictory with (3.10). This completes the proof.

Theorem 3.6. Assume that the conditions of Theorem 3.5 hold. For any p ∈ Rn, x ∈ L(x0), if Q := β∇Fk∇FTk −
γFk∇2Fk is positive definite and

pTQp > σ1‖p‖2. (3.13)

Otherwise if Q is non-positive definite, but Q+ τI is positive definite and

pT (Q+ τI)p > σ2‖p‖2, (3.14)

where σ1, σ2, τ > 0, then the stationary point x∗ of function F(x) is also the global minimum point, i.e, F(x∗) = 0.
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Proof. It follows from (3.13) or (3.14) that the function F(x) is uniformly convex on the level set L(x0).
Hence, there exists a sole global minimum point x∗. Moreover, x∗ is the unique solution of ∇F(x) = 0.
Therefore, any accumulation point x∗ is the global minimum point, i.e., the sequence {xk} converges to
the global minimum point x∗.

4. Numerical experiments

In this section, some numerical examples are discussed to illustrate the effectiveness and advantages
of the proposed two variants of Newton method (denoted as “VNM1” and “VNM2”, respectively) for
solving the systems of nonlinear equations. We compare the convergence performances of the two variants
of Newton method against the Newton method (denoted as “NM”) and Halley method (denoted as
“Halley”) by the iteration step (denoted as “IT”), elapsed CPU time in seconds (denoted as “CPU”), and
objective function value (denoted as “Val”). In actual computations, the running is terminated when the
current iteration satisfies

Val := ‖F(xk)‖ < 10−6

or if the number of iteration exceeds the prescribed iteration steps kmax = 100, where F(xk) = Σni=1f
2
i(x
k),

x = (x1, x2, · · · , xn)T , xk denotes the k-th step iteration in Algorithm 2.3 or Algorithm 2.4.
The numerical experiments have been carried out by MATLAB R2011b 7.1.3 on a PC equipped with

an Intel(R) Core(TM) i7-2670QM, CPU running at 2.20 GHZ with 8 GB of RAM in Windows 7 operating
system.

Now we perform the following nine test examples. All numerical results are shown in Tables 1-4. In
Tables 1-3, we give the different initial guess and the parameters. Obviously, Algorithm 2.3 reduces to the
classical Newton method, when we choose the parameters α = 1, β = 0, γ = −1. Also, Algorithm 2.3
reduces to the Halley method if we take the parameters α = 2, β = 2, γ = 1.

In Table 4, we demonstrate the numerical performances for six examples from Examples 4.4-4.9. For
Example 4.4, we select the initial point with (0.5,−2)T , the parameters α = 3, β = 3, γ = 1.8 for
VNM1 and the parameters β = 3, γ = 0.9 for VNM2. For Example 4.5, we set the initial point with
(−1, 10)T , the parameters α = 3, β = 3, γ = 3 for VNM1 and the parameters β = 3, γ = 3 for VNM2.
For Example 4.6, we choose the initial point with (2, 3, 3)T , the parameters α = 3, β = 3, γ = 2.9 for
VNM1 and the parameters β = 3, γ = 2.9 for VNM2. For Example 4.7, we take the initial point with
104 · (−10,−2,−3,−0.2)T , the parameters α = 3, β = 3, γ = 2 for VNM1 and the parameters β = 3, γ = 1.9
for VNM2. For Example 4.8, we let the initial point with (10, 10, 10)T , the parameters α = 3, β = 3, γ = 2.9
for VNM1 and the parameters β = 3, γ = 2.8 for VNM2. For Example 4.9, we select the initial point with
5 · ones(n, 1), the parameters α = 3, β = 3, γ = 2.7 for VNM1 and the parameters β = 3, γ = 2.9 for
VNM2.

From these tables, we can see that both iterative numbers and elapsed CPU times of VNM1 and VNM2
are less than those of the Newton method and Halley method in many case. The reason why the two
variants of Newton method are much more efficient than Newton method and Halley method may be the
more flexible and widespread selection for parameters.

Example 4.1 ([15]). We consider the system of nonlinear equations (1.1) with the following form:

f(x) =

{
x3

1 − 3x1x
2
2 − 1 = 0,

3x2x
2
1 − x

3
2 + 1 = 0.

The exact solution is x∗ = (−0.290514555507, 1.0842150814913)T .

Example 4.2 ([5]). We consider the system of nonlinear equations (1.1) with the following form:

f(x) =


3x1 − cos(x2x3) − 5 = 0,
x3

1 − 81(x2 + 0.1)2 + sin x3 + 1.06 = 0,
e−x2x3 + 20x3 +

10π−3
3 = 0.
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The exact solution is x∗ = (1.998779542323100, 0.161973550312679,−0.528065506910533)T .

Example 4.3 ([19]). We consider the system of nonlinear equations (1.1) with the following form:

f(x) =


(x1 − 5x2)

2 + 40 sin2(10x3) = 0,
(x2 − 2x3)

2 + 40 sin2(10x1) = 0,
(3x1 + x2)

2 + 40 sin2(10x2) = 0.

The exact solution is x∗ = (0, 0, 0)T .

Example 4.4 ([22]). We consider the system of nonlinear equations (1.1) with the following form:

f(x) =

{
−13 + x1 + ((5 − x2)x2 − 2)x2 = 0,
−29 + x1 + ((x2 + 1)x2 − 14)x2 = 0.

The exact solution is x∗ = (5, 4)T .

Example 4.5 ([22]). We consider the system of nonlinear equations (1.1) with the following form:

f(x) =

{
x1 − e

x2 + 1 = 0,
x1 − cos x2 − 2 = 0.

The exact solution is x∗ = (1.341176629595537, 0.850614425996447)T .

Example 4.6 ([6]). We consider the system of nonlinear equations (1.1) with the following form:

f(x) =


(x1 − 1)4ex2 = 0,
(x2 − 2)2(x1x2 − 1) = 0,
(x3 + 4)6 = 0.

The exact solution is x∗ = (1, 2,−4)T .

Example 4.7 ([12]). We consider the system of nonlinear equations (1.1) with the following form:

f(x) =



10(x2 − x
2
1) = 0,

1 − x1 = 0,
90

1
2 (x4 − x

2
3) = 0,

1 − x3 = 0,
10

1
2 (x4 + x2 − 2) = 0,

10−
1
2 (x2 − x4) = 0.

The exact solution is x∗ = (1, 1, 1, 1)T .

Example 4.8 ([22]). We consider the system of nonlinear equations (1.1) with the following form:

f(x) =


x2

1 + x
2
2 + x

3
2 − x3 − x

2
3 = 0,

2x1 + x
2
2 − x3 = 0,

1 + x1 − x2x3 = 0.

The exact solution is x∗ = (−0.717138270295964,−0.203233278645136,−1.393059942219910)T .

Example 4.9 ([22]). We consider the system of nonlinear equations (1.1) with the following form:

f(x) =

{
xi sin(xi+1) − 1 = 0,
xn sin(x1) − 1 = 0,

where n = 16, i = 1, 2, . . . , 15. The exact solution is x∗ = −1.114157 · (1, 1, . . . , 1)T ∈ R16.
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Table 1: Numerical results for example 4.1.
Methods VNM1 VNM2 NM Halley

Parameters α = 2,β = 2,γ = 2 β = 2,γ = 2
Initials It 6 6 7 10

(2,−0.5)T CPU 0.013431 0.011241 0.013870 0.013895
Val 2.516e− 010 2.516e− 010 1.0195e− 009 1.7879e− 007
It 34 20 32 26

(500, 50)T CPU 0.017173 0.012883 0.015482 0.014889
Val 3.4362e− 011 5.0377e− 011 3.3054e− 010 5.1109e− 007
It 26 26 − 24

(100, 100)T CPU 0.01655 0.014466 − 0.013880
Val 1.9425e− 010 1.9425e− 010 − 5.3603e− 007

Table 2: Numerical results for Example 4.2.
Methods VNM1 VNM2 NM Halley

Parameters α = 2,β = 2,γ = 1.8 β = 2,γ = 1.8
Initials It 15 11 − 14
(2, 1, 1)T CPU 0.019879 0.020301 − 0.023726

Val 1.2505e− 007 2.9591e− 007 − 3.4397e− 007
It 15 14 − 22

(1, 0, 1)T CPU 0.019571 0.019100 − 0.019471
Val 9.4170e− 007 5.3605e− 007 − 6.9823e− 007
It 11 11 − 18

(10, 10, 10)T CPU 0.020074 0.018517 − 0.021271
Val 9.4538e− 007 5.5233e− 007 − 1.6925e− 007

Table 3: Numerical results for Example 4.3.
Methods VNM1 VNM2 NM Halley

Parameters α = 3,β = 3,γ = 3 β = 3,γ = 3
Initials It 4 4 − 12

(0.1, 0.1, 0.1)T CPU 0.020039 0.019090 − 0.020479
Val 1.3221e− 009 1.2899e− 009 − 6.2214e− 007
It 2 2 10 8

(0.01, 0.01, 0.01)T CPU 0.018182 0.027469 0.020194 0.020317
Val 9.3543e− 010 9.3543e− 010 2.3049e− 007 2.9993e− 007

Table 4: Numerical results for Examples 4.4-4.9.
Examples VNM1 VNM2 NM Halley

It 23 21 − 59
Example 4.4 CPU 0.012871 0.024354 − 0.026726

Val 3.9611e− 007 2.6462e− 007 − 5.1715e− 007
It 10 14 26 22

Example 4.5 CPU 0.011445 0.010914 0.011730 0.011648
Val 1.1887e− 007 6.0749e− 007 2.0876 6.7433e− 007
It 33 11 100 100

Example 4.6 CPU 0.014556 0.023012 0.018521 0.018835
Val 2.7697e− 007 2.7240e− 007 2.7136 − 007 1.522e− 007
It 46 45 60 58

Example 4.7 CPU 0.01534 0.02774 0.01554 0.015613
Val 3.9978e− 007 2.6487e− 007 1.8625 − 007 5.2191e− 007
It 12 9 − 23

Example 4.8 CPU 0.01500 0.01189 − 0.015119
Val 1.9616e− 007 7.2264e− 007 − 4.2569e− 007
It 10 9 − −

Example 4.9 CPU 0.021609 0.027686 − −
Val 7.7727e− 007 6.6277e− 007 − −

5. Conclusion

In this paper, two variants of Newton iteration method are investigated for solving the systems of
nonlinear equations. These approaches can be regarded as the generalized forms of the classical Newton
method and the Halley method. The proposed approaches are illustrated by some numerical examples
and compared with the classical Newton method and the Halley method. Numerical test results demon-
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strate that two variants of Newton iteration method are very efficient.
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