
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 11 (2018), 172–188

Research Article

Journal Homepage: www.isr-publications.com/jnsa

Solutions of p-Kirchhoff type problems with critical nonlin-
earity in RN

Yueqiang Songa, Shaoyun Shib,∗

aScientific Research Department, Changchun Normal University, Changchun 130032, Jilin, P. R. China.
bSchool of Mathematics & State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, Jilin, P. R.
China.

Communicated by V. K. Le

Abstract
In this paper, we are interested in the existence of weak solutions for the fractional p-Laplacian equation with critical

nonlinearity in RN. By using fractional version of concentration compactness principle together with variational method, we
obtain the existence and multiplicity of solutions for the above problem.
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1. Introduction

In this paper, we study the existence of weak solutions for the fractional p-Laplacian equation with
critical nonlinearity in RN:{

εps
[
a+ b[u]θ−1

s,p
]
(−∆)spu(x) + V(x)|u|

p−2u = |u|p
∗
s−2u+ h(x,u), x ∈ RN,

u(x)→ 0, as |x|→∞,
(1.1)

where a,b > 0, θ ∈ [1,N/(N− sp)), V(x) is a nonnegative potential, N > sp with s ∈ (0, 1), [u]s,p will be
given later, p∗s = Np/(N− ps) is the fractional critical exponent, and (−∆)sp is the fractional p-Laplacian
operator which (up to normalization factors) may be defined for any x ∈ RN as

(−∆)spu(x) := lim
ε→0

∫
RN\Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))

|x− y|N+ps
dy

along any u ∈ C∞0 (RN), where Bε(x) denotes the ball of RN centered at x ∈ RN and radius ε > 0. For
more details about the fractional p-Laplacian operator, we refer to [10, 36, 40].
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The study on semilinear elliptic equation involving critical exponent begins from the seminal paper
by Brézis and Nirenberg [6]. After that many authors were dedicated to investigating all kinds of elliptic
equations with critical growth in bounded domain or in the whole space, we refer to [17–19, 22, 26].

When p = 2 and θ = 1, the problem (1.1) arises in the study of the nonlinear fractional Schrödinger
equation

i
∂ϕ

∂t
= (−∆)sϕ+W(x)ϕ− g(x, |ϕ|)ϕ, (t, x) ∈ R×RN.

If we look for standing wave solutions with the form ϕ(t, x) = u(x)e−iEt, then we obtain that u satisfies

(−∆)su+ V(x)u = f̃(x,u), x ∈ RN,

with V(x) =W(x) − E and f̃(x,u) = g(x, |u|)u for a suitable E > 0 (see [15, 16]).
In the literature there are many papers on the existence of solutions for fractional Laplacian equations,

we refer the reader to [20, 29]. In [12, 35], the authors investigated the fractional Schrödinger equation

(−∆)su+ V(x)u = f(x,u), x ∈ RN (1.2)

and established some existence theorems on one or infinitely many weak solutions. In [13], the authors
used the concentration compactness principle to show that (1.2) has at least two nontrivial radial solu-
tions without assuming the classical Ambrosetti-Rabinowitz condition. In [34], the authors studied the
nonlinear fractional Schrödinger equation

ε2s(−∆)su+ V(x)u = K(x)|u|p−1u, x ∈ RN

and obtained existence and multiplicity results using a perturbed variational method. Recently, some
contributions on the existence of solutions for critical fractional Laplacian equations in bounded domain
are given in [4], where the effects of lower order perturbations are considered. A Brézis-Nirenberg type
result for non-local fractional Laplacian in bounded domain with homogeneous Dirichlet boundary datum
is given in [33] by variational techniques, see also [32] for further results. Nonexistence results for nonlocal
equations involving critical and supercritical nonlinearities can be found in [31]. A multiplicity result for
fractional Laplacian problems in RN is obtained in [3] by using the mountain pass theorem and the direct
method in variational methods, where one of two superlinear nonlinearities could be critical or even
supercritical. It is worth mentioning that the interest in nonlocal fractional problems goes beyond the
mathematical curiosity. Indeed, this type of operators arises in a quite natural way in many different
applications, such as, continuum mechanics, phase transition phenomena, population dynamics, minimal
surfaces and game theory, see for example [1, 7, 10] and the references therein. The literature on non-local
operators and their applications is quite large, here we just quote a few, see [23–25, 42] and the references
therein. For the basic properties of fractional Sobolev spaces, we refer the readers to [10].

When p 6= 2 and θ = 1, there are also some interesting results obtained. In [14], the authors studied
the fractional p-Laplacian equation {

(−∆)spu = f(x,u), in Ω,
u = 0, in RN\Ω

and existence and multiplicity results were established using Morse theory. In [38], the authors investi-
gated a Kirchhoff type problem driven by a non-local integro-differential operator of elliptic type{

M
(∫

R2N |u(x) − u(y)|pK(x− y)dxdy
)
L
p
Ku = f(x,u), in Ω,

u = 0, in RN\Ω,

the authors obtained two existence theorems on nontrivial weak solutions. In [9], the authors studied a
nonlocal equation involving the fractional p-Laplacian

(−∆)spu+ V(x)|u|p−2u = f(x,u) + λh in Rn.



Y. Q. Song, S. Y. Shi, J. Nonlinear Sci. Appl., 11 (2018), 172–188 174

When the nonlinearity f is assumed to have exponential growth, by using a fixed point method, the
authors established an existence result on weak solutions. In [38], the authors investigated the existence of
solutions for Kirchhoff type problem involving the fractional p-Laplacian via variational methods, where
the nonlinearity is subcritical and the Kirchhoff function is non-degenerate. By using the mountain pass
theorem and Ekeland’s variational principle, the authors in [39] studied the multiplicity of solutions to
a nonhomogeneous Kirchhoff type problem driven by the fractional p-Laplacian, where the nonlinearity
is convex-concave and the Kirchhoff function is degenerate. Using the same methods as in [39], Pucci et
al. in [28] obtained the existence of multiple solutions for the nonhomogeneous fractional p-Laplacian
equations of Schrödinger-Kirchhoff type in the whole space. Indeed, the fractional Kirchhoff problems
have been extensively studied in recent years, for instance, we also refer to [27] about non-degenerate
Kirchhoff type problems and to [2, 29] about degenerate Kirchhoff type problems for the recent advances
in this direction.

Motivated by the above and the idea of [11], the aim of this paper is to study the existence and mul-
tiplicity of semiclassical solutions for fractional p-Laplacian equation. However, to our best knowledge,
there is no result in the literature on problem (1.1). Therefore, in the present paper we are interested in the
existence and multiplicity of solutions for problem (1.1) involving the fractional p-Laplacian in RN. There
is no doubt that we encounter serious difficulties because of the lack of compactness and of the nonlocal
nature of the p-fractional Laplacian. It is worthwhile to remark that in the arguments developed in [11],
one of the key points is to prove the (PS)c condition. Here we use the fractional version of Lions’ second
concentration compactness principle and concentration compactness principle at infinity to prove that
the (PS)c condition holds which is different from methods used in [11]. As far as we known, this is the
first time that the fractional version of Lions’ concentration compactness principle and variational meth-
ods are combined to get multiple solutions for perturbed fractional Schrödinger equations with critical
nonlinearity (1.1).

We make the following assumptions on V(x) and h(x,u) throughout this paper:

(V) V(x) ∈ C(RN, R), V(x0) = minV = 0 and there is τ0 > 0 such that the set Vτ0 = {x ∈ RN : V(x) < τ0}

has finite Lebesgue measure;

(H) (h1) h ∈ C(RN × [0,+∞), R) and h(x, t) = o(|t|p−1) uniformly in x as t→ 0;
(h2) there are C0 > 0 and 1 < q < p∗s such that |h(x, t)| 6 C0(1 + tq);
(h3) there are l0 > 0, θp < ν < p∗s, and θp < µ < p∗s such that H(x, t) > l0|t|ν and µH(x, t) 6 h(x, t)t

for all (x, t), where H(x, t) =
∫t

0 h(x, s)ds.

Our main result is the following.

Theorem 1.1. Let (V) and (H) be satisfied. Thus

(1) for any κ > 0 there is Eκ > 0 such that if ε 6 Eκ, problem (1.1) has at least one solution uε satisfying

µ− p

p

∫
RN
H(x,uε)dx+

s

N

∫
RN

|uε|
p∗sdx 6 κεN, (1.3)(

1
p
−

1
µ

)[∫ ∫
R2N

|uε(x) − uε(y)|
p

|x− y|N+sp
dxdy+ λ

∫
RN
V(x)|uε|

pdx

]
6 κλN−ps. (1.4)

Moreover, uε → 0 as ε→ 0.
(2) Assume additionally that h(x, t) is odd in t, for any m ∈ N and κ > 0 there is Emκ > 0 such that if

ε 6 Emκ, problem (1.1) has at least m pairs of solutions uε,i, uε,−i, i = 1, 2, · · · ,m which satisfy the
estimates (1.3) and (1.4). Moreover, uε,i → 0 as ε→ 0, i = 1, 2, · · · ,m.
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2. Main results

We set λ = ε−ps and rewrite (1.1) in the following form{ [
a+ b[u]θ−1

s,p
]
(−∆)spu(x) + λV(x)|u|

p−2u = λ|u|p
∗
s−2u+ λh(x,u), x ∈ RN,

u(x)→ 0, as |x|→∞,
(2.1)

where (−∆)spu is the fractional p-Laplacian operator.
We recall some results related to the fractional Sobolev space Ws,p(RN), for more details, see [6].

Define the Gagliardo seminorm by

[u]s,p =

(∫ ∫
R2N

|u(x) − u(y)|p

|x− y|N+sp
dxdy

) 1
p

,

where u : RN → R is a measurable function. Now, the fractional Sobolev space is given by

Ws,p(RN) := {u ∈ Lp(RN) : u is measurable and [u]s,p <∞}

with the norm
‖u‖s,p =

(
[u]ps,p + ‖u‖pp

) 1
p ,

where

‖u‖p :=

(∫
RN

|u(x)|pdx
) 1
p

.

We recall the Sobolev embedding theorem.

Lemma 2.1 ([10]). Let s ∈ (0, 1) and p ∈ [0,+∞) be such that sp < N. Then there exists a positive constant
C = C(N,p, s) such that

‖u‖p
Lp
∗
s
6 C
∫ ∫

R2N

|u(x) − u(y)|p

|x− y|N+sp
dxdy,

where p∗s =
Np
N−sp is the so-called fractional critical exponent. Consequently, the space Ws,p(RN) is continuously

embedded in Lq(RN) for any q ∈ [p,p∗s]. Moreover the embedding Ws,p(RN) ↪→ L
q
loc(R

N) is compact for
q ∈ [p,p∗s).

In view of the presence of the potential V(x), we consider the fractional Sobolev space

E :=

{
u ∈Ws,p(RN) :

∫
RN
V(x)|u(x)|pdx <∞} ,

with the norm

‖u‖E :=
(
[u]ps,p + ‖V(x)1/pu‖pp

) 1
p

.

From condition (V), Lemma 2.1, and Hölder inequality, it follows from that the following embedding

E ↪→ Lq(RN), p 6 q 6 p∗s,

is continuous. Moreover, the following compactness result holds. It was proved in [8] in the case p = 2.
For the general case, the proof is similar.

Lemma 2.2. Suppose that (V) holds. Then E ↪→ Lq(RN) is compact for q ∈ [p,p∗s).
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From above facts, for any ξ ∈ [p,p∗s], there is µξ > 0 independent of λ such that if λ > 1,

‖u‖ξ 6 µξ‖u‖E 6 µξ‖u‖λ, (2.2)

where

‖u‖λ :=

[∫ ∫
R2N

|u(x) − u(y)|p

|x− y|N+sp
dxdy+ λ

∫
RN
V(x)|u|pdx

] 1
p

.

In the following , we denote ‖ · ‖s is the norm in Ls(RN) (p 6 s 6 p∗s), and ‖u‖E is the norm in E. Note
that the norm ‖ · ‖E is equivalent to the ‖ · ‖λ for each λ > 0.

The energy functional Jλ : E→ R associated with problem (2.1) is well defined as

Jλ(u) :=
a

p
[u]ps,p +

b

θp
[u]θps,p +

λ

p

∫
RN
V(x)|u|pdx−

λ

p∗s

∫
RN

|u|p
∗
sdx− λ

∫
RN
H(x,u)dx.

Thus, it is easy to check that as arguments [30, 37] Jλ ∈ C1(E, R) and its critical points are solutions of
(2.1).

We call that u ∈ E is a weak solution of (2.1), if[
a+ b[u]

(θ−1)p
s,p

] ∫ ∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))

|x− y|N+sp
(v(x) − v(y))dxdy

= − λ

∫
RN
V(x)|u|p−2uvdx+ λ

∫
RN

|u|p
∗
s−2uvdx+ λ

∫
RN
h(x,u)vdx,

where v ∈ E.
Now we will prove the following result.

Theorem 2.3. Let (V) and (H) be satisfied. Thus:

(1) For any κ > 0 there is Λκ > 0 such that if λ 6 Λκ, problem (2.1) has at least one solution uλ satisfying

µ− p

p

∫
RN
H(x,uλ)dx+

s

N

∫
RN

|uλ|
p∗sdx 6 κλ−

N
ps , (2.3)(

1
p
−

1
µ

)[∫ ∫
R2N

|uλ(x) − uλ(y)|
p

|x− y|N+sp
dxdy+ λ

∫
RN
V(x)|uλ|

pdx

]
6 κλ1− N

ps . (2.4)

Moreover, uλ → 0 in E as λ→∞.
(2) Assume additionally that h(x, t) is odd in t, for anym ∈N and κ > 0 there is Λmκ > 0 such that if λ > Λmκ,

problem (2.1) has at least m pairs of solutions uλ,i, uλ,−i, i = 1, 2, · · · ,m which satisfy the estimates (2.3) and
(2.4). Moreover, uλ,i → 0 in E as λ→∞, i = 1, 2, · · · ,m.

3. Behaviors of (PS) sequences

In this section, in order to overcome the lack of some compactness, we use the fractional version of the
principle of concentration compactness of Lions [21] in fractional Sobolev spaces. Let

Cc(R
N) = {u ∈ C(RN) : supp(u) is a compact subset of RN}

and denote by C0(R
N) the closure of Cc(RN) with respect to the norm |η|∞ = supx∈RN |η(x)|. As is well

known, a finite measure on RN is a continuous linear functional on C0(R
N). For a measure µ we give the

norm

‖µ‖ = sup
C0(RN), |η|∞=1

|(µ,η)|,

where (µ,η) =
∫

RN
ηdµ.
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Definition 3.1. Let M(RN) denote the finite nonnegative Borel measure space on RN. For any µ ∈M(RN),
the equation µ(RN) = ‖µ‖ holds. We say that µn ⇀ µ weakly * in M(RN), if (µn,η)→ (µ,η) holds for all
η ∈ C0(R

N) as n→∞.

Lemma 3.2 ([41]). Let {un}n ⊂Ws,p(RN) with upper bound C > 0 for all n > 1 and

un ⇀ u weakly in Ws,p(RN),∫
RN

|un(x) − un(y)|
p

|x− y|N+sp
dy⇀ µ weakly ∗ in M(RN),

|un(x)|
p∗s ⇀ ν weakly ∗ in M(RN).

Then

µ =

∫
RN

|u(x) − u(y)|p

|x− y|N+sp
dy+

∑
j∈J

µjδxj + µ̃, µ(RN) 6 Cp,

ν = |u|p
∗
s +
∑
j∈J

vjδxj , ν(R
N) 6 Sp

∗
sCp,

where J is at most countable, sequences {µj}j, {νj}j ⊂ R+
0 , {xj}j ⊂ RN, δxj is the Dirac mass centered at {xj}j, µ̃ is

a non-atomic measure,

ν(RN) 6 S−p
∗
s/pµ(RN)p

∗
s/p, νj 6 S

−p∗s/pµ
p∗s/p
j for all j ∈ J,

and S > 0 is the best constant of Ws,p(RN) ↪→ Lp
∗
s(RN).

Actually, Lemma 3.2 does not provide any information about the possible loss of mass at infinity for
a weakly convergent sequence. The following theorem expresses this fact in quantitative terms.

Lemma 3.3 ([41]). Let {un}n ⊂Ws,p(RN) be a bounded sequence such that∫
RN

|un(x) − un(y)|
p

|x− y|N+ps
dy⇀ µ weakly ∗ in M(RN),

|un|
p∗s ⇀ ν weakly ∗ in M(RN),

and define

µ∞ = lim
R→∞ lim sup

n→∞
∫
{x∈RN:|x|>R}

∫
RN

|un(x) − un(y)|
p

|x− y|N+ps
dydx

and

ν∞ = lim
R→∞ lim sup

n→∞
∫
{x∈RN:|x|>R}

|un|
p∗sdx.

Then the quantities µ∞ and ν∞ are well defined and satisfy

lim sup
n→∞

∫
RN

∫
RN

|un(x) − un(y)|
p

|x− y|N+ps
dydx =

∫
RN
dµ+ µ∞

and

lim sup
n→∞

∫
RN

|un|
p∗sdx =

∫
RN
dν+ ν∞.

Moreover, the following inequality holds

Sνp/p
∗
s∞ 6 µ∞.
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In the following, we use the fractional version of the principle of concentration compactness to show
that Jλ satisfies the (PS)c at energy levels c below some constant.

Lemma 3.4. Assume that (V) and (H) be satisfied. Let {un} ⊂ E be a (PS)c sequence for Jλ. Then there exists a
constant M(c) which is independent of λ > 0 such that c > 0 and

lim sup
n→∞ ‖un‖

p
λ 6M(c).

Proof. Since {un} is a (PS)c sequence for Jλ, thus

Jλ(un) −
1
µ
J ′λ(un)un = c+ o(1) + εn‖un‖λ, (3.1)

where εn → 0 as n→∞. On the other hand,

Jλ(un) −
1
µ
J ′λ(un)un = a

(
1
p
−

1
µ

)
[u]ps,p + b

(
1
θp

−
1
µ

)
[u]θps,p

+

(
1
p
−

1
µ

) ∫
RN
λV(x)|un|

pdx+

(
1
µ
−

1
p∗s

)
λ

∫
RN

|un|
p∗sdx

+ λ

∫
RN

[
1
µ
h(x,un)un −H(x,un)

]
dx.

(3.2)

Condition (h3) implies that

1
µ
h(x,un)un −H(x,un) > 0 and b

(
1
θp

−
1
µ

)
[u]θps,p > 0.

Thus, it follows from (3.1) and (3.2) that

min
{(

1
p
−

1
µ

)
a,
(

1
p
−

1
µ

)}
‖un‖pλ 6 c+ o(1) + εn‖un‖λ,

hence for n large enough, there exists constant M(c) :=
(

min
{(

1
p − 1

µ

)
a,
(

1
p − 1

µ

)})−1
c such that

‖un‖pλ 6M(c).

Thus ‖un‖λ is bounded as n→∞. Taking the limit in (3.2) shows that c > 0.

Lemma 3.5. Suppose that (V) and (H) hold. For any λ>1, Jλ satisfies (PS)c condition for all c∈
(

0, σ0λ
1− p∗s

p∗s−θp

)
,

where σ0 :=
(

1
µ − 1

p∗s

) (
bSθ

) p∗s
p∗s−θp , that is any (PS)c-sequence (un) ⊂ E has a strongly convergent subsequence

in E.

Proof. Since {un}n ⊂ E is bounded and nonnegative, up to a subsequence, there exists a nonnegative
function u ∈ E such that un ⇀ u in E, un → u in Lσloc(R

N) for σ ∈ [1,p∗s), and un → u a.e. in RN. By
Lemma 3.2, up to a subsequence, there exists a (at most) countable set J, non-atomic measure µ̃, points
{xj}j∈J ⊂ RN, and {µj}j∈J, {νj}j∈J ⊂ R+ such that as n→∞∫

RN

|un(x) − un(y)|
p

|x− y|N+ps
dy⇀ µ =

∫
RN

|u(x) − u(y)|p

|x− y|N+ps
dy+

∑
j∈J

µjδxj + µ̃

and

|un|
p∗s ⇀ ν = |u|p

∗
s +
∑
j∈J

νjδxj
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in the measure sense, where δxj is the Dirac measure concentrated xj. Moreover,

νj 6 S
−p∗s/pµ

p∗s/p
j , ∀j ∈ J, (3.3)

and S > 0 is the best constant of Ws,p(RN) ↪→ Lp
∗
s(RN). Next we claim that J = ∅. Suppose by

contradiction that J 6= ∅. Fix j ∈ J. For ε > 0, choose ϕε,j ∈ C∞0 (RN) such that

ϕε,j = 1 for |x− xj| 6 ε; ϕε,j = 0 for |x− xj| > 2ε,

and |∇ϕε,j| 6 2/ε. Obviously, ϕε,jun ∈ E. It follows from 〈J′λ(un),ϕε,jun〉 → 0 that(
a+ b[un]

(θ−1)p
s,p

) ∫∫
R2N

|un(x) − un(y)|
p−2(un(x) − un(y))(ϕε,j(x)un(x) −ϕε,j(y)un(y))

|x− y|N+ps
dxdy

= −λ

∫
RN
V(x)|un|

pϕε,jdx+ λ

∫
RN
u
p∗s
n ϕε,jdx+ λ

∫
RN
h(x,un)ϕε,jundx+ o(1).

(3.4)

Using the Hölder inequality, we deduce

lim
ε→0

lim
n→∞

∣∣∣∣(a+ b[un](θ−1)p
s,p

) ∫∫
R2N

|un(x) − un(y)|
p−2(un(x) − un(y))(ϕε,j(x) −ϕε,j(y))un(x)

|x− y|N+ps
dxdy

∣∣∣∣
6 C lim

ε→0
lim
n→∞

(∫∫
R2N

|un(x) − un(y)|
p

|x− y|N+ps
dxdy

)(p−1)/p(∫∫
R2N

|(ϕε,j(x) −ϕε,j(y))un(x)|
p

|x− y|N+ps
dxdy

)1/p

(3.5)

6 C lim
ε→0

lim
n→∞

(∫∫
R2N

|(ϕε,j(x) −ϕε,j(y))un(x)|
p

|x− y|N+ps
dxdy

)1/p

.

Similar to the proof of Lemma 2.1 in [41], we claim that

lim
ε→0

lim
n→∞

∫∫
R2N

|(ϕε,j(x) −ϕε,j(y))un(x)|
p

|x− y|N+ps
dxdy = 0. (3.6)

In the following, we just give a sketch of the proof for the reader’s convenience.
On the one hand, we have

RN ×RN = ((RN \B(xj, 2ε))∪B(xj, 2ε))× ((RN \B(xj, 2ε))∪B(xj, 2ε))

= ((RN \B(xj, 2ε))× (RN \B(xj, 2ε)))∪ (B(xj, 2ε)×RN)∪ ((RN \B(xj, 2ε))×B(xj, 2ε)).

On the other hand, we have∫ ∫
R2N

|un(x)|
p|ϕε,j(x) −ϕε,j(y)|

p

|x− y|N+ps
dxdy

=

∫ ∫
B(xj,2ε)×RN

|un(x)|
p|ϕε,j(x) −ϕε,j(y)|

p

|x− y|N+ps
dxdy

+

∫ ∫
(RN\B(xj,2ε))×B(xj,2ε)

|un(x)|
p|ϕε,j(x) −ϕε,j(y)|

p

|x− y|N+ps
dxdy

6 Cε−ps
∫
B(xj,2ε)

|un(x)|
pdx+Cε−ps

∫
B(xj,3ε)

|un(x)|
pdx+Cε−ps

∫
B(xj,Kε)

|un(x)|
pdx

+CK−N

(∫
RN\B(xj,Kε)

|un(x)|
p∗sdx

)p/p∗s

6 Cε−ps
∫
B(xj,3ε)

|un(x)|
pdx+CK−N

(∫
RN\B(xj,Kε)

|un(x)|
p∗sdx

)p/p∗s
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6 Cε−2s
∫
B(xj,Kε)

|un(x)|
pdx+CK−N.

Note that un ⇀ u weakly in E, then un → u inLσloc(R
N), 1 6 σ < p∗s, which implies that

Cε−ps
∫
B(xj,Kε)

|un(x)|
pdx+CK−N → Cε−ps

∫
B(xj,Kε)

|u(x)|pdx+CK−N,

as n→∞. By the Hölder inequality, we obtain

Cε−ps
∫
B(xj,Kε)

|u(x)|pdx+CK−N 6 Cε−ps
(∫
B(xj,Kε)

|u(x)|p
∗
sdx

)p/p∗s (∫
B(xj,Kε)

dx

)1−p/p∗s

+CK−N

= CKps

(∫
B(xj,Kε)

|u(x)|p
∗
sdx

)p/p∗s
+CK−N → CK−N

as ε→ 0. Furthermore, we have

lim sup
ε→0

lim sup
n→∞

∫ ∫
R2N

|un(x)|
p|ϕε,j(x) −ϕε,j(y)|

p

|x− y|N+ps
dxdy

= lim
K→∞ lim sup

ε→0
lim sup
n→∞

∫ ∫
R2N

|un(x)|
p|ϕε,j(x) −ϕε,j(y)|

p

|x− y|N+ps
dxdy = 0.

Hence the claim holds.
We deduce from (3.4)-(3.6) that

lim
ε→0

lim
n→∞

(
a+ b[un]

(θ−1)p
s,p

) ∫∫
R2N

|un(x) − un(y)|
p

|x− y|N+ps
ϕε,j(y)dydx

> lim
ε→0

lim
n→∞

[
a

∫∫
R2N

|un(x) − un(y)|
p

|x− y|N+ps
ϕε,j(y)dxdy+ b

(∫∫
R2N

|un(x) − un(y)|
p

|x− y|N+ps
ϕε,j(y)dxdy

)θ]
> bµθj ,

(3.7)

lim
ε→0

lim
n→∞

∫
RN
u
p∗s
n ϕε,jdx = lim

ε→0

∫
RN
up
∗
sϕε,jdx+ νj = νj, (3.8)

and

lim
ε→0

lim
n→∞

∫
RN
h(x,un)unφε,j(x)dx = lim

ε→0
lim
n→∞

∫
RN
h(x,u)uφε,j(x)dx = 0. (3.9)

It follows from (3.7)-(3.9) that
νj > bµ

θ
j .

Combining this inequality with (3.3), we obtain νj > bλ−1Sθν
θp
p∗s
j . This result implies that

(I) νj = 0 or

(II) νj > (bλ−1Sθ)
p∗s

p∗s−θp .

To obtain the possible concentration of mass at infinity, similarly, we define a cut off function χR ∈
C∞(RN) which satisfies χR ∈ [0, 1] and χR(x) = 0 for |x| < R, χR(x) = 1 for |x| > 2R, and |∇χR| 6 2/R.
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Note that 〈J ′λ(un),unχR〉 → 0, this fact implies that(
a+ b[un]

(θ−1)p
s,p

)[ ∫∫
R2N

|un(x) − un(y)|
pχR(x)

|x− y|N+ps
dxdy+ λ

∫
RN
V(x)|un|

pχRdx

+

∫∫
R2N

|un(x) − un(y)|
p−2(un(x) − un(y))un(y)(χR(x) − χR(y))

|x− y|N+ps
dxdy

]
= λ

∫
RN
u
p∗s
n χRdx+ λ

∫
RN
f(x,un)unχRdx+ o(1).

(3.10)

Similarly, by the Hölder inequality, it is easy to prove that

lim
R→∞ lim sup

n→∞
∫∫

R2N

|un(x) − un(y)|
p−2(un(x) − un(y))un(y)(χR(x) − χR(y))

|x− y|N+ps
dxdy = 0, (3.11)

and

lim
R→∞ lim

n→∞
∫

RN
h(x,un)unχRdx = 0. (3.12)

Hence we deduce from (3.10)-(3.12) that

lim
R→∞ lim sup

n→∞
(
a+ b[un]

(θ−1)p
s,p

) ∫∫
R2N

|un(x) − un(y)|
pχR(x)

|x− y|N+ps
dxdy

=

[
a+ b

(∫
RN
dµ+ µ∞

)θ−1
]

lim
R→∞ lim sup

n→∞
(∫

{x∈RN:|x|>R}

∫
RN

|un(x) − un(y)|
p

|x− y|N+ps
dydx

)
>
(
a+ bµθ∞)µ∞ > bµθ∞

and

ν∞ = lim
R→∞ lim sup

n→∞
∫

RN
|un(x)χR(x)|

p∗sdx.

Letting R → ∞ in (3.10), we obtain ν∞ > bλ−1Sθν
θp
p∗s∞ . By Lemma 3.3, we obtain ν∞ > λ−1Sν

p
p∗s∞ . This

result implies that

(III) ν∞ = 0 or

(IV) ν∞ > (bλ−1Sθ)
p∗s

p∗s−θp .

Next, we claim that (II) and (IV) cannot occur. If the case (IV) holds, for some j ∈ J, then by using
Lemma 3.3 and condition (h3), we have that

c = lim
n→∞

(
Jλ(un) −

1
µ
〈J′λ(un),un〉

)
= lim
n→∞

(
a

(
1
p
−

1
µ

)
[u]ps,p + b

(
1
θp

−
1
µ

)
[u]θps,p

)
+

(
1
p
−

1
µ

)
λ

∫
RN
V(x)|un|

pdx

+

(
1
µ
−

1
p∗s

)
λ

∫
RN

|un|
p∗sdx+ λ

∫
RN

[
1
µ
h(x,un)un −H(x,un)

]
dx

>

(
1
µ
−

1
p∗s

)
λ

∫
RN

|un|
p∗sdx >

(
1
µ
−

1
p∗s

)
λ

∫
RN

|un|
p∗sχRdx

=

(
1
µ
−

1
p∗s

)
λν∞ > σ0λ

1− p∗s
p∗s−θp ,
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where σ0 =
(

1
µ − 1

p∗s

) (
bSθ

) p∗s
p∗s−θp . This is impossible. Consequently, νj = 0 for all j ∈ J. Similarly, we can

prove that (II) cannot occur for each j. Thus

lim
n→∞

∫
RN
u
p∗s
n dx =

∫
RN
up
∗
sdx.

From the weak lower semicontinuity of the norm and Brezis-Lieb Lemma [6], we have

o(1)‖un‖ = 〈J ′(un),un〉

= a[un]
p
s,p + b[un]

θp
s,p + λ

∫
RN
V(x)|un|

pdx− λ

∫
RN

|un|
p∗sdx− λ

∫
RN
h(x,un)undx

> a[un − u]ps,p + λ

∫
RN
V(x)|un − u|pdx+ a[u]ps,p + b[u]

θp
s,p + λ

∫
RN
V(x)|u|pdx

− λ

∫
RN

|u|p
∗
sdx− λ

∫
RN
h(x,u)udx

= min{a, 1}‖un − u‖pλ + o(1)‖u‖,

here we use J ′(u) = 0. Thus we prove that {un} strongly converges to u in Z(Ω). This completes the proof
of Lemma 3.5.

4. Proofs of Theorem 2.3

In the following, we always consider λ > 1. By the assumptions (V) and (H), one can see that Jλ(u)
has mountain pass geometry.

Lemma 4.1. Assume (V) and (H) hold. There exist αλ, ρλ > 0 such that Jλ(u) > 0 if u ∈ Bρλ \ {0} and
Jλ(u) > αλ if u ∈ ∂Bρλ , where Bρλ = {u ∈ E : ‖u‖λ 6 ρλ}.

Proof. By (h1)-(h3), for δ 6
(
2pλµpp

)−1 there is Cδ > 0 such that

1
p∗s

∫
RN

|u|p
∗
sdx+

∫
RN
H(x,u)dx 6 δ‖u‖pp +Cδ‖u‖

p∗s
p∗s

,

where µs is the embedding constant of (2.2). So, from condition (H) it follows that

Jλ(u) > min
{
a

p
, 1
}
‖u‖pλ − λδ‖u‖

p
p − λCδ‖u‖

p∗s
p∗s

>
1
2

min
{
a

p
, 1
}
‖u‖pλ − λCδµ

p∗s
p∗s
‖u‖p

∗
s
p∗s

.

Since p∗s > p, we know that the conclusion of Lemma 4.1 holds. This completes the proof of Lemma
4.1.

Lemma 4.2. Under the assumption of Lemma 4.1, for any finite dimensional subspace F ⊂ Xs,

Jλ(u)→ −∞ as u ∈ F, ‖u‖λ →∞.

Proof. Using conditions (V) and (h1)-(h3), we can get

Jλ(u) 6 max
{
a

p
, 1
}
‖u‖pλ +

b

θp
‖u‖θpλ −

λ

p∗s
‖u‖p

∗
s
p∗s

− λl0‖u‖νν

for all u ∈ F. Since all norms in a finite-dimensional space are equivalent and p < p∗s. This completes the
proof of Lemma 4.2.
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Since Jλ(u) does not satisfy (PS)c condition for all c > 0. Thus, in the following we will find a special
finite-dimensional subspaces by which we construct sufficiently small minimax levels.

Recall that the assumption (V) implies there is x0 ∈ RN such that V(x0) = minx∈RN V(x) = 0. Without
loss of generality we assume from now on that x0 = 0.

From condition (h3) it follows that

λ

p∗s

∫
RN

|u|p
∗
sdx+ λ

∫
RN
H(x,u)dx > l0λ

∫
RN

|u|νdx.

Definite the function Iλ ∈ C1(Xs, R) by

Iλ(u) :=
a

p
[u]ps,p +

b

θp
[u]θps,p +

λ

p

∫
RN
V(x)|u|pdx− l0λ

∫
RN

|u|νdx.

Then Jλ(u) 6 Iλ(u) for all u ∈ E and it suffices to construct small minimax levels for Iλ.
Note that

inf
{∫ ∫

R2N

|φ(x) −φ(y)|p

|x− y|N+sp
dxdy : φ ∈ C∞0 (RN), |φ|ν = 1

}
= 0.

For any 1 > δ > 0 one can choose φδ ∈ C∞0 (RN) with |φδ|p = 1 and suppφδ ⊂ Brδ(0) so that∫ ∫
R2N

|φδ(x) −φδ(y)|
p

|x− y|N+sp
dxdy < δ.

Set

1
l
:=

p

N− sp
· 1
p∗s − θp

and
eλ = φδ(λ

1
l x), (4.1)

then

suppeλ ⊂ B
λ−

1
l rδ

(0).

Thus, for t > 0,

Iλ(teλ) =
atp

p
[eλ]

p
s,p +

btθp

θp
[eλ]

θp
s,p +

tp

p
λ

∫
RN
V(x)|eλ|

pdx− l0t
νλ

∫
RN

|eλ|
νdx

= λ1−N
l

[
atp

p
[φδ]

p
s,p +

btθp

θp
λ(θ−1)(1−N

l )[φδ]
θp
s,p +

tp

p

∫
RN
V
(
λ−

1
l x
)
|φδ|

pdx− tνl0

∫
RN

|φδ|
νdx

]
6 λ1−N

l

[
atp

p
[φδ]

p
s,p +

btθp

θp
[φδ]

θp
s,p +

tp

p

∫
RN
V
(
λ−

1
l x
)
|φδ|

pdx− tνl0

∫
RN

|φδ|
νdx

]
= λ1−N

l Ψλ(tφδ) = λ
1− p∗s

p∗s−θpΨλ(tφδ),

where Ψλ ∈ C1(E, R) defined by

Ψλ(u) :=
a

p
[u]ps,p +

b

θp
[u]θps,p +

1
p

∫
RN
V
(
λ−

1
l x
)
|u|pdx− l0

∫
RN

|u|sdx.

We obtain by ν > p that

max
t>0

Ψλ(tφδ) =
p− 2

2p(νl0)
p
ν−p

(∫ ∫
R2N

|φδ(x) −φδ(y)|
p

|x− y|N+sp
dxdy+

∫
RN
V
(
λ−

1
psx
)
|φδ|

pdx

) ν
ν−p

.
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On the one hand, since V(0) = 0 and note that suupφδ ⊂ Brδ(0), there is Λδ > 0 such that

V
(
λ−

1
psx
)
6

δ

|φδ|
p
p

for all |x| 6 rδ and λ > Λδ.

This implies that

max
t>0

Ψλ(tφδ) 6
p− 2

2p(νl0)
p
ν−p

(2δ)
ν
ν−p .

Therefore, for all λ > Λδ,

max
t>0

Jλ(tφδ) 6
p− 2

2p(νl0)
p
ν−p

(2δ)
ν
ν−pλ1− N

ps . (4.2)

Thus we have the following lemma.

Lemma 4.3. Under the assumption of Lemma 4.1, for any κ > 0 there exists Λκ > 0 such that for each λ > Λκ,
there is êλ ∈ Xs with ‖êλ‖λ > ρλ, Jλ(êλ) 6 0 and

max
t∈[0,1]

Jλ(têλ) 6 κλ
1− N

ps .

Proof. Choose δ > 0 so small that p−2

2p(νl0)
p
ν−p

(2δ)
ν
ν−p 6 κ. Let eλ ∈ Xs be the function defined by (4.1).

Take Λκ = Λδ. Let t̂λ > 0 be such that t̂λ‖eλ‖λ > ρλ and Jλ(teλ) 6 0 for all t > t̂λ. By (4.2), let êλ = t̂λeλ,
we know that the conclusion of Lemma 4.3 holds.

For any m∗ ∈N, one can choose m∗ functions φiδ ∈ C∞0 (RN) such that suppφiδ ∩ suppφkδ = ∅, i 6= k,
|φiδ|s = 1, and ∫ ∫

R2N

|φiδ(x) −φ
i
δ(y)|

p

|x− y|N+sp
dxdy < δ.

Let rm
∗

δ > 0 be such that suppφiδ ⊂ Birδ(0) for i = 1, 2, · · · ,m∗. Set

eiλ(x) = φ
i
δ(λ

1
psx) for i = 1, 2, · · · ,m∗ (4.3)

and

Hm
∗

λδ = span{e1
λ, e2

λ, · · · , em
∗

λ }.

Observe that for each u =

m∗∑
i=1

cie
i
λ ∈ Hm

∗
λδ ,

[u]ps,p =

m∗∑
i=1

|ci|
p[eiλ]

p
s,p,

∫
RN
V(x)|u|pdx =

m∗∑
i=1

|ci|
p

∫
RN
V(x)|eiλ|

pdx,

1
p∗s

∫
RN

|u|p
∗
sdx =

1
p∗s

m∗∑
i=1

|ci|
p∗s

∫
RN

|eiλ|
p∗sdx,

and ∫
RN
H(x,u)dx =

m∗∑
i=1

∫
RN
H(x, cieiλ)dx.
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Therefore,

Jλ(u) =

m∗∑
i=1

Jλ(cie
i
λ)

and as before

Jλ(cie
i
λ) 6 λ

1−N
p Ψ(|ci|e

i
λ).

Set

βδ := max{|φiδ|
p
p : j = 1, 2, · · · ,m∗}

and choose Λm∗δ > 0 so that

V(λ−
1
psx) 6

δ

βδ
for all |x| 6 rm

∗
δ and λ > Λm∗δ.

As before, we can obtain the following

max
u∈Hm∗λδ

Jλ(u) 6 m
∗ p− 2

2p(νl0)
p
ν−p

(2δ)
ν
ν−pλ1− N

ps (4.4)

for all λ > Λm∗δ.
Using this estimate, we have the following.

Lemma 4.4. Under the assumptions of Lemma 4.1, for any m∗ ∈ N and κ > 0 there exists Λm∗κ > 0 such that
for each λ > Λm∗κ, there exists an m∗-dimensional subspace Fλm∗ satisfying

max
u∈Fλm∗

Jλ(u) 6 κλ
1− N

ps .

Proof. Choose δ > 0 so small that m∗ p−2

2p(νl0)
p
ν−p

(2δ)
ν
ν−p 6 κ. Taking Fλm∗ = Hm

∗
λδ = span{e1

λ, e2
λ, · · · , em

∗
λ },

where eiλ(x) = φiδ(λ
1
psx), for i = 1, 2, · · · ,m∗ are given by (4.3). From (4.4), we know that the conclusion

of Lemma 4.4 holds.

We now establish the existence and multiplicity results.

Proof of Theorem 2.3. For any o < κ < σ0, by Lemma 3.4, we choose Λσ > 0 and define for λ > Λσ, the
minimax value

cλ := inf
γ∈Γλ

max
t∈[0,1]

Jλ(têλ),

where
Γλ := {γ ∈ C([0, 1],Xs) : γ(0) = 0 and γ(1) = êλ}.

By Lemma 4.1, we have αλ 6 cλ 6 κλ1− N
ps . In virtue of Lemma 3.4, we know that Jλ satisfies the (PS)cλ

condition, there is uλ ∈ Xs such that J ′λ(uλ) = 0 and Jλ(uλ) = cλ. Moreover, it is well known that such a
Mountain-Pass solution is a least energy solution of problem (2.1).

Because uλ is a critical point of Jλ, for ρ ∈ [p,p∗s],

κλ1− N
ps > Jλ(uλ) = Jλ(uλ) −

1
ρ
J ′λ(uλ)uλ

=

(
1
p
−

1
ρ

) ∫ ∫
R2N

|uλ(x) − uλ(y)|
p

|x− y|N+sp
dxdy+

(
1
p
−

1
ρ

)
λ

∫
RN
V(x)|uλ|

pdx
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+

(
1
ρ
−

1
p∗s

)
λ

∫
RN

|uλ|
p∗sdx+ λ

∫
RN

[
1
µ
h(x,uλ)uλ −H(x,uλ)

]
dx

>

(
1
p
−

1
ρ

) ∫ ∫
R2N

|uλ(x) − uλ(y)|
p

|x− y|N+sp
dxdy+

(
1
p
−

1
ρ

)
λ

∫
RN
V(x)|uλ|

pdx

+

(
1
ρ
−

1
p∗s

)
λ

∫
RN

|uλ|
p∗sdx+

(
µ

ρ
− 1
)
λ

∫
RN
H(x,uλ)dx.

Taking ρ = p, we obtain the estimates (i) and taking ρ = µ we obtain the estimate (ii). This completes the
proof of Theorem 2.3 (1).

Denote the set of all symmetric (in the sense that −Z = Z) and closed subsets of Xs by Σ for each
Z ∈ Σ. Let gen(Z) be the Krasnoselkski genus and

j(Z) := min
ι∈Γm∗

gen(ι(Z)∩ ∂Bρλ),

where Γm∗ is the set of all odd homeomorphisms ι ∈ C(Xs,Xs) and ρλ is the number from Lemma 4.1.
Then j is a version of Benci’s pseudoindex [5]. Let

cλi := inf
j(Z)>i

sup
u∈Z

Jλ(u), 1 6 i 6 m∗.

Since Jλ(u) > αλ for all u ∈ ∂B+
ρλ and since j(Fλm∗) = dim Fλm∗ = m

∗,

αλ 6 cλ1 6 · · · 6 cλm∗ 6 sup
u∈Hλm∗

Jλ(u) 6 κλ
1− N

ps .

It follows from Lemma 3.4 that Jλ satisfies the (PS)cλ condition at all levels c < σ0λ
1− N

ps . By the usual
critical point theory, all cλi are critical levels and Jλ has at least m∗ pairs of nontrivial critical points.
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