
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 11 (2018), 237–251

Research Article

Journal Homepage: www.isr-publications.com/jnsa

Positive solutions for a class of fractional boundary value
problems with fractional boundary conditions
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Abstract

In this paper, we study the solvability of a nonlinear fractional differential equation under fractional integral boundary
conditions. Via a mixed monotone operator method, some new results on the existence and uniqueness of a positive solution for
the considered model are obtained. Moreover, we provide iterative sequences for approximating the solution. Some examples
are also presented in order to illustrate the obtained result.
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1. Introduction

Fractional differential equations have received increasing attention during recent years due to their
wide range of applications in a variety of disciplines in science and engineering, such as physics, control
theory, chemistry, biology, ecology, aerodynamics, etc. It was shown that derivatives and integrals of
fractional type provide an adequate mathematical modeling of real objects and processes. For details, we
refer the reader to [6, 12, 13, 15, 19, 21–23] and references therein.

Recently, basing on nonlinear analysis tools, several existence results for different classes of fractional
boundary value problems were established. In this direction, we refer to [1–5, 7, 8, 10, 17, 18, 20, 22, 26–
30] and references therein. In particular, many works have been devoted to the study of the existence
of solutions for fractional differential equations under different kinds of integral (or fractional integral)
boundary conditions, see [2–5, 7, 8, 17, 26–29] and references therein. The motivation of a such study
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is due to the importance and numerous applications of integral boundary conditions in different fields,
such as blood flow problems, chemical engineering, thermo-elasticity, etc. See, for example [2, 11, 24, 25].

In this paper, we are concerned with the solvability of a class of nonlinear fractional differential equa-
tions with fractional integral boundary conditions. More precisely, we are concerned with the fractional
boundary value problem{

Dα0 u(t) + f(t,u(t), (Hu)(t)) + g(t,u(t)) = 0, 0 < t < 1,
u(0) = u ′(0) = 0, u(1) = λ

(
(Iβ0 u)(1) + (Iγ0 u)(1)

)
,

(1.1)

where 2 < α < 3, λ > 0, β,γ > 0, Dα0 is the Riemann-Liouville left-sided fractional derivative of order α,
I
q
0 , q ∈ {β,γ} is the Riemann-Liouville left-sided fractional integral of order q, f : [0, 1]× [0,∞)× [0,∞)→
[0,∞), g : [0, 1]× [0,∞) → [0,∞), and H : C([0, 1]; R) → C([0, 1]; R) is a certain operator (not necessarily
linear). We provide sufficient conditions for the existence and uniqueness of positive solutions for Problem
(1.1). Moreover, we present an iterative algorithm that converges to the solution. Some examples are also
presented in order to illustrate the obtained result. Our approach is based on a mixed monotone operator
method introduced in [29].

The paper is organized as follows. In Section 2, we recall briefly some basic concepts on fractional
calculus. In Section 3, we define the adequate functional space on which problem (1.1) is posed, we
compute its Green’s function, and then we obtain an integral formulation of the problem. In Section 4, we
recall the basic tools related to the mixed monotone operator method. In Section 5, we state and prove our
main result (Theorem 5.1). In Section 6, several examples are presented in order to illustrate the obtained
result. Finally, in Section 7, a comparison with existence results from the literature is presented.

2. Preliminaries on fractional calculus

Let (a,b) ∈ R2 with a < b.

Definition 2.1 ([19]). Let f ∈ L1([a,b]; R). The Riemann-Liouville left-sided fractional integral of order
α > 0 of f is defined by

(Iαaf)(t) =
1
Γ(α)

∫t
a

f(s)

(t− s)1−α ds, a.e. t ∈ [a,b],

where Γ is the Gamma function. For α = 0, we take I0af = f.

Lemma 2.2 ([19]). If α1,α2 > 0, then

(Iα1
a I

α2
a f)(t) = (Iα1+α2

a f)(t), a.e. t ∈ [a,b],

for every f ∈ L1([a,b]; R).

Lemma 2.3 ([16]). If α > 0, p > 1, and p > 1
α , then Iαaf ∈ C([a,b]; R) for every f ∈ Lp([a,b]; R).

Lemma 2.4 ([19]). Let µ,α > 0. Then

Iµa(t− a)
α−1 =

Γ(α)

Γ(α+ µ)
(t− a)α+µ−1, t > a.

Let n ∈ N, n > 1. By ACn([a,b], R), we denote the space of all functions f : [a,b] → R that are
absolutely continuous together with the classical derivatives f,Df, . . . ,Dn−1f.

Definition 2.5 ([16]). Let n − 1 < α < n for some n ∈ N, n > 1, and f ∈ L1([a,b]; R). We say that
f possesses the left-sided Riemann-Liouville derivative Dαa of order α on the interval [a,b] if In−αa f ∈
ACn([a,b], R). By this derivative we mean the derivative Dn(In−αa f), i.e.,

Dαaf(t) =
1

Γ(n−α)
Dn

(∫t
a

f(s)

(t− s)1−n+α ds

)
, a.e. t ∈ [a,b].
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Lemma 2.6 ([16]). Let n − 1 < α < n for some n ∈ N, n > 2, and f ∈ L1([a,b]; R). Then f has the
left-sided Riemann-Liouville derivative Dαaf of order α on the interval [a,b] if and only if there exist constants
c0, c1, . . . , cn−1 ∈ R and a function ϕ ∈ L1([a,b]; R) such that

f(t) =
c0

Γ(α−n+ 1)
(t− a)α−n +

c1

Γ(α−n+ 2)
(t− a)α−n+1

+ · · ·+ cn−1

Γ(α)
(t− a)α−1 + Iαaϕ(t), a.e. t ∈ [a,b].

(2.1)

In such a case, we have
ci = D

i(In−αa f)(a), i = 0, 1, 2, . . . ,n− 1

and
Dαaf(t) = ϕ(t), a.e. t ∈ [a,b].

3. Integral representation of solutions

In order to obtain an integral formulation of problem (1.1), we need the computation of its Green’s
function. Here, we compute rigorously the Green’s function associated to problem (1.1) with the adequate
functional spaces.

By ACαa([a,b]; R), we denote the set of functions f : [a,b]→ R that belong to L1([a,b]; R), and having
the representation (2.1). We introduce the functional space Xαa([a,b]; R) defined by

Xαa([a,b]; R) = ACαa([a,b]; R)∩C1([a,b]; R).

We have the following characterization of the above functional space in the case 2 < α < 3.

Lemma 3.1. Let 2 < α < 3. For every u ∈ Xα0 ([0, 1]; R), we have

u(0) = u ′(0) = 0.

Proof. Let u ∈ Xα0 ([0, 1]; R). Then the function u has the representation (2.1) with n = 3, that is,

u(t) =
c0

Γ(α− 2)
tα−3 +

c1

Γ(α− 1)
tα−2 +

c2

Γ(α)
tα−1 +

1
Γ(α)

∫t
0
ϕ(s)(t− s)α−1 ds, a.e. t ∈ [0, 1],

where ci ∈ R, i = 0, 1, 2, and ϕ = Dα0 u ∈ L1([0, 1]; R). Since u is continuous at 0, we have

lim
t→0+

u(t) = u(0).

On the other hand, since 2 < α < 3, we have

lim
t→0+

u(t) = lim
t→0+

(
c0

Γ(α− 2)
tα−3 +

1
Γ(α)

∫t
0
ϕ(s)(t− s)α−1 ds

)
.

Observe that ∣∣∣∣∫t
0
ϕ(s)(t− s)α−1 ds

∣∣∣∣ 6 ∫t
0
|ϕ(s)|ds.

Therefore,

lim
t→0+

∫t
0
ϕ(s)(t− s)α−1 ds = 0.

Hence, we have
u(0) = lim

t→0+
u(t) = lim

t→0+

c0

Γ(α− 2)
tα−3,
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which yields c0 = 0 and u(0) = 0. Next, it follows that

u(t) =
c1

Γ(α− 1)
tα−2 +

c2

Γ(α)
tα−1 +

1
Γ(α)

∫t
0
ϕ(s)(t− s)α−1 ds, a.e. t ∈ [0, 1].

Differentiating with respect to t, we get

u ′(t) =
c1(α− 2)
Γ(α− 1)

tα−3 +
c2(α− 1)
Γ(α)

tα−2 +
(α− 1)
Γ(α)

∫t
0
ϕ(s)(t− s)α−2 ds, a.e. t ∈ [0, 1].

Since u ′ is continuous at 0, we have
lim
t→0+

u ′(t) = u ′(0).

On the other hand, we have

lim
t→0+

u ′(t) = lim
t→0+

(
c1(α− 2)
Γ(α− 1)

tα−3 +
(α− 1)
Γ(α)

∫t
0
ϕ(s)(t− s)α−2 ds

)
.

Similarly, we have

lim
t→0+

∫t
0
ϕ(s)(t− s)α−2 ds = 0,

which yields

u ′(0) = lim
t→0+

c1(α− 2)
Γ(α− 1)

tα−3.

Hence, we obtain c1 = 0 and u ′(0) = 0.

From Lemma 3.1, we deduce immediately the following characterization of the functional space
Xα0 ([0, 1]; R) for 2 < α < 3.

Lemma 3.2. Let 2 < α < 3. For every u ∈ Xα0 ([0, 1]; R), there exists c(u) ∈ R such that

u(t) =
c(u)

Γ(α)
tα−1 + (Iα0 ϕ)(t), a.e. t ∈ [0, 1],

where ϕ = Dα0 u ∈ L1([a,b]; R).

Lemma 3.3. Let 2 < α < 3 and β,γ > 0. For every u ∈ Xα0 ([0, 1]; R), we have

(Iβ0 u)(1) + (Iγ0 u)(1) =
(

1
Γ(α+β)

+
1

Γ(α+ γ)

)
c(u) +

∫ 1

0
(1 − s)α−1

[
(1 − s)β

Γ(α+β)
+

(1 − s)γ

Γ(α+ γ)

]
ϕ(s)ds,

where ϕ = Dα0 u ∈ L1([a,b]; R).

Proof. Let u ∈ Xα0 ([0, 1]; R). Using Lemma 3.2, we obtain

(Iβ0 u)(t) =
c(u)

Γ(α)
I
β
0 t
α−1 + (Iβ0 I

α
0 ϕ)(t), a.e. t ∈ [0, 1].

On the other hand, from Lemmas 2.4 and 2.2, we have

I
β
0 t
α−1 =

Γ(α)

Γ(α+β)
tα+β−1

and
(Iβ0 I

α
0 ϕ)(t) = (Iα+β0 ϕ)(t), a.e. t ∈ [0, 1].
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Therefore,

(Iβ0 u)(t) =
c(u)

Γ(α+β)
tα+β−1 + (Iα+β0 ϕ)(t), a.e. t ∈ [0, 1].

From Lemma 2.3, we have Iβ0 u ∈ C([0, 1]; R). Hence,

(Iβ0 u)(1) = lim
t→1−

(Iβ0 u)(t) =
c(u)

Γ(α+β)
+

1
Γ(α+β)

∫ 1

0
(1 − s)α+β−1ϕ(s)ds. (3.1)

Similarly, we obtain

(Iγ0 u)(1) =
c(u)

Γ(α+ γ)
+

1
Γ(α+ γ)

∫ 1

0
(1 − s)α+γ−1ϕ(s)ds. (3.2)

Adding (3.1) to (3.2), the desired result follows.

Lemma 3.4. Let 2 < α < 3, λ > 0, and β,γ > 0. Suppose that

[C(λ,α,β,γ)]−1 :=
1
Γ(α)

−
λ

Γ(α+β)
−

λ

Γ(α+ γ)
6= 0. (3.3)

Let u ∈ Xα0 ([0, 1]; R) be such that

u(1) = λ
(
(Iβ0 u)(1) + (Iγ0 u)(1)

)
. (3.4)

Then

u(t) =

∫ 1

0
G(t, s)[−ϕ(s)]ds, t ∈ [0, 1],

where ϕ = Dα0 u ∈ L1([a,b]; R) and

G(t, s) =
C(λ,α,β,γ)

Γ(α)

{
tα−1(1 − s)α−1ψ(s) − 1

C(λ,α,β,γ)(t− s)
α−1, 0 6 s 6 t 6 1,

tα−1(1 − s)α−1ψ(s), 0 6 t 6 s 6 1,

where

ψ(s) =

[
1
Γ(α)

−
λ(1 − s)β

Γ(α+β)
−
λ(1 − s)γ

Γ(α+ γ)

]
, s ∈ [0, 1].

Proof. From Lemma 3.2, we have

u(t) =
c(u)

Γ(α)
tα−1 + (Iα0 ϕ)(t), a.e. t ∈ [0, 1],

where ϕ = Dα0 u ∈ L1([a,b]; R). On the other hand, since u is continuous in [0, 1], the above equality can
be extended to all the inteval [0, 1], i.e.,

u(t) =
c(u)

Γ(α)
tα−1 + (Iα0 ϕ)(t), t ∈ [0, 1].

Taking t = 1, we obtain

u(1) =
c(u)

Γ(α)
+

1
Γ(α)

∫ 1

0
(1 − s)α−1ϕ(s)ds.

Hence, by(3.4) and Lemma 3.3, we obtain

c(u)

Γ(α)
+

1
Γ(α)

∫ 1

0
(1 − s)α−1ϕ(s)ds
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=

(
λ

Γ(α+β)
+

λ

Γ(α+ γ)

)
c(u) +

∫ 1

0
(1 − s)α−1

[
λ(1 − s)β

Γ(α+β)
+
λ(1 − s)γ

Γ(α+ γ)

]
ϕ(s)ds,

which from (3.3) yields

c(u) = C(λ,α,β,γ)
∫ 1

0
(1 − s)α−1ψ(s)[−ϕ(s)]ds.

Therefore, we obtain

u(t) =
C(λ,α,β,γ)

Γ(α)

∫ 1

0
tα−1(1 − s)α−1ψ(s)[−ϕ(s)]ds−

1
Γ(α)

∫t
0
(t− s)α−1[−ϕ(s)]ds

for every t ∈ [0, 1]. Next, we have

u(t) =

∫t
0

C(λ,α,β,γ)
Γ(α)

[
tα−1(1 − s)α−1ψ(s) −

1
C(λ,α,β,γ)

(t− s)α−1
]
[−ϕ(s)]ds

+

∫ 1

t

C(λ,α,β,γ)
Γ(α)

tα−1(1 − s)α−1ψ(s)[−ϕ(s)]ds, t ∈ [0, 1],

which yields the desired result.

Lemma 3.5. Let 2 < α < 3 and β,γ > 0. Suppose that

0 < λ
(

1
Γ(α+β)

+
1

Γ(α+ γ)

)
<

1
Γ(α)

. (3.5)

Then

(i) G is continuous in [0, 1]× [0, 1];
(ii) for every (t, s) ∈ [0, 1]× [0, 1], we have

tα−1µ(s) 6 G(t, s) 6 tα−1ν(s),

where

µ(s) =
C(λ,α,β,γ)

Γ(α)
(1 − s)α−1

[
λ

Γ(α+β)
(1 − (1 − s)β) +

λ

Γ(α+ γ)
(1 − (1 − s)γ)

]
and

ν(s) =
C(λ,α,β,γ)

Γ(α)
(1 − s)α−1ψ(s);

(iii) G(t, s) > 0 for every (t, s) ∈ [0, 1]× [0, 1].

Proof. Properties (i) and (ii) follow immediately from the definition of the Green’s function G. On the
other hand, from (3.5), we have

C(λ,α,β,γ) > 0.

Therefore, by (ii) we deduce (iii).

The following result is an immediate consequence of Lemma 3.4.

Lemma 3.6. Let 2 < α < 3 λ > 0, and β,γ > 0 be such that (3.3) is satisfied. Let y ∈ L1([a,b]; R). Then the
fractional boundary value problem{

Dα0 u(t) + y(t) = 0, 0 < t < 1,
u(0) = u ′(0) = 0, u(1) = λ

(
(Iβ0 u)(1) + (Iγ0 u)(1)

)
has a unique solution in Xα0 ([0, 1]; R), which is given by

u(t) =

∫ 1

0
G(t, s)y(s)ds, t ∈ [0, 1].
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Now, we are able to give an equivalent integral formulation of problem (1.1).
problem (1.1) is investigated under the following assumptions:

(A1) 2 < α < 3 and β,γ > 0;
(A2) (3.5) is satisfied;
(A3) f : [0, 1]× [0,∞)× [0,∞)→ [0,∞) and g : [0, 1]× [0,∞)→ [0,∞) are continuous functions;
(A4) H : C([0, 1]; R)→ C([0, 1]; R) satisfies

u ∈ C([0, 1]; [0,∞)) =⇒ Hu ∈ C([0, 1]; [0,∞)).

For u ∈ C([0, 1]; [0,∞)), we denote by Tu the function defined by

(Tu)(t) =

∫ 1

0
G(t, s) [f(s,u(s), (Hu)(s)) + g(s,u(s))] ds, t ∈ [0, 1]. (3.6)

From the above assumptions and the properties (i) and (iii) of Lemma 3.5, it can be easily seen that

T : C([0, 1]; [0,∞))→ C([0, 1]; [0,∞))

is a well-defined operator. Moreover, from Lemma 3.6, u ∈ Xα0 ([0, 1]; R) is a solution of (1.1) if and only if
u ∈ C([0, 1]; [0,∞)) is a fixed point of T .

4. The mixed monotone operator method

From the above study, we know that u ∈ Xα0 ([0, 1]; R) is a solution of (1.1) if and only if u ∈
C([0, 1]; [0,∞)) is a fixed point of the operator T defined by (3.6). In order to study the existence of
fixed points of the operator T , we shall use the mixed monotone operator method. In this section, we
recall the basic tools related to this method.

Let (E, ‖ · ‖) be a real Banach space. We denote by θE the zero vector of E.

Definition 4.1. A nonempty closed convex subset P of E is said to be a cone in E if it satisfies the following
conditions:

(i) (r, x) ∈ [0,∞)× P =⇒ rx ∈ P;
(ii) (x,−x) ∈ P× P =⇒ x = θE.

Let P be a cone in E. Then P induces a partial order 6P in E defined by

(x,y) ∈ E× E, x 6P y⇐⇒ y− x ∈ P.

By x <P y, (x,y) ∈ E× E, we mean x 6P y and x 6= y.

Definition 4.2. Let P be a cone in E. If there exists a constant C > 0 such that

(x,y) ∈ E× E, θE 6P x 6P y =⇒ ‖x‖ 6 C‖y‖,

then the cone P is said to be normal. In this case, the smallest constant C satisfying the above property is
called the normal constant of P.

For (x,y) ∈ E× E, the notation x ∼ y means that there exist constants ρ, τ > 0 such that

τy 6P x 6P ρy.

It can be easily seen that ∼ is an equivalence relation in E.
For h ∈ E, θE <P h, we denote by Ph the subset of P defined by

Ph = {x ∈ P : x ∼ h}.

For more details on cones in Banach spaces, we refer the reader to [14].
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Definition 4.3. An operator S : E→ E is said to be increasing (Resp. decreasing) if for every (x,y) ∈ E×E,
x 6P y implies that Sx 6P Sy (Resp. Sy 6P Sx).

Definition 4.4. An operator A : P× P → P is said to be mixed monotone if A(x,y) is increasing in x, and
decreasing in y, i.e.,

(x,y), (u, v) ∈ P× P, x 6P u, y >P v =⇒ A(x,y) 6P A(u, v).

Definition 4.5. An operator B : P → P is said to be subhomogeneous if

(t, x) ∈ (0, 1)× P =⇒ B(tx) >P tBx.

The following result appears in [29], and it is the main tool used in our study.

Lemma 4.6. Let (E, ‖ · ‖) be a real Banach space, and let P be a normal cone in E. Let h ∈ E, θE <P h, and
τ ∈ (0, 1). Let us consider two operators A : P× P → P and B : P → P. We suppose that A is a mixed monotone
operator satisfying

A(tx, t−1y) >P t
τA(x,y), t ∈ (0, 1), (x,y) ∈ P× P. (4.1)

We suppose also that B is an increasing subhomogeneous operator satisfying the following conditions:

(i) there exists h0 ∈ P such that A(h0,h0) ∈ Ph and Bh0 ∈ Ph;
(ii) there exists a constant δ0 > 0 such that

A(x,y) >P δ0Bx, (x,y) ∈ P× P.

Then

(a) A : Ph × Ph → Ph and B : Ph → Ph;
(b) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 6P u0 <P v0, u0 6P A(u0, v0) +Bu0 6P A(v0,u0) +Bv0 6P v0;

(c) there exists a unique solution x∗ ∈ Ph such that

x∗ = A(x∗, x∗) +Bx∗;

(d) for any initial values x0,y0 ∈ Ph, constructing successively the sequences

xn = A(xn−1,yn−1) +Bxn−1, yn = A(yn−1, xn−1) +Byn−1, n = 1, 2, . . . ,

we have ‖xn − x∗‖ → 0 and ‖yn − x∗‖ → 0 as n→∞.

Now, we are ready to prove our main result.

5. Main result

In this section, sufficient conditions are provided for the existence and uniqueness of positive solutions
for problem (1.1). An iterative algorithm is also provided in order to approximate the solution.

We will work in the Banach space C([0, 1]; R) equipped with the standard norm ‖ · ‖∞ defined by

‖u‖∞ = max{|u(t)| : 0 6 t 6 1}, u ∈ C([0, 1]; R).

In C([0, 1]; R), we consider the cone P = C([0, 1]; [0,∞)). It can be easily seen that P is a normal cone with
normal constant equal to 1. The partial order 6P induced by the cone P is defined by

(u, v) ∈ C([0, 1]; R)×C([0, 1]; R), u 6P v⇐⇒ u(t) 6 v(t), 0 6 t 6 1.

The following additional assumptions are needed.
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(A5) There exists t0 ∈ [0, 1] such that g(t0, 0) > 0.
(A6) For fixed t ∈ [0, 1], f(t, x,y) is increasing in x, and decreasing in y; and g(t, x) is increasing in x.
(A7) For every (k, t, x) ∈ (0, 1)× [0, 1]× [0,∞), we have

g(t,kx) > kg(t, x).

(A8) There exists a constant τ ∈ (0, 1) such that

f(t,kx,k−1y) > kτf(t, x,y), (k, t, x,y) ∈ (0, 1)× [0, 1]× [0,∞)× [0,∞).

(A9) There exists a constant δ0 > 0 such that

f(t, x,y) > δ0g(t, x), (t, x,y) ∈ [0, 1]× [0,∞)× [0,∞).

(A10) H : C([0, 1]; R)→ C([0, 1]; R) satisfies
(H1) (u, v) ∈ P× P, u 6P v =⇒ Hu 6P Hv;
(H2) H(ku) >P kHu for every (k,u) ∈ (0, 1)× P.

Our main result in this paper is the following.

Theorem 5.1. Suppose that assumptions (A1)-(A10) are satisfied. Let h ∈ C([0, 1]; R) be the function defined by
h(t) = tα−1, t ∈ [0, 1]. Then

(i) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 6P u0 <P v0,

and, moreover, for every t ∈ [0, 1], we have

u0(t) 6
∫ 1

0
G(t, s) [f(s,u0(s), (Hv0)(s)) + g(s,u0(s))] ds,

v0(t) >
∫ 1

0
G(t, s) [f(s, v0(s), (Hu0)(s)) + g(s, v0(s))] ds;

(ii) problem (1.1) has a unique positive solution x∗ ∈ Ph;
(iii) for any initial values x0,y0 ∈ Ph, constructing successively the sequences

xn(t) =

∫ 1

0
G(t, s) [f(s, xn−1(s), (Hyn−1)(s)) + g(s, xn−1(s))] ds, t ∈ [0, 1], n = 1, 2, . . .

and

yn(t) =

∫ 1

0
G(t, s) [f(s,yn−1(s), (Hxn−1)(s)) + g(s,yn−1(s))] ds, t ∈ [0, 1], n = 1, 2, . . . ,

we have ‖xn − x∗‖∞ → 0 and ‖yn − x∗‖∞ → 0 as n→∞.

Proof. It was shown in Section 3 that u ∈ Xα0 ([0, 1]; R) is a solution of (1.1) if and only if u ∈ P is a fixed
point of T , where T : P → P is defined by (3.6). Let us introduce the operators A : P×P → P and B : P → P

defined by

A(u, v)(t) =
∫ 1

0
G(t, s)f(s,u(s), (Hv)(s))ds, (u, v) ∈ P× P, t ∈ [0, 1]

and

(Bu)(t) =

∫ 1

0
G(t, s)g(s,u(s))ds, u ∈ P, t ∈ [0, 1].



I. Azman, M . Jleli, B. López, K. Sadarangani, B. Samet, J. Nonlinear Sci. Appl., 11 (2018), 237–251 246

Observe that u ∈ P is a fixed point of T if and only if u ∈ P satisfies the operator equation A(u,u) +Bu =
u.

In the sequel, we check that assumptions of Lemma 4.6 are satisfied. From (A6), (H1), and the positiv-
ity of the Green’s function G (see property (iii) in Lemma 3.5), it is easily seen that A is a mixed monotone
operator and B is an increasing operator. Let k ∈ (0, 1) and (x,y) ∈ P× P. We have

A(kx,k−1y)(t) =

∫ 1

0
G(t, s)f(s,kx(s), (H(k−1y))(s))ds, t ∈ [0, 1].

On the other hand, from (H2) we have

Hy = H(k(k−1y)) >P kH(k
−1y),

that is,
H(k−1y)(s) 6 k−1(Hy)(s), s ∈ [0, 1].

Using the above inequality, (A6), and the positivity of the Green’s function G, we obtain

A(kx,k−1y)(t) >
∫ 1

0
G(t, s)f(s,kx(s),k−1(Hy)(s))ds, t ∈ [0, 1],

which implies by (A8) that

A(kx,k−1y)(t) > kτ
∫ 1

0
G(t, s)f(s, x(s), (Hy)(s))ds = kτA(x,y)(t), t ∈ [0, 1].

Therefore, condition (4.1) of Lemma 4.6 is satisfied. Next, by assumption (A7) and the positivity of the
Green’s function G, we see easily that B is a subhomogeneous operator .

Next, we take the function
h(t) = tα−1, t ∈ [0, 1].

Clearly, we have h ∈ P and h 6≡ 0. Taking into account property (ii) in Lemma 3.5, assumptions (A4) and
(A6), and the positivity of the Green’s function G, we get

A(h,h)(t) =
∫ 1

0
G(t, s)f(s,h(s), (Hh)(s))ds 6

∫ 1

0
G(t, s)f(s, 1, 0)ds 6 tα−1

∫ 1

0
ν(s)f(s, 1, 0)ds, t ∈ [0, 1],

that is,

A(h,h) 6P

(∫ 1

0
ν(s)f(s, 1, 0)ds

)
h. (5.1)

Similarly, using the above assumptions and (H1), we obtain

A(h,h)(t) =
∫ 1

0
G(t, s)f(s,h(s), (Hh)(s))ds

>
∫ 1

0
G(t, s)f(s, 0, (H1)(s))ds > tα−1

∫ 1

0
µ(s)f(s, 0, (H1)(s))ds, t ∈ [0, 1],

that is,

A(h,h) >P

(∫ 1

0
µ(s)f(s, 0, (H1)(s))ds

)
h. (5.2)

Combining (5.1) with (5.2), we obtain

α1h 6P A(h,h) 6P α2h, (5.3)
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where

α1 =

∫ 1

0
µ(s)f(s, 0, (H1)(s))ds and α2 =

∫ 1

0
ν(s)f(s, 1, 0)ds.

In what follows, we shall prove that αi > 0, i = 1, 2. To do this, it is sufficient to prove that α1 > 0 (since
α1 6 α2). In fact, since g(t0, 0) > 0 for some t0 ∈ [0, 1] (from assumption (A5)), the continuity of g implies
the existence of a certain subest E of [0, 1] with a non-zero Lebesgue measure such that

g(t, 0) > 0, t ∈ E. (5.4)

Now, taking in consideration assumption (A9), we have

f(s, 0, (H1)(s)) > δ0g(s, 0), s ∈ [0, 1]. (5.5)

Therefore, by (5.4) and (5.5), we have

α1 =

∫ 1

0
µ(s)f(s, 0, (H1)(s))ds

=

∫ 1

0

C(λ,α,β,γ)
Γ(α)

(1 − s)α−1
[

λ

Γ(α+β)
(1 − (1 − s)β) +

λ

Γ(α+ γ)
(1 − (1 − s)γ)

]
× f(s, 0, (H1)(s))ds

>
δ0C(λ,α,β,γ)

Γ(α)

∫ 1

0
(1 − s)α−1

[
λ

Γ(α+β)
(1 − (1 − s)β) +

λ

Γ(α+ γ)
(1 − (1 − s)γ)

]
× g(s, 0)ds

>
δ0C(λ,α,β,γ)

Γ(α)

∫
E

(1 − s)α−1
[

λ

Γ(α+β)
(1 − (1 − s)β) +

λ

Γ(α+ γ)
(1 − (1 − s)γ)

]
× g(s, 0)ds > 0.

Hence, we deduce by (5.3) that A(h,h) ∈ Ph.
Using similar arguments as above, for any t ∈ [0, 1], we have

β1h 6P Bh 6P β2h,

where

β1 =

∫ 1

0
µ(s)g(s, 0)ds > 0 and β2 =

∫ 1

0
ν(s)g(s, 1)ds.

Therefore, we have Bh ∈ Ph. Hence, assumption (i) of Lemma 4.6 is satisfied with h0 = h.
Now, let (x,y) ∈ P× P. Using assumption (A9), we obtain

A(x,y)(t) =
∫ 1

0
G(t, s)f(s, x(s), (Hy)(s))ds > δ0

∫ 1

0
G(t, s)g(s, x(s))ds = δ0(Bx)(t), t ∈ [0, 1].

Hence, we have
A(x,y) >P δ0Bx, (x,y) ∈ P× P,

and assumption (ii) of Lemma 4.6 is satisfied.
Finally, applying Lemma 4.6, the desired result follows.

6. Examples

In order to illustrate the obtained result given by Theorem 5.1, some examples are presented in this
section.

Example 6.1. Consider the fractional boundary value problem


D

5
2
0u(t) + t+ t

3 + 2
√
u(t) + 1

[u(t)]p+1 = 0, 0 < t < 1,

u(0) = u ′(0) = 0, u(1) =
∫ 1

0
u(s)ds,

(6.1)

where 0 < p < 1.
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Problem (6.1) is a particular case of problem (1.1) with α = 5
2 , λ = 1

2 , β = γ = 1, f(t, x,y) = t+
√
x+

1
yp+1 , g(t, x) = t3 +

√
x, and H : C([0, 1]; R) → C([0, 1]; R) is the operator defined by Hu = u for every

u ∈ C([0, 1]; R).
In this considered case, we have

λ

(
1

Γ(α+β)
+

1
Γ(α+ γ)

)
=

1
Γ
(7

2

) ≈ 0.3095 and
1
Γ(α)

=
1

Γ
(5

2

) ≈ 0.7524.

Observe that

0 < λ
(

1
Γ(α+β)

+
1

Γ(α+ γ)

)
<

1
Γ(α)

.

Therefore, assumptions (A1) and (A2) of Theorem 5.1 are satisfied. Moreover, it is clear that f : [0, 1]×
[0,∞)× [0,∞) → [0,∞) and g : [0, 1]× [0,∞) → [0,∞) are continuous functions, and then assumption
(A3) is satisfied. Assumptions concerning the operator H ((A4) and (A10)) are trivial. On the other hand,
we have g(1, 0) = 1 > 0. Therefore, assumption (A5) is satisfied. It is easily seen that assumption (A6) is
satisfied. In order to check assumption (A7), let us take (k, t, x) ∈ (0, 1)× [0, 1]× [0,∞). We have

g(t,kx) = t3 +
√
kx > kt3 +

√
k
√
x > kt3 + k

√
x = k

(
t3 +
√
x
)
= kg(t, x).

Then assumption (A7) is satisfied. Next, let (k, t, x,y) ∈ (0, 1)× [0, 1]× [0,∞)× [0,∞). We have

f(t,kx,k−1y) = t+
√
kx+

1
k−pyp + 1

= t+
√
k
√
x+

kp

yp + kp

> t+
√
k
√
x+

kp

yp + 1

> kmax{ 1
2 ,p}

(
t+
√
x+

1
yp + 1

)
= kmax{ 1

2 ,p}f(t, x,y).

Hence assumption (A8) is satisfied with τ = max{ 1
2 ,p}. Finally, it can be easily seen that assumption (A9)

is satisfied with δ0 = 1. Therefore, all assumptions of Theorem 5.1 are satisfied. As consequence, problem
6.1 admits a unique solution x∗ ∈ Ph, where h(t) = t

3
2 , t ∈ [0, 1].

Next, we present some examples of operators H : C([0, 1]; R) → C([0, 1]; R) satisfying assumptions
(A4) and (A10) of Theorem 5.1.

Example 6.2. Let ϕ : [0, 1] → [0, 1] be a continuous function. Define the operator H : C([0, 1]; R) →
C([0, 1]; R) by

(Hu)(t) = u(ϕ(t)), t ∈ [0, 1]

for every u ∈ C([0, 1]; R). Clearly, such operator satisfies assumptions (A4) and (A10).

Example 6.3. Let ϕ : [0, 1] → [0,∞) be a continuous function. Define the operator H : C([0, 1]; R) →
C([0, 1]; R) by

(Hu)(t) = ϕ(t)u(t), t ∈ [0, 1]

for every u ∈ C([0, 1]; R). Then the operator H satisfies assumptions (A4) and (A10).

Example 6.4. Let ϕ : [0, 1] → [0,∞) be a continuous function. Define the operator H : C([0, 1]; R) →
C([0, 1]; R) by

(Hu)(t) = ϕ(t)u(t), t ∈ [0, 1]

for every u ∈ C([0, 1]; R). Then the operator H satisfies assumptions (A4) and (A10).

Notice that the composition and multiplication operators on C([0, 1]; R) are linear. The next examples
present nonlinear operators H : C([0, 1]; R)→ C([0, 1]; R) satisfying the required assumptions.
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Example 6.5. For u ∈ C([0, 1]; R), we define the mapping Hu : [0, 1]→ R by

(Hu)(t) = max{|u(s)| : 0 6 s 6 t}, t ∈ [0, 1].

It was proved in [9] that H maps C([0, 1]; R) into itself. Moreover, it can be easily seen that assumptions
(A4) and (A10) are satisfied by the operator H.

Example 6.6. Let r ∈ (0, 1). For u ∈ C([0, 1]; R), we define the mapping Hu : [0, 1]→ R by

(Hu)(t) = ur(t), t ∈ [0, 1].

It can be easily seen that assumptions (A4) and (A10) are satisfied by the operator H.

Example 6.7. Using the same arguments as in Example 6.1, if H : C([0, 1]; R)→ C([0, 1]; R) is any operator
between the ones appearing in Examples 6.2-6.6, then the fractional boundary value problem

D
5
2
0u(t) + t+ t

3 + 2
√
u(t) + 1

[(Hu)(t)]p+1 = 0, 0 < t < 1,

u(0) = u ′(0) = 0, u(1) =
∫ 1

0
u(s)ds,

where 0 < p < 1, admits a unique solution x∗ ∈ Ph, where h(t) = t
3
2 , t ∈ [0, 1].

7. Comparison with existing results

In [7], the authors considered the fractional boundary value problem
Dα0 u(t) + F(t,u(t)) = 0, 0 < t < 1,

u(0) = u ′(0) = 0, u(1) = µ
∫ 1

0
u(s)ds,

(7.1)

where 2 < α < 3, 0 < µ < α and F : [0, 1]× [0,∞)→ [0,∞). Observe that problem (6.1) is a particular case
of problen (7.1) with α = 5

2 , µ = 1 and F(t, x) = t+ t3 + 2
√
x+ 1

xp+1 .
Sufficient conditions for the existence of solutions for problem (7.1) were provided in [7]. Before

recalling the main result in [7], we need to introduce some notations.
We put

F0 := lim
x→0+

(
min
t∈[ 1

2 ,1]

F(t, x)
x

)
, F∞ := lim

x→∞
(

min
t∈[ 1

2 ,1]

F(t, x)
x

)
and

F0 := lim
x→0+

(
max
t∈[0,1]

F(t, x)
x

)
, F∞ := lim

x→∞
(

max
t∈[0,1]

F(t, x)
x

)
.

Theorem 7.1 ([7]). Suppose that

(a) F : [0, 1]× [0,∞)→ [0,∞) is continuous;
(b) (F0, F∞) = (∞, 0) (sublinear case) or (F0, F∞) = (0,∞) (superlinear case).

Then problem (7.1) admits at least one positive solution in C([0, 1]; R).

Notice that in Example 6.1, we have

min
t∈[ 1

2 ,1]

F(t, x)
x

=
1
2 +

1
8 + 2

√
x+ 1

xp+1

x
and max

t∈[0,1]

F(t, x)
x

=
2 + 2

√
x+ 1

xp+1

x
.
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In such a case, it can be easily seen that

(F0, F∞) = (∞, 0) and (F0, F∞) = (∞, 0).

Therefore, we are in the sublinear case. Hence, by Theorem 7.1, problem (6.1) admits at least one positive
solution in C([0, 1]; R).

Observe that Theorem 7.1 provides only the existence of positive solutions for problem (6.1), while
by our result (Theroem 5.1), we have an additional information, that is, a unique solution of problem 6.1
exists in the set Ph, where h(t) = t

3
2 , t ∈ [0, 1].
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